The 42nd Symposium on Information Theory
and its Applications (SITA2019)
Kirishima, Kagoshima, Japan, Nov. 26-29, 2019

Asymptotic Optimality of Asymmetric Numeral Systems

Hidetoshi Yokoo*

Abstract—An entropy coder is defined to be asymptoti-
cally optimal if it attains asymptotically the source entropy
in a certain limit of its parameter. In this paper, we first
give a sufficient condition for a stream variant of ANS to
attain the source entropy. Then, we show that the tANS
variant with Duda’s precise initialization algorithm for con-
structing a symbol distribution has asymptotic optimality
in the sense that the average codeword length approaches
the source entropy as the size of the state set grows.
Keywords—ANS, asymptotic optimality, data compres-
sion, entropy, memoryless source

1 Introduction

For a known (memoryless) information source, en-
tropy coders may attain the entropy of the source in
some cases, and may not in other cases. To attain the
entropy in the latter cases, we have to introduce a tech-
nique of alphabet extension (known also as source or
symbol extension). Some entropy coders, on the other
hand, have their own parameters and can make the
compression rate close to the entropy by tuning the
parameters rather than by appealing to such general
techniques. We define an entropy coder to be asymp-
totically optimal if the coder asymptotically attains the
entropy in certain limits of parameter values'. In this
paper, we show that a variation of Asymmetric Nu-
meral Systems has such asymptotic optimality.

Asymmetric Numeral Systems (ANS), developed by
Jarek Duda in a series of his papers [3]-[5], form a
family of entropy coders, and have already been used
in various applications [6], [7], [9]-[12]. While Shannon
coding and arithmetic coding, which are the most typi-
cal examples of entropy coders, regard a fractional part
of a number as a codeword, ANS generalizes an integer
part. The term “asymmetric” means that ANS does
not necessarily treat o distinct symbols equally in each
digit of the radix-« representation of an integer.

ANS can be divided into several variations from
multiple viewpoints. When the input alphabet is
binary, they are called Asymmetric Binary Systems
(ABS), and otherwise ANS. The most essential com-
ponent of ANS may be the so-called symbol distribu-
tion, a sequence of inner states of the encoder and de-
coder. Basic ANS assumes an unbounded symbol dis-
tribution while stream ANS assumes a bounded one.
The symbol distribution is given as a formula in a
range variant (rANS), and as a table in a tabled vari-
ant (tANS). Thus, the variation is determined by giv-

* Division of Electronics and Informatics, Gunma University,
Kiryu 376-8515, Japan. E-mail: yokoo@gunma-u.ac.jp

T Department of Computer Science and Software Engineering
Université Laval, Canada. E-mail: Danny.Dube®@ift.ulaval.ca

L This definition is different from one used in universal coding.

Danny Dubé T

ing a concrete definition of its symbol distribution. For
example, Fujisaki [8] analyzed basic ABS with Stur-
mian sequences as symbol distributions. The symbol
distribution also affects the compression performance
of ANS, both theoretically and empirically. We have
empirically compared various construction methods of
the symbol distribution in terms of compression effi-
ciency [1], and proposed a heuristic way for construct-
ing almost optimal symbol distributions [2].

In spite of the importance of symbol distributions
in ANS, few theoretical studies have been presented on
their relation to the compression performance. In this
paper, we first give a sufficient condition for a stream
variant of ANS to attain the source entropy. Then,
we shift our focus to the stream variant of tANS with
Duda’s procedure [5] for constructing a symbol distri-
bution, and analyze the procedure. The symbol dis-
tribution in the variant is bounded with [states. We
show that the compression rate attained by the variant
approaches the source entropy as [goes to infinity.

2 Asymmetric Numeral Systems
2.1 Notation

Let X be the source alphabet. We assume that
the size of X' is « and its elements, called symbols, are
integers from 0 to o — 1. Let ps denote the probabil-
ity of symbol s € X. We consider lossless compres-
sion of a sequence of symbols drawn from a stationary,
memoryless source with known probability distribution
{ps}2=). We fix the code alphabet to be {0, 1}. When
we use base-2 logarithms, the (binary) entropy of the
source is defined as

a—1

H=—- Zps logps Dit.
s=0

Throughout this paper, we assume ps > 0 for every
symbol s € X in the source. We represent the integer
interval from ¢ to j, both inclusive, by [i, j], and regard
it as a set of integers. The largest integer smaller than
or equal to x is denoted by |z |, and the smallest integer
larger than or equal to by [z]. The remainder of
the division of x by m is denoted by mod(x, m). The
base of logarithms is 2 except when natural logarithms,
denoted by In(-), will be used in the proof of Theorem 1.

2.2 Symbol Distribution and ANS

Before introducing ANS, we consider a “symmetric”
numeral system, namely, an ordinary positional base-
« representation for integers. Suppose that we have
an array of integers 3 = 5[0, +00), in which we have

5[i] = mod(7, o). Based on this array, we define the

following two functions?:

C(s, x): integer i such that s[i] is the (z + 1)st
occurrence of s,
D(z): the number of occurrences of 5[z] in

5[0, x — 1].

For example, assume that we have
012 3 45 6 78 9 10 11 12 13 14 15 16 17 18

5 =[0[1[2[0[1[2[0[1[2[0]1[2[0[1][2[0[1[2]0

for a = 3. If we want to know the value of a ternary
number (8183 --5,)3 of n digits, we begin with ¢ =
x = 0, and repeat ¢ := ¢ + 1 and x := C(s;,). For
example, for (122)3, we have z := 0; z := C(1,0) = 1;
x = C(2,1) = 5; x := C(2,5) = 17, and we know
(122)5 = (17)10. Conversely, starting with = 17, we
accumulate the symbols 3[z] from right to left® while
repeating z:= D(x) until =0 so that we obtain the
ternary representation of x =17. Specifically, we have
S[17) = 2, x := D(17) = 5; 5[5] = 2, z := D(5) = 1;
5[] =1, 2 := D(1) = 0, and we know (17)19 = (122)3.
The array 3 is called a symbol distribution [1],[2]. ANS
generalizes a symbol distribution to an arbitrary se-
quence over X. Even if we extend 5 to any sequence,
the following holds for any non-negative integer x and
any s € X:

C(slz], D(x)) = =,
x)) = . (1)

For a sequence sys5--- s, over X of size «, the binary
representation of the final value of x obtained through a
given symbol distribution results in a mapping from an
a-ary input to a binary output. This mapping serves
as the basic ANS encoder.

The main problem with basic ANS is that no code-
word is output until the very last symbol of an input
sequence is read. This causes to manipulate very large
values of z, and makes ANS impractical. In order to
solve this problem, a stream variant of ANS is intro-
duced, in which the encoding of a single symbol is com-
pleted each time it is read. Stream ANS uses the in-
terval

I=120-1]

as subscripts of a fixed length [> 0 and its correspond-
ing symbol distribution s[I]. Repeating z := C(s,z)
may cause an overflow of from 7. Stream ANS solves
this by emitting some of the less significant bits of x
and keeping the more significant bits to form a new
value for x so that C(s,z) always lies in I. In this
process, we assume that 5[0, I — 1] holds an identical

2 The functions can be more concisely represented by the rank
and select functions, which are popular in computer science [2].

3 The ternary-to-decimal and decimal-to-ternary conversions us-
ing this idea have opposite directions in input and output or-
ders of the digits of a ternary number. This corresponds to
the fact that ANS encodes and decodes the source sequence in
the opposite directions.

while C'(s,z) ¢ I do
Emit mod(z, 2); = |z/2];
end while

I
while = ¢ I, do
Emit mod(z, 2); = := |x/2];
end while

Figure 1: Equivalent loops in stream ANS

copy of 3[I]. On this assumption, letting I, and I
denote the number of symbols s included in $[I] and
[ls, 25 — 1], respectively, we can show the equivalence
stated in Fig. 1.

Starting with having = € I but possibly without
having « € I at the beginning of the while-loop, the
loop is repeated until z belongs to I;. Therefore, the
loop is repeated k& — 1 times when the initial z is in-
cluded in [1, 2¥1,—1], and k times when it is in [2¥1,, 21—
1]. We can determine the value of k that satisfies
1 < 2Fl, < 21 to be

ks = {log ll-‘ = {— log lls-‘ ,

since [/l; < 2F. The number of bits emitted by the
loop, which is the same as the number of times to repeat
the loop, is given by

ks—1 for [<xz<E&, (2)
ks for & <x<2l
for
fs - 2ksls~ (3)

From now on, we call x € I a state. The interval I is,
therefore, the state set.

2.3 Sufficient Condition on Optimality

Let P(x) denote the probability of being in state
x € I in encoding. It follows from (2) that the average
number of emitted bits per input symbol is given by

a—1 £s—1 20—1
L= p{k=1) > P@) + kY P@)}.
s=0 z=l r=E,

L depends generally on the ANS parameters including
the symbol distribution s and on the source. However,
we here consider it to be a function of the stationary
distribution P of the set of states, and represent it by
L(P). Then, we have

a—1 a—1 £s—1

L(P) = Y pks—Y psy Pla) (4)
s=0 s=0 x=Il

> H. (5)

The last inequality (5) comes from the source coding
theorem. Proving it directly, i.e. giving a converse cod-
ing theorem to ANS, is an open problem.

1. let S1S5---S, be the sequence to be encoded;

. let x:=1;
3. fori:=1,2,....,ndo
let s:= S;;

while z ¢ I, do
Emit mod(z, 2); z := |x/2];
end while
let x := C[s, z];
end for
4. Output z.

1. let x := the final value output by the encoder;
2. fori:=n,n—1,...,1do

let (s, z) := D[z]; S; =s;

while z ¢ I do

let x := 2z+‘symbol emitted by the encoder’;
end while
end for

3. Output S15---S,.

Figure 2: Encoder (left) and decoder (right) of stream tANS

Let us introduce the following distribution [13] as a
virtual stationary distribution of the state set:

~ 1
P(x) = log T . (6)
Then, we have
= M 58 ls
Z Plx) = logT = ks —|—log7

from (3), and
a—1 l
L(P) = — log =
(P) ;ps 0g

from (4). Comparing L(P) with the definition of en-
tropy, we know that we reach an equality in (5) when
we use the distribution P in (6) and have

ls =lps for every s € X. (7)

The combination of (6) and (7) forms a sufficient
condition for L(P) to attain the source entropy.

2.4 Table Representation of s and tANS

A concrete form of stream ANS is thus specified by
the size [of the state set I and s, the symbol distribu-
tion. In a tabled variant of ANS (tANS), the symbol
distribution is given explicitly as a table. As methods

s [8[9f10[11[12[13[14[15]eT
Emitted 0 1 0 1 0 1

0 20| 89 [5[5[6|6]|7][7|el
Clo,zo][1315 8 [8 [10|10 |12 |12 | I
Emitted | 00 [10 [01 [11 [00 [10 [01 [11

1 w22 223333 |en
Clle]| 999914141414]|ec1®
Emitted [000[100[010[110[001[101[011[111

2 z| L[T[T [T [T [1][1]1]|eh
Cl2,xo][11 [11 [11 [11 [11|11 |11 |11 |eI®

Figure 3: Example of state transitions in tANS with
a=3,1=28,p = 0.62,p, = 0.25p, = 0.13, and
3[8, 15] = {0,1,0,2,0,0,1,0}. I®) will be defined later.

for defining a table, Duda [4], [5] proposed algorithms
for creating directly the two arrays C[s, 2] and D|x]
instead of defining a symbol distribution. These arrays
almost correspond to but are not equivalent to func-
tions C(s,2) and D(x). They are specific to Duda’s
algorithm as well as to the subsequent discussions in
this paper. The following algorithm is an example
from his paper in 2014 (Page 19 in [5]), which he called
the precise initialization algorithm. In this algorithm,
“put((v, s))” and “getmin()” are operations on a list.
The operation “put((v, s))” adds the pair (v, s) to the
list, and “getmin()” extracts the pair with the mini-
mum first coordinate from the list.

1. fors:=0,1,...,a—1do
put((0.5/ps, 8)); xs = ls;
end for
2. forx:=1[1+1,...,2l—1do
(v, 8) := getmin(); put((v + 1/ps, 5));
Dix] := (s, z5); C[s, xs] = x;
T = xg+ 1;
end for.

Corresponding to Eq. (1), we can show that

D[C[s, zs]] = (s,xs) forse X, z, € L.

The two arrays are used in the encoder and decoder of
tANS in the manner shown in Fig. 2. Figure 3 is an
example of state transitions with emitted bits given by
the above precise initialization algorithm. As the final
step of the encoder, it has to output the final value
of state x. The length to be required for this is log!
bits, which is independent of the length n of the source
sequence. We can ignore it for a sufficiently large n,
and therefore we call L(P) in (4) the average codeword
length.

3 Asymptotic Optimality of tANS

In this section, we will show that the average code-
word length of tANS introduced above approaches the
source entropy in the limit of [— oc.

To do so, we first analyze the precise initialization
algorithm, and show that C[s,z;] is almost propor-
tional to 24 with proportional constant p;!. More pre-

2py P1 D1 p1

Pt @+ >0 +—— >0 +—— >0 +—— >0 +——> 0+ - - -

1 1 1 1 1 1 1

2po Ppo Po Po Do Do Do

Figure 4: Example with @ = 3 of explaining Duda’s
precise initialization algorithm

cisely, we bound the reciprocal of C[s,z,] by the in-
equalities in (9) below. Then, we proceed to show our
main result. We establish a simultaneous linear equa-
tion with the stationary distribution P as unknowns.
We also give a similar equation that the virtual distri-
bution P fulfills. We prove that the solutions to both
equations, i.e. the true and virtual stationary distribu-
tions, converge as [— oo, and show for tANS to satisfy
asymptotically the sufficient condition on asymptotic
optimality of ANS.

3.1 Analysis of Precise Initialization Algorithm

As shown in Fig. 4, for each symbol, the algorithm
produces a sequence of points with intervals of the re-
ciprocal of the probability of the symbol. According to
the order of occurring of points, the algorithm stores
the corresponding symbols as the elements in $[/]. In
the case of Fig. 4, for example, we start with 3[l] = 0
and store 1, 2, 0, 0, 1, ..., in order. When we focus
on some symbol s in X', we know that the sum of the
intervals to the ngth point is equal to (ns —0.5)p; ! for
ns = 1,2,.... Let n; ¢ be the number of points cor-
responding to symbol ¢ € X in the interval of length
(ns —0.5)p; !. Then, we have

(nis —0.5)p; " < (ng —0.5)p; " < (nis+ 0.5)p;1.
Therefore, we have

s — 0.5)p; s — 0.5)p;
(n)p 05 < nis < (n)p

+0.5. 8
Ds Ps ®)

Note that n; s = |[(ns — 0.5)p;/ps + 0.5] > 0 for any
combination of positive ps and p; since ngy > 1. From
(8), we have
ny — 0.5 =y ng —0.5
——= — 050 < Y nis < ——— 4050
Ps g Ps
Suppose that the ngth s is stored as s[l+ 7, — 1] (Jn, =
1,2,...). Then, j,, must be in
s — 0.5 . s — 0.5
D20 15a < g, < 272 4 05a.
Ps Ps

The leftmost term includes —1.5« rather than —0.5«
above because we have to take ties into consideration.

Since Cs, xs] =1+ jn, — 1 for zs =l +ns — 1,

ng = xs—Ils+1,
Jn. = Cls,xs] —1+1.

Substituting these into the above inequalities, we have

Ts —1ls+ 0.5

DPs
- Ts —ls+ 0.5

+1—15a—1<C[s, x4

+1+05a—-1.

Ps
If we could set I so as to satisfy (7), which would
be possible for a sufficiently large | when all ps’s are
rational, the reciprocal of C[s,xs] would be bounded
as

Ds <1
s+ 0.5+ (0.5a —1)ps — C[s,x4]

Ds
< . 9
s+ 0.5 — (L5 + 1)ps (9)

For fixed «, since x; grows as [grows, the above in-
equalities show that C[s, xs] can be approximated by
Xs/ps as | grows.

3.2 Asymptotic Optimality of tANS

In the encoder shown in Fig. 2, the encoding of a
single symbol s causes a state transition from = € I to
y € I in the following manner:

el —|z/2| — - — x,€ [y — y=Cls, x4

We here write the state y € I after the transition by
Fs(z) = y. Moreover, if we define

I = (F(z)|zel} forsecX,
D(y) = {zel|IseX, Fyr)=y} foryel,

then we can show that 1) N T = () (s # t € &),
1] = 11| (5 € X), and

I=J 1.

seX

Set I(®) contains all the states that we may reach after
encoding symbol s. When we encode s and move from
state z € I to Fy(z) = x € I'®), the value of =, € I, im-
mediately before reaching state x is unique with respect
to x. That is, we have Fs(z) = C[s, x4, and C[s, x4]
is bijective between I, and I®). D(z) € I is the set
of the previous states of x. From any state in D(z)
for x € I®) we reach state z after encoding symbol s.
Therefore, the stationary probability P(x) of being in
state x is given as a solution to the simultaneous linear
equation:

P(z) = psP(D(z)), z€I®), seX,
P(z) =1. (10)

~

S

Suppose that p; > 0 for all s € X and [, satisfies (7) for
a large [. Then, the simultaneous linear equation (10)

has a unique set of solutions. In the following, instead
of showing that the stationary distribution {P(z)},cr
given as the solution approaches P in (6), we will show
that P fulfills the equations in the limit of [— oco. In
order to show this, we introduce the following lemma:

Lemma 1 (Lemma 1 in [14]) For set D(x) of states,
from which we reach state x € 1) wia x5 € I, when
encoding symbol s € X, the following holds.

P(D(x)) = log L.

Proof: Define Jp, = [[,& — 1] and Jg = [£, 2 — 1]
for each symbol s € X. It follows from (3) that the
number of bits emitted when encoding s is ks — 1 bits
if x € Jy,, and kg bits if x € Jg. Therefore, for x4 that
is uniquely determined by x, the state set D(z) is given
by either

Jun{z |2k e, <z <2k (2o + 1)} or
JrN{z | 2Fa, <z <2k (25 +1)}

if I < 2ks=1g, and by
[, 28Nz, + 1) — 1 U 27z, 20— 1]
if 281z < . In all of these cases,

2ks =1(g 4+1)—1

L z+1 rs+1
D = 1 =1
P(D()) :kazm og —— =log = —,
2Fs (z,+1)—1 s e+ 1
P(D(x)) = Z log . = log o
z=2ksxg
2ks =1 (z 41)—1 20—1
L z+1 z+1
P(D(z)) = Z log —+ Z log .
z=l z=2ksx,
rs+1
= log
hold. Q.E.D.
Define
z+1 ze + 1 -1
D = 1 1 - 11
puo) = o™ (g ™)y
= P(z)/P(D(x))

for each z € I and such z¢ that » = C[s, z5]. Then,
{P(x)}yer is a solution to the simultaneous linear equa-
tion that is obtained by replacing p, in (10) with ps(z).
Namely, we have

P(z) = ps(2)P(D(z)), zcI®), se X, (12)

P(I)=1.
Note that {ps(z)} is a probability distribution over X
and not over I, i.e. Y .y Ps(v) = 1.

The following theorem states that we can approxi-

mate ps by ps(x) in an arbitrary precision.

Theorem 1 For an arbitrary € > 0, there exists Ly =
Lo(g) such that, for an arbitrary l > Lo, we have

|ﬁs(l‘) _ps| <eg

for all states x € I and symbols s with x = C[s, z].

Proof: For x € I that we reach after encoding s € X,
since we have x = C[s, z;] and inequalities (9),
Ds 1
1 <14 -
+ s+ 0.5+ (0.5 — 1)ps — + x
Ps
zs+ 0.5 — (L.ba+ 1)ps”

<1+

(13)

From the definition in (11),

Ps(x) = In (1 n é) (ln (1 + ;))_

Noting that n(z)/z < In(1 + 1/2) < 1/z for n(x) =
1—1/(2z), we have

s 1 1
Mdn(u—) <—,
Ts Ts Ls

and from (13)

n(@)ps
zs + 0.5+ (0.5a — 1)p,
Ps
xs+0.5— (1L.ha+ 1)p,”

1
<ln(1—|—7)
T

<

Therefore, we have

n(x)psts
s+ 0.5+ (0.5a0 — 1)ps
< PsTs
n(zs)(zs + 0.5 — (1.5 + 1)ps)

Define g(a, p) = (0.5a—1)p+0.5 and h(a, p) = (1.5a+
1)p — 0.5. Then, the above inequalities become
> < Ps(x),

o 2)0
h(a, ps)) .

1
~ 1 1+ ——
Ps(x) < p; (+2xs_1)< T2 T h(a,py)

Therefore,

< ps(x)

9o, ps)
rs + g(a,ps)

} 1 g(a, ps) 1 g(a,ps)
Ps _ps(m> < 20 + T +g(a,ps) B %IL‘S +g(0£,Ps)
< 1| glep) |, 1) glap)
T 2w +glaps)l 2wl +g(a,ps) !
_ 1 h(a, ps
ue) e < g s
1 h(a7p5)
+ 20y — 1l xg + h(aaps)
- 1 h(Oé,Ps)
= 22— 1 lag+ ha,ps)
1 h(aaps)
+ 20, — 1lxg + h(avps) .

Let us define Lg(¢) = ce~! for some constant ¢ > 0.
Since | < 2 and Ips; < x, for any | > Lo = Ly(g), we
have

1 _ 1
— < —¢
2¢ — 2¢
‘ glasps) | o lg(a,ps)l
zs+g(a,ps)l — eps+egla,ps)
1 1
< £,
20, —1 7 2¢ps — ¢
‘ h(c, ps) |h(a, ps)|
zs + ho,ps) | = cps +eh(a,ps)

From the assumption that p; > 0 for all s, we can
choose ¢ such that the following holds:

1 s 1) Ps
max 4 = 4+ lg(a,ps)| L lg(a, ps)| ’
seX | 2¢ cps+ ag(oz,ps) 2c cps + 89(06,1)3)
1 |h(a, ps)|
2eps —e cps +eh(a,ps)

1 |h(a, ps)|
< 1.
2cps —Ecps + 5h(0[,ps)

By using such a value of ¢, we can have

‘ﬁs(gj) 7ps| <eg

forany x € I and s € X. Q.E.D.

Equation (10) is a simultaneous equation with un-
knowns {P(x)} whose coefficient matrix is determined
by {ps}. By the definition of {P(x)} and {ps(x)}, we
know that {P(x)} is a solution to the similar simul-
taneous equation whose coefficient matrix is given by
replacing {ps} by {ps(x)}. Theorem 1 shows that both
coefficient matrices asymptotically coincide with each
other as [— oo. Therefore, their solutions, namely,
the true stationary distribution {P(z)} and the vir-
tual distribution {P(z)} supposed in (6) converge. As
I — oo, we can also approximate [in (7) in any pre-
cision. Thus, we asymptotically attain the sufficient
condition that the equality in (5) holds.

4 Conclusion

We have given a sufficient condition for stream ANS
to achieve the source entropy. We have also shown
that tANS with Duda’s precise initialization algorithm
asymptotically attains the condition as the size of the
state set grows. The next problem naturally raised may
be to analyze the redundancy, namely, to show the rate
of convergence. This problem is hard to tackle at this
moment because the last discussion after Theorem 1 is
more intuitive than quantitative. Before proceeding to
the next step, we have to make our discussion more rig-
orous. Another problem to be solved is to make clear
whether or not our sufficient condition on the optimal-
ity of stream ANS is also a necessary condition.

Acknowledgment
The first author is supported by the JSPS Kakenhi
grant number JP17K00004.

References

[1] D. Dubé and H. Yokoo, Empirical evaluation of the
effect of the symbol distribution on the performance
of ANS, The 41st Symposium on Information Theory
and its Applications (SITA2018), Poster, Iwaki, 2018.

[2] D. Dubé and H. Yokoo, Fast construction of almost
optimal symbol distributions for asymmetric numeral
systems, 2019 IEEE International Symposium on In-
formation Theory (ISIT2019), pp. 1682-1686, Paris,
France, July 2019.

[3] J. Duda, Optimal encoding on discrete lattice with
translational invariant constrains using statistical al-
gorithms, arXiv:0710.3861, 2007.

[4] J. Duda, Asymmetric numeral systems,
arXiv:0902.0271v5 [cs.IT], 2009.

[5] J. Duda, Asymmetric numeral systems: Entropy cod-
ing combining speed of Huffman coding with com-
pression rate of arithmetic coding, arXiv:1311.2540v2
[cs.IT], 2014.

[6] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp,
The use of asymmetric numeral systems as an accu-
rate replacement for Huffman coding, Picture Coding
Symposium (PCS), pp. 65-69, Cairns, Australia, 2015.

[7] J. Duda and M. Niemiec, Lightweight compression
with encryption based on asymmetric numeral sys-
tems, arXiv:1612.04662, 2016.

[8] H. Fujisaki, Invariant measures for the subshifts asso-
ciated with the asymmetric binary systems, Interna-
tional Symposium on Information Theory and its Ap-
plications (ISITA2018), pp. 675-679, Singapore, Octo-
ber, 2018.

[9] F. Giesen, Interleaved entropy coders,
arXiv:1402.3392v1 [cs.IT], 2014.

[10] A.Moffat and M. Petri, ANS-based index compression,
2017 ACM Conference on Information and Knowl-
edge Management (CIKM ’17), pp. 677686, Singa-
pore, 2017.

[11] A. Moffat and M. Petri, Index compression using byte-
aligned ANS coding and two-dimensional contexts, In-
ternational Conference on Web Search and Data Min-
ing, pp. 405413, Marina del Rey, California, USA,
February 2018,

[12] S. M. Najmabadi, Z. Wang, Y. Baroud, and S. Simon,
High throughput hardware architectures for asymmet-
ric numeral systems entropy coding, 2015 9th Interna-
tional Symposium on Processing and Analysis (ISPA),
pp- 256-259, Zagreb, Croatia, 2015.

[13] H. Yokoo, On the stationary distribution of asymmet-
ric binary systems, 2016 IEEE International Sympo-
sium on Information Theory (ISIT2016), pp. 11-15,
Barcelona, Spain, July 2016.

[14] H. Yokoo, On the stationary distribution of asymmet-
ric numeral systems, International Symposium on In-
formation Theory and its Applications (ISITA2016),
pp- 662-666, Monterey, CA, USA, 2016.

