The 42nd Symposium on Information Theory
and its Applications (SITA2019)
Kirishima, Kagoshima, Japan, Nov. 26-29, 2019

DNA Codes with Run-Length Limitation and
Knuth-Like Balancing of the GC Contents

Danny Dubé *

Abstract— Digital information can be stored within DNA
base sequences. Each base can be seen a symbol from the
alphabet A, C, G, T. In order to reduce the probability of
sequencing error, the sequences should obey certain con-
straints. Here, we choose to limit the length of the runs
to three symbols, the RLL-3 constraint, and we aim at
an exact balance between As and Ts versus Cs and Gs, the
GC-contents constraint. We propose a fast construction of
codewords that proceeds in two steps. First, we efficiently
embed source information into a string made of As, Cs, Gs,
and Ts that obeys RLL-3. Second, we balance the string
using a variant of the Knuth balancing scheme. We an-
alyze the time complexity and the embedding rate of our
construction.

Keywords— DNA code, balanced code, run-length-limited
code

1 Introduction
1.1 Coding Information into DNA

In a DNA-based storage system, the payload binary
data is mapped to a large number of DNA sequences.
A DNA sequence can be viewed a string on the alpha-
bet ¥ = {A,C,G,T}. These DNA sequences are syn-
thesized and stored in a DNA pool. To retrieve the
original data, the stored DNA sequences are sequenced
and mapped inversely to the binary user data.

1.2 Constraints on the Codes

In order to reduce the probability of errors in the
processes of DNA synthesizing and DNA sequencing,
various coding techniques, such as constrained coding
and error-correction coding, are introduced to DNA-
based storage systems [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14].
Since the DNA are intended to carry the payload in-
formation and provide some protection against errors,
we also refer to them as codewords. Together, these
codewords form a codebook.

Among the various coding techniques, two seem to
constitute the most important protecting factors: lim-
iting the length of the homopolymer runs (i.e. repe-
titions of the same nucleotide) and balancing the GC
content of DNA sequences (i.e. the fraction of the sym-
bols in a codeword that are Gs and Cs).

Many other coding techniques are considered by au-
thors or, to the very least, mentioned as potentially
beneficial. Keeping a minimum Hamming distance be-
tween the codewords of a codebook provides error-
correcting capabilities. It is also beneficial to keep
a minimum distance between any codeword and the
reverse-complement of any codeword; the same with

* Université Laval, Canada
 Singapore University of Technology and Design, Singapore

Wentu Song '

Kui Cai T

the reverse of any codeword. Finally, not only repe-
titions of the same base ought to be avoided but also
successive repetitions of the same substring.

1.3 Our Goals in Code Design

In this work, we aim at efficiently building code-
words that obey the two major constraints; that is, we
limit the length of runs and we balance the GC con-
tents. Let us describe our constraints more precisely.

e Run-length constraint: we choose to limit the
length of each run to three occurrences of the
same symbol. For brevity, we call this constraint
RLL-S.

o GC-content constraint: since we find this con-
straint quite easy to satisfy, we choose to require
an exact ratio of one half; i.e. exactly half of the
symbols of a codeword are in {C,G}. By saying
that this constraint is easy to satisfy, we mean
that having it obeyed exactly does not incur much
redundancy.

Of course, an ever present goal consists in maximizing
the quantity of information that we embed into the
codewords.

2 Previous Work

Variants of this problem have been addressed sev-
eral times, in the literature. Grass et al. [8] presented a
method to encode binary sequences satisfying the run-
length constraint with a coding rate of 1.78 bits/nt.
Other methods that construct codes while obeying the
run-length constraint are presented in [2, 3, 5, 7], all of
which achieve code rates no greater than 1.6 bits/nt.

Based on the sequence replacement technique, Im-
mink and Cai [9] presented a method for constructing
k-constrained g-ary codes, where the length of the runs
of zeros is at most k£ and the code rate is "Tfl A method
transforming k-constrained binary sequence into DNA
nucleotide strands with homopolymer runs of length at
most [£] is also proposed in [9).

A DNA fountain method dealing with DNA sequen-
ces that obey both the run-length and the GC-content
constraints was proposed in [6]. Although the rate of
the resulted codes is close to the theoretical channel ca-
pacity, its iterative decoding process can lead to severe
error propagation.

DNA codes with constant GC-content are inten-
sively studied in [10], where theoretical upper and lower
bounds on the maximum size of DNA codes with con-
stant GC-content w and minimum Hamming distance d
as well as some explicit construction of codes are pre-
sented.

Recently, Song et al. [13] have presented a construc-
tion of DNA codes that achieve an embedding rate of
% bits/nt. Their codes obey RLL-3 strictly but they
only approximately balance the GC constents. The pa-
rameter n is the size of the substrings that are used as
tiles to quickly build any valid codeword. Obviously, a
larger value for n leads to a better rate. However, the
collections of tiles enlarges exponentially with n and,
consequently, it is costly to establish and store. It is
their result that we intend to improve, in this paper.

3 Proposed Scheme
3.1 Complete Procedure

Our procedure for constructing DNA codewords
performs two steps.

The first step consists in building a string drawn
from ¥ that obeys RLL-3. Note that this string might
suffer from imbalance of its GC contents. This step is
the one that embeds payload data into DNA symbols.

The second step consists in performing a relatively
simple transformation on the string obtained in the first
step in order to make it balanced while taking care not
to create a violation of RLL-3 by doing so. This second
step is a straightforward adaptation of the well known
construction of balanced binary strings by Knuth. The
second step does not embed additional payload infor-
mation but rather adds a prefix to the string obtained
in the first step. The added prefix only has logarithmic
size, compared to the string of the first step.

We choose to work on RLL-3 first and on the GC
balance only after because we deem that RLL-3 is the
stronger of the two constraints: it applies locally ev-
erywhere in a string and the symbol selection may be
affected at any single position; e.g., as soon as a run of
length-3 appears just before.

3.2 Construction of RLL-3 Obeying Strings

We start by characterizing the strings drawn from X
that obey RLL-3. Let us consider the following defini-

tions.
B | none of {AAAA, CCCC, GGGG,

R = {w €x TTTT} is a substring of w }(1)
Riz = RiNRumaxi-30 - {c*|c€T} (2)
RZ,Q = RN Rmax(l—Q,O) : {C2 | S E} - Rl,3 (3)
Riin = Ri—Ripg—TRus (4)

The set R; contains the strings of length L drawn
from ¥ that obey RLL-3. The sets R;,, for 1 <r <3,
partition R; according to the length of the rightmost
run in the strings. Note that we ignore the corner case
for [= 0.

These sets grow exponentially fast in [. Let us de-
scribe the sizes of these sets using the following recur-

rences.
47 lf T =]_
‘M”_{07 if2<r<3
Ny, = 3 Z§/=1 Ni_q,r, ifr=1 (5)
" Ni—1r-1, if2<r<3

ifl>2

There are four cases. The first case indicates that there
are Ni 1 = 4 strings in R;1. These four strings are
plainly those in ¥. Indeed, each of them ends with a
run of length 1. The second case indicates that there is
N1, =0 (i.e. no) string in R4, for » > 2. Indeed, no
string of length 1 can end with a run of length greater
than 1. The third case indicates that any non-trivial
string in R;; can be obtained by picking any string x
in R;—; and adding a new symbol to the right of x,
provided this symbol differs from the last one of x. In
other words, there are always three choices. Changing
the symbol ensures that we break the last run in z and
start a new one. Finally, the fourth case indicates that
any non-trivial string in R, ., for 2 < r < 3, can be ob-
tained by picking a string in R;—1 -1 and repeating
the last symbol of . There is no freedom in the choice
of the repeated symbol, here.

By doing some algebra, we can determine that the
sequences {N;,}72,, for 1 < r < 3, asymptotically
grow with a factor of approximately 3.951. This means
that strings that obey RLL-3 may embed log, 3.951 ~
1.982 bits/nt, asymptotically.

In order to build RLL-3-obeying strings of some de-
sired length [, we propose to perform source decoding.
The compression model that is used here is that of
enumerative coding applied on the strings from R;.
A random string taken from R; is any one among
the 23:1 Ny possible ones. By giving equal probabil-
ity to each string in R, it is possible to perform ideal
source coding on such strings. Each possible string
would be mapped to a compressed codeword of the
same length. This ideal source coding would be done
using an arithmetic coder (AC). The strategy here con-
sists in doing the reverse: we start from payload data
and pretend that it is the result of compression and
we decode the string in R; that “produced” this com-
pressed data.

Of course, a perfect AC is needed to perform ideal
compression and to convert between strings in R; and
binary payload data of exactly the same size. In prac-
tice, an AC of finite precision must be used. It is quite
standard to compute the loss in performance that may
be incurred by such a finite-precision AC. So, by do-
ing quite standard calculations, we can determine how
many payload bits may get embedded into a string
of Ry, in the worst case. We omit these calculations
here. We simply point out that an AC does not require
many bits of precision in the representation of its state
in order to achieve very good performance. As a con-
sequence the precision that is provided by performing

integer calculations on a common CPU is more than
sufficient, for our purpose.

3.3 Knuth-Like Balancing of the GC Contents

Knuth’s technique is a well known method to build
balanced blocks of bits; i.e. strings that contain exactly
as many zeros as ones [11]. It has a very good data-
embedding rate as the technique needs only prepend
a short prefix. The prefix only has logarithmic size,
compared to the payload data.

Here is how it proceeds. Let w be a string of [bits
which is the payload data we wish to turn into a bal-
anced string (or block). First, the technique locates an
appropriate flipping point inside of w. String w sees
its prefix logically reversed (0 <+ 1) up to the flipping
point and becomes w’. The flipping point is selected
such that w’ is balanced. Such a flipping point always
exists, as proved by Knuth. Then, a short prefix p is
prepended before w’ in order to indicate where the flip-
ping point is, so that decoding is possible. Prefix p is
itself a balanced string. There is no need to perform
recursive calculations to obtain p. There are only as
many prefixes as there may be flipping points, so they
can be kept in a pre-calculated lookup table.

In the problem of DNA coding, we can perform bal-
ancing of the GC contents exactly the way Knuth’s
technique does it. Indeed, symbols A and T can be
viewed as zeros and C and G, as ones. However, our
task here consists not just into making the string bal-
anced but also into preserving the RLL-3 property. Let
us consider an RLL-3-obeying string w. Flipping some
prefix of w to obtain w’ might, with some probability,
create a run that is longer than 3 at the flipping point.
That must be avoided. Moreover, even if we correctly
flip w to obtain w’, we might also create too long a run
when we prepend a prefix p to w’. That also must be
avoided.

Here is how we proceed to avoid these two risks.
First, we must prepare more prefixes than in Knuth’s
technique. In fact, we prepare four prefixes per flipping
point, instead of just one. Of course, each prefix obeys
RLL-3 and the balance of its GC contents. Also, we
make sure that, for any given flipping point, the four
prefixes end with a distinct symbol. Otherwise, we
do not care which prefix is assigned to which flipping
point.

For a given flipping point, say f, let p’A, p”’C, p"'G,
and p””’T be the four prefixes that it possesses. Any
of them means that the flip has occurred at point f.
However, when prefix p’A or p”C is used, it means that
the flip is made using the mapping A <+ C and T <> G.
Otherwise, when prefix p"”/G or p””'T is used, it means
that the flip is made using the mapping A <> G and
T <> C. The use of one or the other mapping ensures
that flipping does not create a long run at f.

Finally, we explain why we prepare two prefixes for
a given flipping point and a given mapping. Having two
different prefixes, each ending with a different symbol,
ensures that we can prepend one of the two prefixes

without creating a long run at the concatenation point.

This way, our second step ensures that we obtain
a codeword drawn from ¥ that both obeys RLL-3 and
the GC-content balance.

References

[1] Krishna Gopal Benerjee, Sourav Deb, and Man-
ish K. Gupta. On conflict free DNA codes. Tech-
nical Report 1902.04419v2, ArXiV, March 2019.

[2] Meinolf Blawat, Klaus Gaedke, Ingo Hiitter, Xiao-
Ming Chen, Brian Turczyk, Samuel Inverso, Ben-
jamin W. Pruitt, and George M. Church. Forward
error correction for DNA data storage. Procedia
Computer Science, 80:1011-1022, 2016.

[3] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze,
G. Seelig, and K. Strauss. A DNA-based archival
storage system. In Proc. 21st Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst.,
pages 637-649, 2016.

[4] D. Cartwright and T. C. Gleason. The number
of paths and cycles in a digraph. Psychometrika,
31(2):179-199, 1966.

[5] G. M. Church, Y. Gao, and S. Kosuri. Next-
generation digital information storage in DNA.
Science, 337(6102):1628, 2012.

[6] Y. Erlich and D. Zielinski. DNA fountain enables a
robust and eflicient storage architecture. Science,
355(6328):950-954, 2017.

[7] N. Goldman et al. Towards practical, high-
capacity, low-maintenance information storage in
synthesized DNA. Nature, 494:77-80, January
2013.

[8] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu,
and W. J. Stark. Robust chemical preserva-
tion of digital information on DNA in silica with
error-correcting codes. Angew. Chem. Int. Ed.,
54(8):2552-2555, 2015.

[9] K. A. S. Immink and K. Cai. Design of capacity-
approaching constrained codes for DNA-based
storage systems. IEEE Commun. Lett., 22(2):224—
227, February 2018.

[10] Oliver D. King. Bounds for DNA codes with con-
stant GC-content. The Electronic Journal of Com-
binatorics, 10:33-45, September 2003.

[11] Donald E Knuth. Efficient balanced codes. IEEE
Trans. on Information Theory, 32(1):51-53, 1986.

[12] K. P. Murphy. Machine Learning—A Probabilistic
Perspective. MIT Press, Cambridge, MA, USA,
2012.

[13] Wentu Song, Kui Cai, Mu Zhang, and Chau Yuen.
Codes with run-length and GC-content constraints
for DNA-based data storage. IEEE Communica-
tions Letters, 22(10):2004-2007, October 2018.

[14] S. M. Hossein Tabatabaei Yazdi, Yongbo Yuan,
Jian Ma, Huimin Zhao, and Olgica Milenkovic.
A rewritable, random-access DNA-based storage
system. Scientific Reports, 5(14138), September
2015.

