
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 27-31, 2005 – TUNISIA

Recycling Bits in LZ77-Based Compression
Danny Dubé* and Vincent Beaudoin*

*Université Laval, Canada
Danny.Dube@ift.ulaval.ca

Vincent.Beaudoin.1@ulaval.ca

Abstract: We present a technique that exploits the multiplicity of the ways a text may be encoded using an LZ77-based
compression method. With such methods, repeated parts of the text are encoded as length-distance pairs that refer to
previously seen text. In general, given the maximum length of a repeated part, there may be more than one distance at
which there is a copy of the repeated part. The compressor is free to select any of these distances since the
decompressor is able to recover the same text anyway. The mere act of choosing one of these distances can be used to
convey information to the decompressor. We present the details of our technique. We have integrated our technique in
a high performance compressor in order to make measurements. The experiments show that our technique significantly
improves compression rates on many files of the Calgary corpus.
Key words: data compression, LZ77 compression, multiplicity of encodings, recycling of bits, steganography.

1 Introduction
Many of the most used lossless data compressors

use an algorithm that is a derivative of the
substitution-based technique presented by Lempel and
Ziv (Lempel and Ziv, 1977). This technique encodes
the text by finding repeated parts and replacing them
by references to preceding occurrences. The
compressor takes care to do such replacements only
when the reference happens to take less space than the
part of the text that is being replaced. From now on,
we will use the abbreviation LZ77 to refer to the
original technique by Lempel and Ziv.

The popularity of the LZ77 derivatives comes
from the good compression ratios that they achieve
and their relatively high speed. There are techniques
that achieve significantly better compression, such as
those based on prediction by partial matching (PPM),
but that tend to be slower (Cleary and Witten, 1984).
The Burrows-Wheeler transform (BWT) is also very
competitive when it comes to compression rates and
speed (Burrows and Wheeler, 1994).

What we present here is a way to improve the
compression rates that an LZ77-based compressor can
achieve. The opportunity for improvement comes
from the fact that, with an LZ77-based technique,
there is a multitude of different ways to compress a
single file. We exploit this fact by giving to the
compressor the ability to send hidden messages to the
decompressor. It does so by the mere act of choosing
one way to compress over another.

Section 2 quickly reviews the fundamental
principles of the LZ77-based techniques. Section 3
explains where, when, and how the compressor can
send hidden messages to the decompressor in order to
recycle bits. Section 4 describes our implementation
of the technique. Section 5 presents the experimental
results. Section 6 presents related work.

2 Review of LZ77-based compression
As with most compression techniques, LZ77-based

compression consists in a way for a sender, the
compressor, to describe to a receiver, the
decompressor, what some original text is. The
description made by the compressor goes over a
communication channel, which is usually a
compressed file. The compressor and decompressor
need not work simultaneously but it helps to
understand the process when we think that way. What
we are interested in here (and what LZ77 is about) is
lossless compression, which means that the text that
the decompressor recovers from the description made
by the compressor is identical to the original text.

The goal of this kind of communication is to have
a description that is as short as possible. Hopefully,
the description ought to be significantly shorter than
the original text. The savings in the length of the
description depends on the characteristics of the text
to describe but also on the kinds of messages that the
compressor and the decompressor use. In the case of
LZ77-based compression, the messages are literals
and matches.

SETIT2005

2.1 Literals and matches
The description of the original text by the

compressor is strictly sequential: at any given moment
during the communication, a prefix of the original text
has been described and is known to the decompressor
while the rest of the original text still has to be
described and is yet unknown to the decompressor. As
long as the end of the original text has not been
reached, the compressor continues explaining to the
decompressor what the next bytes are.

The simplest means with which the compressor
may continue its description is by sending a literal
byte. That is, the message simply goes like: “the next
byte in the text is c”.

The (only) other means with which the compressor
may continue its description is by sending the
description of a match. A match is a correspondence
between the sequence made of the very next bytes and
an identical sequence located previously in the
original text. In order to send a match, the compressor
must find a copy of the next bytes in the part of the
text that it has already described to the decompressor.
The description of a match includes its length and the
distance to its location. A message describing a match
looks like: “the next n bytes are identical to the ones
appearing d bytes before where we are now”. Of
course, the copy has to be located before the bytes that
are being described.

Typically, for space-efficiency reasons, the
compressor and decompressor only allow matches for
which the corresponding copies lie at positions that
are not too distant from the current position. The
maximum distance allowed depends on particular
algorithms. This way, the compressor and
decompressor do not have to keep the whole text in
memory. The set of positions that are within a
reasonable distance from the current position and to
which matches may refer is called the window. It is
also often called the sliding window because its distant
edge usually slides behind the current position at a
constant distance.

Clearly, if compression is to be obtained, the
compressor has to describe the text using matches
whenever possible. Description using literals rarely
leads to substantial compression. A match, on the
other hand, allows the compressor to describe many
bytes using an (almost) constant-length message.

The description process made by the compressor is
a cyclic one. The first step of a cycle consists in
indicating whether the compressor is going to send a
literal or not. If so, the second step consists in sending
the literal byte. Otherwise, the second step consists in
sending the length and the distance of a match. After
both steps have been performed, the cycle is finished
and a new one begins.

The operations that we sketch here are only
conceptual. Real implementations often combine
steps and pieces of information together while they
split others. Typically, each piece of information is
carefully encoded by a statistical encoder. Frequently

seen pieces of information are given short codewords
and rarely seen ones are given long codewords. The
encoding process is done by statistical encoders which
encompass Huffman encoders (Huffman, 1952) and
arithmetic encoders (Witten et al., 1987).

2.2 Selection of the longest match
When the compressor has the opportunity to

describe the next bytes using a match, it almost always
uses the longest match it can find. That is, it tries to
find the position in the sliding window where as many
as possible of the bytes there are identical to the next
bytes to describe.

It makes sense for the compressor to always select
the longest match because the description of an (l+1)-
byte match is typically not much longer than the
description of an l-byte match (if at all) while the
former allows it to describe one more byte to the
decompressor.

2.3 Selection of the closest longest match
Given the length l of the longest match, there may

be more than one position in the window where a copy
of the next l bytes is located. Clearly, the compressor
may choose to send the distance to any of these
positions as they all indicate the start of the same
subsequence of bytes. How should the compressor
select the distance that it is going to send?

While a compressor could select one of the valid
distances randomly, this is not what is done by most
implementations. Typically, it is the shortest of the
distances to a longest match that is chosen. There are
two reasons to do so.

The first reason is that, by systematically selecting
the closest match, the statistical distribution of the
transmitted distances tends to be uneven, with higher
frequencies for the short distances. This allows the
statistical encoders to take advantage of the
unevenness and send shorter codewords on average.

The second reason is that some original texts have
a tendency to be locally similar. That is, the
characteristics of the original text are not constant
throughout its whole length. Consequently, copies of
a particular sequence of bytes often appear relatively
close to the sequence itself. Such texts contribute to
the unevenness of the distribution of the distances.

While these reasons suggest that it is profitable to
always select the closest longest match, they do not
seem as strong as the reason that suggests that it is
profitable to always select the (or a) longest match.
Indeed, not all texts are similar only locally. Also,
when there is only one longest match, the compressor
has to select it, no matter where it stands in the
window. The latter situation tends to flatten the
distribution of the distances. Not so surprisingly, we
propose to abandon the closest longest match strategy
for another one.

SETIT2005

3 Recycling bits
The strategy that we propose still dictates that we

should use the longest match but it also says that we
should select the distance more wisely when there is
more than one match. Indeed, instead of simply
contributing to the unevenness of a statistical
distribution, the compressor will use the chance that it
has to select among many distances to implicitly
transmit bits to the decompressor. In a sense, these
implicit bits “come for free” as the description of a
match has to involve the transmission of both a length
and a distance anyway. We call this process of
implicitly transmitting bits the recycling of bits.

3.1 Choosing between two matches
Let us make an example to explain how the

compressor can implicitly transmit a bit to the
decompressor.

Suppose that the window contains the bytes
“0abc1abc2” and that the next bytes to describe are
“abc3”. Clearly, the longest match has length 3 and
there happens to be two longest matches: one at
distance 4 and one at distance 8.

According to our strategy, the compressor
indicates to the decompressor that it is going to send a
match and that the match has length 3. Then, it has to
decide whether it describes the match using distance 4
or using distance 8. Both distances would allow the
decompressor to correctly determine the next 3 bytes.
According to our strategy, the decision should not be
taken gratuitously. The compressor has the
opportunity to implicitly send a bit of information
here. The compressor can implicitly send a 0 by
selecting (say) distance 4, and a 1 by selecting
distance 8. Suppose that the compressor needs to
implicitly send a 1, so it selects distance 8 and
transmits it.

Now, how can the decompressor detect the bit of
information that the compressor has never sent
through the bit stream explicitly? It does so by first
proceeding as usual: it reads the messages from the
compressor that say that it is going to receive a match,
that the match has length 3, and that the copy is
located at distance 8. From this information, the
decompressor determines that the next 3 bytes are
“abc”. It is at this point that the decompressor can
detect whether implicit bits were transmitted and, if
so, what these are. It searches for all the possible
matches with “abc” that existed in the window when
the compressor transmitted the match. In our
example, it is able to detect that distances 4 and 8
could have been used. Since there are two
possibilities, it knows that the compressor has sent an
implicit bit through the choice of the distance. Finally,
by the fact that distance 8 has been selected, the
decompressor concludes that it has implicitly received
the bit 1.

The most obvious way for the decompressor to use
the implicitly transmitted bit is to put it in front of its
input bit stream. This causes the added bit to be part

of the next message from the compressor. Or,
considered from another point of view, it shortens by
one bit the length of the next message from the
compressor. We say that the bit has been recycled.

3.2 Choosing between many matches
We just showed through an example how the

compressor could implicitly transmit a bit to the
decompressor simply by intentionally choosing one of
two valid distances for a match.

In a similar fashion, it is relatively simple to see
how the compressor could implicitly send 2 bits to the
decompressor if it had 4 valid distances among which
to choose. More generally, the compressor is able to
implicitly transmit n bits to the decompressor when
there are 2n distances among which to choose. In
particular, note that when there exists only one
distance to a longest match, then the compression can
implicitly transmit 0 bit or, in other words, none.

In fact, there is no real need to have a number of
distances that is a power of 2. The compressor and
decompressor simply need to have the ability to build
prefix codes for n equiprobable events on the fly. For
instance, when one of 5 distances is to be chosen, both
the compressor and the decompressor may build the
following prefix code: 000, 001, 01, 10, 11.
Depending on the choice made, one of the 5 bit
sequences is implicitly transmitted. It is easy to
devise a method for efficiently emitting and reading
prefix codes for n equiprobable events on the fly. We
will consider this problem as solved and denote as ein
the codeword corresponding to the ith of n
equiprobable events.

3.3 Making the choices
Having the ability to transmit bits implicitly is

useless if the latter do not carry meaningful
information. As we suggest at the end of Section 3.1,
a sensible way of using the implicitly transmitted bits
is by putting them back in front of the input bit stream
of the decompressor. However, as sensible as it may
be for the decompressor to do so, it creates a non-
trivial problem for the compressor.

Indeed, when the compressor has to transmit a
distance to the decompressor, it may have to choose
among more than one distance. It has to choose
among the distances in such a way that a particular
sequence of bits gets implicitly transmitted. But these
bits are intended to be part of the description of the
next literal or the next match. However, at this point,
the compressor normally has not yet decided what to
do with the next match or literal and may even be
ignorant of whether it is going to be a match or a
literal to start with!

In fact, the situation is even worse. Suppose that
the compressor did determine that the next message it
will have to send describes a match of length (say) 4,
this next match may also be described by more than
one distance. If it does not know for now how the
next match will be encoded, i.e. using which sequence

SETIT2005

of bits, it may not be able to decide which distance it
has to choose for the current transmission. In turn,
there may be a second next match after the next one
and it may be yet undecided too. In the worst case,
the choice of a distance for the current transmission
may depend upon an arbitrarily long chain of yet
undecided matches.

So, how can the compressor decide which distance
to choose when the choice may depend so much on
future matches? The solution we propose is to do the
compression in three phases. The first phase consists
in searching for the matches and keeping all the
information about them. The information the
compressor has to keep about a match is its length and
the set of distances to the copies. The information it
has to keep about a literal character is simply the
character itself. The second phase consists in solving
the matches. We describe this phase just below. The
third phase consists in sending the bit stream that has
been produced by the second phase.

The first and third phases are pretty
straightforward and we will not provide more
explanations about them. For convenience, in our
explanations about the second phase, we will use the
term message to refer indiscriminately to a literal
character or a match.

Let us consider that the first phase has divided the
original text into M messages, numbered 0 to M-1.
We are going to solve the matches by computing a bit
stream for each suffix of the sequence of M messages.
Let si be the bit stream that would allow the
decompressor to decode the necessary information
about messages i to M-1. In particular, sM denotes the
bit stream that describes the empty sequence of
messages. Also, s0 denotes the bit stream that
describes all the messages. Note that sM may include
the end of file indicator. There are many well-known
ways of transmitting the length of the original file in a
compressed file. To keep our presentation simple, we
choose to ignore the end-of-file issue.

Now, we explain how the resolution process is
done. We compute the M+1 bit streams backwards,
that is, from sM to s0. We begin by letting sM be the
empty stream:

sM = ε
Then, we inductively compute si from si+1. There

are two cases to consider: the one where message i is a
literal; and the one where message i is a match.

Let us first consider the case where message i is a
character literal. Let c be that character. This case is
easy as there are no choices to make. Let w be the
sequence of bits that indicate that a literal is to be
transmitted and that the transmitted character is c.
Then, the new bit stream is obtained by adding w in
front of it:

si = w si+1
Next, we consider the case where message i is a

match. Let l be the length of the match, n be the
number of distances to longest matches, and dj be the
jth distance, for j going from 1 to n. Let wj, for j going

from 1 to n, be the sequences of bits that indicate that
a match of length l located at distance dj is
transmitted. The first step consists in factoring si+1
into an implicitly transmitted part and an explicitly
transmitted part:

si+1 = ejn t
That is, a prefix codeword representing the jth of n

events is extracted from the front of si+1. The
remainder of the bit stream is denoted as t. The
extracted codeword indicates to the compressor which
distance it should select in order for the decompressor
to recover the correct sequence of implicitly
transmitted bits. All there remains to be done is to add
the appropriate sequence in front of the explicitly
transmitted part:

si = wj t
This almost concludes the presentation of the

resolution process. There only remains a little
problem. When we extract a codeword ejn from the
front of a bit stream, we presume that there are enough
bits in the bit stream for the extraction to succeed.
This may not always be the case. In particular, if the
last message is a match that possesses more than one
distance, the extraction of a non-trivial codeword will
be attempted on sM, the empty stream.

The simplest approach consists in aborting the
resolution and redefining sM as a stream of one 0 bit.
If, during the second execution of the resolution, an
infeasible extraction is once again attempted, then
another 0 ought to be added to sM. Yet another
execution of the resolution has to be performed. As
many 0s should be added as there are attempts at
illegal extractions. Aborted resolutions are not costly
since only the last match or the last few matches may
attempt illegal extractions. The bits that are added to
the stream quickly outnumber the bits that are
extracted. The bits that have to be artificially added to
sM can be seen as superfluous bits that occur after the
end of the bit stream consumed by the decompressor.

3.4 Meaning of the recycled bits
The possibility of obtaining “free” bits just by

carefully choosing the distance of the matches may
seem surprising at first. However, we could devise
another variant of LZ77 compression that would
provide essentially the same benefits as those provided
by the recycling of bits.

The other variant would go like this. Almost all
the communication scheme between the compressor
and the decompressor would stay the same except for
the transmission of the distances. When the
compressor intends to encode a length l match, instead
on transmitting a distance, it would build a Huffman
code for all the length l subsequences of bytes that are
present in the sliding window and then transmit the
codeword corresponding to the matched subsequence.
The idea is that each subsequence would be
considered as a symbol. Given a codeword that the
decompressor would receive, the latter would simply
access an equivalent Huffman code of its own and be

SETIT2005

able to recover the subsequence of bytes meant by the
compressor.

During the construction of the Huffman code for
the subsequences, identical subsequences would be
considered as the same symbol. Consequently, more
frequent subsequences would turn into more frequent
symbols, to which shorter codewords would be
assigned. For instance, a subsequence that occurs 4
times would likely be assigned a codeword that is 2
bits shorter than the one assigned to another
subsequence that occurs only once. In our technique,
these 2 bits are saved using recycling.

Even if both techniques would offer roughly the
same level of compression, ours remains pretty
efficient as the set of distances for a match is small on
average compared to the total number of subsequences
present in the sliding window.

4 Prototype
We have implemented our technique in a well-

known compressor called GZIP (Gailly and Adler).
GZIP uses the Deflate compression method which is a
very effective derivative of LZ77 compression
(Deutsch, 1996). We briefly present the
characteristics of the Deflate method and then we
sketch the modifications that we made to GZIP.

4.1 Characteristics of GZIP
GZIP uses a sliding window of 32 kB. A hash

table is used to find matches efficiently. The
transmission of a message consists either in the
transmission of a literal character or in the
transmission of a length-distance pair. A single
Huffman code describes both the literals and the
lengths. Upon reception of such a codeword, the
decompressor immediately knows whether it has
received a literal character or the length part of a
match. In the case of a match, a codeword drawn
from another Huffman code is transmitted. Thanks to
the Huffman codes, frequently used literals, lengths,
and distances are given shorter codewords.

GZIP performs the compression in two phases. It
first looks for the matches and gathers information
about them. Based on this information, it builds the
two Huffman codes (one for the literals-and-lengths
and one for the distances). Only then are the literals
and matches really encoded into bits.

GZIP always selects the closest (longest) match.
Consequently, it tends to produce unevenness in the
statistics of the distribution of the distances which in
turn contributes to improve compression through the
use of the Huffman codes. In fast modes, GZIP does
not necessarily look for the longest match. It may
decide to transmit only a “sufficiently long” match it
has found. In some circumstances, it will drop a
match in favor of a literal but only because it has
found that a significantly longer match was available
after the literal.

The Deflate method requires matches to be at least

3 bytes long. This causes GZIP to emit many literals.
However, GZIP encodes literals effectively because of
its literals-and-lengths Huffman code.

Finally, GZIP is able to change the Huffman codes
used to encode the information. It can do so whenever
it sees fit by terminating a block of compressed data
and starting another. Also, when some part of the
original text does not seem compressible, it can revert
to plain storage mode, ensuring that the compressed
text will barely be bigger then the original one, if at
all.

4.2 Modifications to GZIP
We needed to make only a few modifications to

GZIP. First, since GZIP already uses a multi-phase
approach, it was simple to add the mechanisms that
collected the sets of distances to the matches. The sets
of distances were obtained using GZIP’s hash table.

Second, we added the “match resolution” phase
(see Section 3) between GZIP’s two phases. Third, we
modified the way it emits distances. Instead of using
the encoding of distances provided by its Huffman
codes, we transmit distances as plain 15-bit numbers.
Since our technique encodes a match by describing
any one of the longest matches, and not always the
closest one, we expect the chosen matches to appear
anywhere inside of the sliding window, resulting in a
flat statistical distribution of distances.

Corresponding changes were made to the
implementation of the decompressor. The main
difference is that all the operations are performed in a
single phase in the decompressor.

To summarize, all the features of GZIP are kept
intact in our prototype except for the encoding of the
distances. Consequently, one would expect a clear
advantage of our technique over ordinary Deflate
method since ours is able to recycle bits.

Unfortunately, this is not as simple as that. While
our technique does save bits through recycling, it does
so compared to a modified Deflate method where all
distances are encoded on 15 bits. Now, we must recall
that in ordinary Deflate, distances are encoded using a
Huffman code and that the statistical distribution of
the distances is far from flat. So the effective strategy
of GZIP is replaced by one that we hope will be
effective too. Note that the circumstances under
which our approach is able to recycle many bits are
those where many longest matches are available.
These are exactly the circumstances under which it is
likely that there exists a close longest match.

However, we expect our approach to perform well
because it takes advantage of the multiplicity of the
longest matches “at the source”. That is, the existence
of n longest matches allows our approach to
immediately recycle about log2(n) bits. On the other
hand, ordinary Deflate can only expect to increase the
bias in the statistical distribution of the distances.
This distribution blends together the distributions for
matches where many distances are available and those
where few or only one are available. According to this

SETIT2005

reasoning, ordinary Deflate should not be able to save
as much as log2(n) bits in the same context.

5 Experimental results
We ran some experiments to compare the

performance of our technique to that of GZIP. We
compressed the files of the Calgary corpus (Witten
and Bell, 1990). The size of the files is presented in
the following table. The second column presents the
size of the original files. The following two columns
show the size of the files compressed using GZIP in
maximum compression mode and the size of the files
compressed using our prototype. The sizes are all
measured in bytes.

Name Original GZIP Prototype

Bib 111 261 34 900 34 305
book1 768 771 312 281 301 955
book2 610 856 206 158 202 430
geo 102 400 68 414 66 542
news 377 109 144 400 142 808
obj1 21 504 10 320 11 147
obj2 246 814 81 087 84 289
paper1 53 161 18 543 18 783
paper2 82 199 29 667 29 401
paper3 46 526 18 074 18 198
paper4 13 286 5 534 5 986
paper5 11 954 4 995 5 467
paper6 38 105 13 213 13 783
pic 513 216 52 381 54 257
progc 39 611 13 261 13 852
progl 71 646 16 164 16 653
progp 49 379 11 186 11 787
trans 93 695 18 862 19 340

The results show that our technique can provide

substantial improvements in some cases and
substantial deteriorations in some other cases. Our
technique is especially effective on text files. We
explain this by the fact that these files contain mostly
word-based redundancy. Moreover, occurrences do
not seem to occur in clusters which would not penalize
our flat 15-bit distance encoding too much.

On the other hand, the greatest difficulty for our
technique comes mostly from the binary files. In
particular, in the case of pic, we suspect that the
copies of sequences of bytes are not distributed evenly
in the file. A scheme that provides Huffman codes for
the distances probably has an advantage over one that
uses flat codes.

Still, it is difficult to analyze these results and draw
sound conclusions without extracting more statistics
about the compression of each file and being able to
accurately identify the precise causes.

We took measurements of the compression times
of GZIP and our prototype. The added mechanisms
are not as costly as they may seem at first. We
observed an increase of 0% to 100% in the
compression times for our prototype over GZIP on all

the files except for pic. In the case of pic, the
compression times increased by a factor of about 50.
This is caused by the very high redundancy found in
the file. A large zone at the end of the file contains
only bytes set to zero. At some point, every longest
match (258 characters long, which is the maximum)
can be described by every possible distance in the
sliding window. This causes the sets of distances to
contain up to about 32 000 distances each.

6 Related work
Other techniques have been devised that exploit

the multiplicity of the encoding of a file using LZ-77
derivatives.

In particular, the idea of choosing one distance
among many is used in a system that provides
authentication for data compressed using LZ-77
(Atallah and Lonardi, 2003). Similarly to what our
technique does, the authentication system transmits
bits implicitly to the decompressor. However, these
bits are used not to improve compression but to send a
proof of the authenticity of the document. The
authenticated document can be decompressed by any
“ordinary” decompressor. More generally, the authors
explain how compression with LZ-77 derivatives can
be used to hide information inside of compressed files,
i.e. to perform steganography. The authors use this
ability to achieve authentication. They mention that
the only previous work they were aware of that
combines information hiding and text compression is
from Cachin (Cachin, 1998).

In another work (Lonardi et al., 2004), the authors
use the implicitly transmitted bits to embed error-
correcting codes. A document that is compressed in
this way can be decompressed by an ordinary
decompressor but, if the appropriate decompressor is
used, the latter is able to extract the error-correcting
codes in addition to the original document and so,
even when errors have occurred during transmission
of the compressed document.

We also found a steganography tool that exploits
the properties of LZ-77 compression (Brown, 1994).
The tool allows one to hide a file into the compressed
version of another (sufficiently long) file. The
technique that is used there to transmit bits implicitly
is different from that of the previous works and ours.
When the compressor finds a match that is long
enough, it may choose to transmit the length of the
match shortened by 1, depending on the next hidden
bit that is to be sent. The author mentions that it
causes the compression to degrade only slightly. Once
again, the compressed file (the container) can be
decompressed using an ordinary decompressor despite
the presence of the hidden file.

In order to briefly compare our work with previous
ones, we say that our technique exploits the potential
to hide information based on the selection of one
distance among many in order, that this ability is used
to send parts of the compressed document itself, and

SETIT2005

that documents compressed using our technique are
impossible to decode using an ordinary LZ77
decompressor.

Conclusion
We presented a variant of LZ77 compression that

exploits the fact that this compression method allows
multiple ways to encode texts. We exploited the fact
that matches can often be described by more than one
length-distance pair, even when we restrict ourselves
to the longest matches. We showed how the
availability of many such pairs provided a way for the
compressor to implicitly send information to the
decompressor simply by carefully selecting one
particular distance over others. Although the idea of
implicit transmission happens not to be original
(Atallah and Lonardi, 2003; Lonardi et al., 2004), the
use of the implicit transmission to send parts of the
compressed file itself in order to improve compression
is new. We call such a technique “bit recycling”. We
presented the algorithms that allow one to implement
bit recycling.

We have implemented our technique by making
some modifications to the well-known GZIP
compressor. We showed experimentally that we could
obtain improvements in the compression of about half
of the files of the Calgary corpus and that, in some
cases, this improvement could be substantial.

Acknowledgments
The authors wish to thank the National Science

and Engineering Research Council of Canada and
Université Laval for supporting this research.

References
Atallah M.J. and Lonardi S., “Authentication of

LZ-77 Compressed Data”, in Proceedings of the 18th
ACM Symposium on Applied Computing, Melbourne,
Florida, pp. 282-287, 2003.

Brown A., gzip-steg, 1994, http://www.mirrors.
wiretapped.net/security/steganography/
gzip-steg/gzip-steg-README.txt.

Burrows M. and Wheeler D.J., “A Block-Sorting
Lossless Data Compression Algorithm”, Technical
report no. 124, Digital Equipment Corporation, Palo
Alto, California, 1994.

Cachin C., “An Information-Theoretic Model for
Steganography”, in Proceedings of the Workshop on
Information Hiding, volume 1525 of Lecture Notes in
Computer Science, pages 306-318, Springer-Verlag,
Berlin, 1998.

Cleary J.G. and Witten I.H., “Data Compression
Using Adaptive Coding and Partial String Matching”,
IEEE Transactions on Communications, Vol. 32,
No. 4, pp. 396-402, 1984.

Deutsch P., “Request for Comments: 1951”, 1996,
http://www.ietf.org/rfc/rfc1051.txt.

Gailly J.L. and Adler M., The GZIP Compressor,
http://www.gzip.org/.

Huffman D.A., “A Method for Construction of
Minimum Redundancy Codes”, Proceedings of the
IRE, Vol. 40, No. 9, pp. 1098-1101, 1952.

Lonardi S., Szpankowski W., and Ward M.D.,
“Error Resilient LZ’77 Scheme and its Analysis”,
Proceedings of the 2004 International Symposium on
Information Theory, Chicago, p. 56, 2004.

Witten I.H. and Bell T.C., “The
Calgary/Canterbury Text Compression Corpus”, 1990,
ftp://ftp.cpsc.ucalgary.ca/pub/projects/
text.compression.corpus/.

Witten I.H., Neal R.M., and Cleary J.G.,
“Arithmetic Coding for Data Compression”,
Communications of the ACM, Vol. 30, pp. 520-540,
1987.

Ziv J., Lempel A., “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions on
Information Theory, Vol. 23, No. 3, pp. 337-343,
1997.

