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Abstract: We present a technique that exploits the multiplicity of the ways a text may be encoded using an LZ77-based 
compression method.  With such methods, repeated parts of the text are encoded as length-distance pairs that refer to 
previously seen text.  In general, given the maximum length of a repeated part, there may be more than one distance at 
which there is a copy of the repeated part.  The compressor is free to select any of these distances since the 
decompressor is able to recover the same text anyway.  The mere act of choosing one of these distances can be used to 
convey information to the decompressor.  We present the details of our technique.  We have integrated our technique in 
a high performance compressor in order to make measurements.  The experiments show that our technique significantly 
improves compression rates on many files of the Calgary corpus. 
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1 Introduction 
Many of the most used lossless data compressors 

use an algorithm that is a derivative of the 
substitution-based technique presented by Lempel and 
Ziv (Lempel and Ziv, 1977).  This technique encodes 
the text by finding repeated parts and replacing them 
by references to preceding occurrences.  The 
compressor takes care to do such replacements only 
when the reference happens to take less space than the 
part of the text that is being replaced.  From now on, 
we will use the abbreviation LZ77 to refer to the 
original technique by Lempel and Ziv. 

The popularity of the LZ77 derivatives comes 
from the good compression ratios that they achieve 
and their relatively high speed.  There are techniques 
that achieve significantly better compression, such as 
those based on prediction by partial matching (PPM), 
but that tend to be slower (Cleary and Witten, 1984).  
The Burrows-Wheeler transform (BWT) is also very 
competitive when it comes to compression rates and 
speed (Burrows and Wheeler, 1994). 

What we present here is a way to improve the 
compression rates that an LZ77-based compressor can 
achieve.  The opportunity for improvement comes 
from the fact that, with an LZ77-based technique, 
there is a multitude of different ways to compress a 
single file.  We exploit this fact by giving to the 
compressor the ability to send hidden messages to the 
decompressor.  It does so by the mere act of choosing 
one way to compress over another. 

Section 2 quickly reviews the fundamental 
principles of the LZ77-based techniques.  Section 3 
explains where, when, and how the compressor can 
send hidden messages to the decompressor in order to 
recycle bits.  Section 4 describes our implementation 
of the technique.  Section 5 presents the experimental 
results.  Section 6 presents related work. 

2 Review of LZ77-based compression 
As with most compression techniques, LZ77-based 

compression consists in a way for a sender, the 
compressor, to describe to a receiver, the 
decompressor, what some original text is.  The 
description made by the compressor goes over a 
communication channel, which is usually a 
compressed file.  The compressor and decompressor 
need not work simultaneously but it helps to 
understand the process when we think that way.  What 
we are interested in here (and what LZ77 is about) is 
lossless compression, which means that the text that 
the decompressor recovers from the description made 
by the compressor is identical to the original text. 

The goal of this kind of communication is to have 
a description that is as short as possible.  Hopefully, 
the description ought to be significantly shorter than 
the original text.  The savings in the length of the 
description depends on the characteristics of the text 
to describe but also on the kinds of messages that the 
compressor and the decompressor use.  In the case of 
LZ77-based compression, the messages are literals 
and matches. 
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2.1 Literals and matches 
The description of the original text by the 

compressor is strictly sequential: at any given moment 
during the communication, a prefix of the original text 
has been described and is known to the decompressor 
while the rest of the original text still has to be 
described and is yet unknown to the decompressor.  As 
long as the end of the original text has not been 
reached, the compressor continues explaining to the 
decompressor what the next bytes are. 

The simplest means with which the compressor 
may continue its description is by sending a literal 
byte.  That is, the message simply goes like: “the next 
byte in the text is c”. 

The (only) other means with which the compressor 
may continue its description is by sending the 
description of a match.  A match is a correspondence 
between the sequence made of the very next bytes and 
an identical sequence located previously in the 
original text.  In order to send a match, the compressor 
must find a copy of the next bytes in the part of the 
text that it has already described to the decompressor.  
The description of a match includes its length and the 
distance to its location.  A message describing a match 
looks like: “the next n bytes are identical to the ones 
appearing d bytes before where we are now”.  Of 
course, the copy has to be located before the bytes that 
are being described. 

Typically, for space-efficiency reasons, the 
compressor and decompressor only allow matches for 
which the corresponding copies lie at positions that 
are not too distant from the current position.  The 
maximum distance allowed depends on particular 
algorithms.  This way, the compressor and 
decompressor do not have to keep the whole text in 
memory.  The set of positions that are within a 
reasonable distance from the current position and to 
which matches may refer is called the window.  It is 
also often called the sliding window because its distant 
edge usually slides behind the current position at a 
constant distance. 

Clearly, if compression is to be obtained, the 
compressor has to describe the text using matches 
whenever possible.  Description using literals rarely 
leads to substantial compression.  A match, on the 
other hand, allows the compressor to describe many 
bytes using an (almost) constant-length message. 

The description process made by the compressor is 
a cyclic one.  The first step of a cycle consists in 
indicating whether the compressor is going to send a 
literal or not.  If so, the second step consists in sending 
the literal byte.  Otherwise, the second step consists in 
sending the length and the distance of a match.  After 
both steps have been performed, the cycle is finished 
and a new one begins. 

The operations that we sketch here are only 
conceptual.  Real implementations often combine 
steps and pieces of information together while they 
split others.  Typically, each piece of information is 
carefully encoded by a statistical encoder.  Frequently 

seen pieces of information are given short codewords 
and rarely seen ones are given long codewords.  The 
encoding process is done by statistical encoders which 
encompass Huffman encoders (Huffman, 1952) and 
arithmetic encoders (Witten et al., 1987). 

2.2 Selection of the longest match 
When the compressor has the opportunity to 

describe the next bytes using a match, it almost always 
uses the longest match it can find.  That is, it tries to 
find the position in the sliding window where as many 
as possible of the bytes there are identical to the next 
bytes to describe. 

It makes sense for the compressor to always select 
the longest match because the description of an (l+1)-
byte match is typically not much longer than the 
description of an l-byte match (if at all) while the 
former allows it to describe one more byte to the 
decompressor. 

2.3 Selection of the closest longest match 
Given the length l of the longest match, there may 

be more than one position in the window where a copy 
of the next l bytes is located.  Clearly, the compressor 
may choose to send the distance to any of these 
positions as they all indicate the start of the same 
subsequence of bytes.  How should the compressor 
select the distance that it is going to send? 

While a compressor could select one of the valid 
distances randomly, this is not what is done by most 
implementations.  Typically, it is the shortest of the 
distances to a longest match that is chosen.  There are 
two reasons to do so. 

The first reason is that, by systematically selecting 
the closest match, the statistical distribution of the 
transmitted distances tends to be uneven, with higher 
frequencies for the short distances.  This allows the 
statistical encoders to take advantage of the 
unevenness and send shorter codewords on average. 

The second reason is that some original texts have 
a tendency to be locally similar.  That is, the 
characteristics of the original text are not constant 
throughout its whole length.  Consequently, copies of 
a particular sequence of bytes often appear relatively 
close to the sequence itself.  Such texts contribute to 
the unevenness of the distribution of the distances. 

While these reasons suggest that it is profitable to 
always select the closest longest match, they do not 
seem as strong as the reason that suggests that it is 
profitable to always select the (or a) longest match.  
Indeed, not all texts are similar only locally.  Also, 
when there is only one longest match, the compressor 
has to select it, no matter where it stands in the 
window.  The latter situation tends to flatten the 
distribution of the distances.  Not so surprisingly, we 
propose to abandon the closest longest match strategy 
for another one. 
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3 Recycling bits 
The strategy that we propose still dictates that we 

should use the longest match but it also says that we 
should select the distance more wisely when there is 
more than one match.  Indeed, instead of simply 
contributing to the unevenness of a statistical 
distribution, the compressor will use the chance that it 
has to select among many distances to implicitly 
transmit bits to the decompressor.  In a sense, these 
implicit bits “come for free” as the description of a 
match has to involve the transmission of both a length 
and a distance anyway.  We call this process of 
implicitly transmitting bits the recycling of bits. 

3.1 Choosing between two matches 
Let us make an example to explain how the 

compressor can implicitly transmit a bit to the 
decompressor. 

Suppose that the window contains the bytes 
“0abc1abc2” and that the next bytes to describe are 
“abc3”.  Clearly, the longest match has length 3 and 
there happens to be two longest matches: one at 
distance 4 and one at distance 8. 

According to our strategy, the compressor 
indicates to the decompressor that it is going to send a 
match and that the match has length 3.  Then, it has to 
decide whether it describes the match using distance 4 
or using distance 8.  Both distances would allow the 
decompressor to correctly determine the next 3 bytes.  
According to our strategy, the decision should not be 
taken gratuitously.  The compressor has the 
opportunity to implicitly send a bit of information 
here.  The compressor can implicitly send a 0 by 
selecting (say) distance 4, and a 1 by selecting 
distance 8.  Suppose that the compressor needs to 
implicitly send a 1, so it selects distance 8 and 
transmits it. 

Now, how can the decompressor detect the bit of 
information that the compressor has never sent 
through the bit stream explicitly?  It does so by first 
proceeding as usual: it reads the messages from the 
compressor that say that it is going to receive a match, 
that the match has length 3, and that the copy is 
located at distance 8.  From this information, the 
decompressor determines that the next 3 bytes are 
“abc”.  It is at this point that the decompressor can 
detect whether implicit bits were transmitted and, if 
so, what these are.  It searches for all the possible 
matches with “abc” that existed in the window when 
the compressor transmitted the match.  In our 
example, it is able to detect that distances 4 and 8 
could have been used.  Since there are two 
possibilities, it knows that the compressor has sent an 
implicit bit through the choice of the distance.  Finally, 
by the fact that distance 8 has been selected, the 
decompressor concludes that it has implicitly received 
the bit 1. 

The most obvious way for the decompressor to use 
the implicitly transmitted bit is to put it in front of its 
input bit stream.  This causes the added bit to be part 

of the next message from the compressor.  Or, 
considered from another point of view, it shortens by 
one bit the length of the next message from the 
compressor.  We say that the bit has been recycled. 

3.2 Choosing between many matches 
We just showed through an example how the 

compressor could implicitly transmit a bit to the 
decompressor simply by intentionally choosing one of 
two valid distances for a match. 

In a similar fashion, it is relatively simple to see 
how the compressor could implicitly send 2 bits to the 
decompressor if it had 4 valid distances among which 
to choose.  More generally, the compressor is able to 
implicitly transmit n bits to the decompressor when 
there are 2n distances among which to choose.  In 
particular, note that when there exists only one 
distance to a longest match, then the compression can 
implicitly transmit 0 bit or, in other words, none. 

In fact, there is no real need to have a number of 
distances that is a power of 2.  The compressor and 
decompressor simply need to have the ability to build 
prefix codes for n equiprobable events on the fly.  For 
instance, when one of 5 distances is to be chosen, both 
the compressor and the decompressor may build the 
following prefix code: 000, 001, 01, 10, 11.  
Depending on the choice made, one of the 5 bit 
sequences is implicitly transmitted.  It is easy to 
devise a method for efficiently emitting and reading 
prefix codes for n equiprobable events on the fly.  We 
will consider this problem as solved and denote as ein 
the codeword corresponding to the ith of n 
equiprobable events. 

3.3 Making the choices 
Having the ability to transmit bits implicitly is 

useless if the latter do not carry meaningful 
information.  As we suggest at the end of Section 3.1, 
a sensible way of using the implicitly transmitted bits 
is by putting them back in front of the input bit stream 
of the decompressor.  However, as sensible as it may 
be for the decompressor to do so, it creates a non-
trivial problem for the compressor. 

Indeed, when the compressor has to transmit a 
distance to the decompressor, it may have to choose 
among more than one distance.  It has to choose 
among the distances in such a way that a particular 
sequence of bits gets implicitly transmitted.  But these 
bits are intended to be part of the description of the 
next literal or the next match.  However, at this point, 
the compressor normally has not yet decided what to 
do with the next match or literal and may even be 
ignorant of whether it is going to be a match or a 
literal to start with! 

In fact, the situation is even worse.  Suppose that 
the compressor did determine that the next message it 
will have to send describes a match of length (say) 4, 
this next match may also be described by more than 
one distance.  If it does not know for now how the 
next match will be encoded, i.e. using which sequence 
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of bits, it may not be able to decide which distance it 
has to choose for the current transmission.  In turn, 
there may be a second next match after the next one 
and it may be yet undecided too.  In the worst case, 
the choice of a distance for the current transmission 
may depend upon an arbitrarily long chain of yet 
undecided matches. 

So, how can the compressor decide which distance 
to choose when the choice may depend so much on 
future matches?  The solution we propose is to do the 
compression in three phases.  The first phase consists 
in searching for the matches and keeping all the 
information about them.  The information the 
compressor has to keep about a match is its length and 
the set of distances to the copies.  The information it 
has to keep about a literal character is simply the 
character itself.  The second phase consists in solving 
the matches.  We describe this phase just below.  The 
third phase consists in sending the bit stream that has 
been produced by the second phase. 

The first and third phases are pretty 
straightforward and we will not provide more 
explanations about them.  For convenience, in our 
explanations about the second phase, we will use the 
term message to refer indiscriminately to a literal 
character or a match. 

Let us consider that the first phase has divided the 
original text into M messages, numbered 0 to M-1.  
We are going to solve the matches by computing a bit 
stream for each suffix of the sequence of M messages.  
Let si be the bit stream that would allow the 
decompressor to decode the necessary information 
about messages i to M-1.  In particular, sM denotes the 
bit stream that describes the empty sequence of 
messages.  Also, s0 denotes the bit stream that 
describes all the messages.  Note that sM may include 
the end of file indicator.  There are many well-known 
ways of transmitting the length of the original file in a 
compressed file.  To keep our presentation simple, we 
choose to ignore the end-of-file issue. 

Now, we explain how the resolution process is 
done.  We compute the M+1 bit streams backwards, 
that is, from sM to s0.  We begin by letting sM be the 
empty stream: 

sM = ε 
Then, we inductively compute si from si+1.  There 

are two cases to consider: the one where message i is a 
literal; and the one where message i is a match. 

Let us first consider the case where message i is a 
character literal.  Let c be that character.  This case is 
easy as there are no choices to make.  Let w be the 
sequence of bits that indicate that a literal is to be 
transmitted and that the transmitted character is c.  
Then, the new bit stream is obtained by adding w in 
front of it: 

si = w si+1 
Next, we consider the case where message i is a 

match.  Let l be the length of the match, n be the 
number of distances to longest matches, and dj be the 
jth distance, for j going from 1 to n.  Let wj, for j going 

from 1 to n, be the sequences of bits that indicate that 
a match of length l located at distance dj is 
transmitted.  The first step consists in factoring si+1 
into an implicitly transmitted part and an explicitly 
transmitted part: 

si+1 = ejn t 
That is, a prefix codeword representing the jth of n 

events is extracted from the front of si+1.  The 
remainder of the bit stream is denoted as t.  The 
extracted codeword indicates to the compressor which 
distance it should select in order for the decompressor 
to recover the correct sequence of implicitly 
transmitted bits.  All there remains to be done is to add 
the appropriate sequence in front of the explicitly 
transmitted part: 

si = wj t 
This almost concludes the presentation of the 

resolution process.  There only remains a little 
problem.  When we extract a codeword ejn from the 
front of a bit stream, we presume that there are enough 
bits in the bit stream for the extraction to succeed.  
This may not always be the case.  In particular, if the 
last message is a match that possesses more than one 
distance, the extraction of a non-trivial codeword will 
be attempted on sM, the empty stream. 

The simplest approach consists in aborting the 
resolution and redefining sM as a stream of one 0 bit.  
If, during the second execution of the resolution, an 
infeasible extraction is once again attempted, then 
another 0 ought to be added to sM.  Yet another 
execution of the resolution has to be performed.  As 
many 0s should be added as there are attempts at 
illegal extractions.  Aborted resolutions are not costly 
since only the last match or the last few matches may 
attempt illegal extractions.  The bits that are added to 
the stream quickly outnumber the bits that are 
extracted.  The bits that have to be artificially added to 
sM can be seen as superfluous bits that occur after the 
end of the bit stream consumed by the decompressor. 

3.4 Meaning of the recycled bits 
The possibility of obtaining “free” bits just by 

carefully choosing the distance of the matches may 
seem surprising at first.  However, we could devise 
another variant of LZ77 compression that would 
provide essentially the same benefits as those provided 
by the recycling of bits. 

The other variant would go like this.  Almost all 
the communication scheme between the compressor 
and the decompressor would stay the same except for 
the transmission of the distances.  When the 
compressor intends to encode a length l match, instead 
on transmitting a distance, it would build a Huffman 
code for all the length l subsequences of bytes that are 
present in the sliding window and then transmit the 
codeword corresponding to the matched subsequence.  
The idea is that each subsequence would be 
considered as a symbol.  Given a codeword that the 
decompressor would receive, the latter would simply 
access an equivalent Huffman code of its own and be 
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able to recover the subsequence of bytes meant by the 
compressor. 

During the construction of the Huffman code for 
the subsequences, identical subsequences would be 
considered as the same symbol.  Consequently, more 
frequent subsequences would turn into more frequent 
symbols, to which shorter codewords would be 
assigned.  For instance, a subsequence that occurs 4 
times would likely be assigned a codeword that is 2 
bits shorter than the one assigned to another 
subsequence that occurs only once.  In our technique, 
these 2 bits are saved using recycling. 

Even if both techniques would offer roughly the 
same level of compression, ours remains pretty 
efficient as the set of distances for a match is small on 
average compared to the total number of subsequences 
present in the sliding window. 

4 Prototype 
We have implemented our technique in a well-

known compressor called GZIP (Gailly and Adler).  
GZIP uses the Deflate compression method which is a 
very effective derivative of LZ77 compression 
(Deutsch, 1996).  We briefly present the 
characteristics of the Deflate method and then we 
sketch the modifications that we made to GZIP. 

4.1 Characteristics of GZIP 
GZIP uses a sliding window of 32 kB.  A hash 

table is used to find matches efficiently.  The 
transmission of a message consists either in the 
transmission of a literal character or in the 
transmission of a length-distance pair.  A single 
Huffman code describes both the literals and the 
lengths.  Upon reception of such a codeword, the 
decompressor immediately knows whether it has 
received a literal character or the length part of a 
match.  In the case of a match, a codeword drawn 
from another Huffman code is transmitted.  Thanks to 
the Huffman codes, frequently used literals, lengths, 
and distances are given shorter codewords. 

GZIP performs the compression in two phases.  It 
first looks for the matches and gathers information 
about them.  Based on this information, it builds the 
two Huffman codes (one for the literals-and-lengths 
and one for the distances).  Only then are the literals 
and matches really encoded into bits. 

GZIP always selects the closest (longest) match.  
Consequently, it tends to produce unevenness in the 
statistics of the distribution of the distances which in 
turn contributes to improve compression through the 
use of the Huffman codes.  In fast modes, GZIP does 
not necessarily look for the longest match.  It may 
decide to transmit only a “sufficiently long” match it 
has found.  In some circumstances, it will drop a 
match in favor of a literal but only because it has 
found that a significantly longer match was available 
after the literal. 

The Deflate method requires matches to be at least 

3 bytes long.  This causes GZIP to emit many literals.  
However, GZIP encodes literals effectively because of 
its literals-and-lengths Huffman code. 

Finally, GZIP is able to change the Huffman codes 
used to encode the information.  It can do so whenever 
it sees fit by terminating a block of compressed data 
and starting another.  Also, when some part of the 
original text does not seem compressible, it can revert 
to plain storage mode, ensuring that the compressed 
text will barely be bigger then the original one, if at 
all. 

4.2 Modifications to GZIP 
We needed to make only a few modifications to 

GZIP.  First, since GZIP already uses a multi-phase 
approach, it was simple to add the mechanisms that 
collected the sets of distances to the matches.  The sets 
of distances were obtained using GZIP’s hash table. 

Second, we added the “match resolution” phase 
(see Section 3) between GZIP’s two phases.  Third, we 
modified the way it emits distances.  Instead of using 
the encoding of distances provided by its Huffman 
codes, we transmit distances as plain 15-bit numbers.  
Since our technique encodes a match by describing 
any one of the longest matches, and not always the 
closest one, we expect the chosen matches to appear 
anywhere inside of the sliding window, resulting in a 
flat statistical distribution of distances. 

Corresponding changes were made to the 
implementation of the decompressor.  The main 
difference is that all the operations are performed in a 
single phase in the decompressor. 

To summarize, all the features of GZIP are kept 
intact in our prototype except for the encoding of the 
distances.  Consequently, one would expect a clear 
advantage of our technique over ordinary Deflate 
method since ours is able to recycle bits. 

Unfortunately, this is not as simple as that.  While 
our technique does save bits through recycling, it does 
so compared to a modified Deflate method where all 
distances are encoded on 15 bits.  Now, we must recall 
that in ordinary Deflate, distances are encoded using a 
Huffman code and that the statistical distribution of 
the distances is far from flat.  So the effective strategy 
of GZIP is replaced by one that we hope will be 
effective too.  Note that the circumstances under 
which our approach is able to recycle many bits are 
those where many longest matches are available.  
These are exactly the circumstances under which it is 
likely that there exists a close longest match. 

However, we expect our approach to perform well 
because it takes advantage of the multiplicity of the 
longest matches “at the source”.  That is, the existence 
of n longest matches allows our approach to 
immediately recycle about log2(n) bits.  On the other 
hand, ordinary Deflate can only expect to increase the 
bias in the statistical distribution of the distances.  
This distribution blends together the distributions for 
matches where many distances are available and those 
where few or only one are available.  According to this 
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reasoning, ordinary Deflate should not be able to save 
as much as log2(n) bits in the same context. 

5 Experimental results 
We ran some experiments to compare the 

performance of our technique to that of GZIP.  We 
compressed the files of the Calgary corpus (Witten 
and Bell, 1990).  The size of the files is presented in 
the following table.  The second column presents the 
size of the original files.  The following two columns 
show the size of the files compressed using GZIP in 
maximum compression mode and the size of the files 
compressed using our prototype.  The sizes are all 
measured in bytes. 

 
Name Original GZIP Prototype 

Bib 111 261 34 900 34 305 
book1 768 771 312 281 301 955 
book2 610 856 206 158 202 430 
geo 102 400 68 414 66 542 
news 377 109 144 400 142 808 
obj1 21 504 10 320 11 147 
obj2 246 814 81 087 84 289 
paper1 53 161 18 543 18 783 
paper2 82 199 29 667 29 401 
paper3 46 526 18 074 18 198 
paper4 13 286 5 534 5 986 
paper5 11 954 4 995 5 467 
paper6 38 105 13 213 13 783 
pic 513 216 52 381 54 257 
progc 39 611 13 261 13 852 
progl 71 646 16 164 16 653 
progp 49 379 11 186 11 787 
trans 93 695 18 862 19 340 

 
The results show that our technique can provide 

substantial improvements in some cases and 
substantial deteriorations in some other cases.  Our 
technique is especially effective on text files.  We 
explain this by the fact that these files contain mostly 
word-based redundancy.  Moreover, occurrences do 
not seem to occur in clusters which would not penalize 
our flat 15-bit distance encoding too much. 

On the other hand, the greatest difficulty for our 
technique comes mostly from the binary files.  In 
particular, in the case of pic, we suspect that the 
copies of sequences of bytes are not distributed evenly 
in the file.  A scheme that provides Huffman codes for 
the distances probably has an advantage over one that 
uses flat codes. 

Still, it is difficult to analyze these results and draw 
sound conclusions without extracting more statistics 
about the compression of each file and being able to 
accurately identify the precise causes. 

We took measurements of the compression times 
of GZIP and our prototype.  The added mechanisms 
are not as costly as they may seem at first.  We 
observed an increase of 0% to 100% in the 
compression times for our prototype over GZIP on all 

the files except for pic.  In the case of pic, the 
compression times increased by a factor of about 50.  
This is caused by the very high redundancy found in 
the file.  A large zone at the end of the file contains 
only bytes set to zero.  At some point, every longest 
match (258 characters long, which is the maximum) 
can be described by every possible distance in the 
sliding window.  This causes the sets of distances to 
contain up to about 32 000 distances each.  

6 Related work 
Other techniques have been devised that exploit 

the multiplicity of the encoding of a file using LZ-77 
derivatives. 

In particular, the idea of choosing one distance 
among many is used in a system that provides 
authentication for data compressed using LZ-77 
(Atallah and Lonardi, 2003).  Similarly to what our 
technique does, the authentication system transmits 
bits implicitly to the decompressor.  However, these 
bits are used not to improve compression but to send a 
proof of the authenticity of the document.  The 
authenticated document can be decompressed by any 
“ordinary” decompressor.  More generally, the authors 
explain how compression with LZ-77 derivatives can 
be used to hide information inside of compressed files, 
i.e. to perform steganography.  The authors use this 
ability to achieve authentication.  They mention that 
the only previous work they were aware of that 
combines information hiding and text compression is 
from Cachin (Cachin, 1998). 

In another work (Lonardi et al., 2004), the authors 
use the implicitly transmitted bits to embed error-
correcting codes.  A document that is compressed in 
this way can be decompressed by an ordinary 
decompressor but, if the appropriate decompressor is 
used, the latter is able to extract the error-correcting 
codes in addition to the original document and so, 
even when errors have occurred during transmission 
of the compressed document. 

We also found a steganography tool that exploits 
the properties of LZ-77 compression (Brown, 1994).  
The tool allows one to hide a file into the compressed 
version of another (sufficiently long) file.  The 
technique that is used there to transmit bits implicitly 
is different from that of the previous works and ours.  
When the compressor finds a match that is long 
enough, it may choose to transmit the length of the 
match shortened by 1, depending on the next hidden 
bit that is to be sent.  The author mentions that it 
causes the compression to degrade only slightly.  Once 
again, the compressed file (the container) can be 
decompressed using an ordinary decompressor despite 
the presence of the hidden file. 

In order to briefly compare our work with previous 
ones, we say that our technique exploits the potential 
to hide information based on the selection of one 
distance among many in order, that this ability is used 
to send parts of the compressed document itself, and 
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that documents compressed using our technique are 
impossible to decode using an ordinary LZ77 
decompressor. 

Conclusion 
We presented a variant of LZ77 compression that 

exploits the fact that this compression method allows 
multiple ways to encode texts.  We exploited the fact 
that matches can often be described by more than one 
length-distance pair, even when we restrict ourselves 
to the longest matches.  We showed how the 
availability of many such pairs provided a way for the 
compressor to implicitly send information to the 
decompressor simply by carefully selecting one 
particular distance over others.  Although the idea of 
implicit transmission happens not to be original 
(Atallah and Lonardi, 2003; Lonardi et al., 2004), the 
use of the implicit transmission to send parts of the 
compressed file itself in order to improve compression 
is new.  We call such a technique “bit recycling”.  We 
presented the algorithms that allow one to implement 
bit recycling. 

We have implemented our technique by making 
some modifications to the well-known GZIP 
compressor.  We showed experimentally that we could 
obtain improvements in the compression of about half 
of the files of the Calgary corpus and that, in some 
cases, this improvement could be substantial. 
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