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Abstract

One of the key issues with the practical applicability of

Proof-Carrying Code (PCC) and its related methods is the

difficulty in communicating and storing the proofs which are

inherently large.

The approaches proposed to alleviate this, suffer from draw-

backs of their own especially the enlargement of the Trusted

Computing Base, in which any bug may cause an unsafe

program to be accepted.

We propose a generic extended PCC framework (EPCC) in

which, instead of the proof, a proof generator for the pro-

gram in question is transmitted. This framework enables

the execution of the proof generator and the recovery of the

proof on the consumer side in a secure manner.

1. Introduction

The rapid growth of the Internet and networks goes along

with a rising need for security for users. Instant access to a

huge number of untrusted and malicious softwares through

Internet, on the one hand and lack of security due to its ex-

pense to set up and annoyance to get along with, on the

other hand, makes it easier for intruders to implement their

plans.

Malicious software not only grows in quantity (16 times

in year 2007) but also becomes more sophisticated [5]. Fur-

thermore, the requirement of fully trusted software for ultra-

expensive and vital projects clearly shows the lack of re-

quired technology basis to address these new needs of com-

puter security [30]. Since the methods used to implement

security policies are less expensive and more flexible in

software than in hardware, security is increasingly becom-

ing a software issue [14]. The explorations on the domain of

programming languages to find techniques that can help us
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enforce the necessary security policies to computing sys-

tems are called language-based security approaches [32].

Language-based security conceptually is a combination of

two classic computer security principles:

1. Least privilege: throughout execution, each applica-

tion should be given the minimum resources necessary

to accomplish its task [31].

2. Minimum trusted computing base: the trusted comput-

ing base (TCB) of a computer system is the set of com-

ponents in which the occurrence of bugs might put the

security properties of the entire system in danger [9].

Rationally, in a system, the smaller the TCB is, the less

probable the compromise in security would be.

The remainder of this paper is organized as follows. In

Section 2, we introduce the existing methods and motivate

the need for a framework that can overcome the obstacles

of the current ones. For this, we take a glimpse at related

work and assess the merits and drawbacks of each approach,

from our perspective. In Section 3, we present and describe

our generic Extended Proof-Carrying Code (EPCC) frame-

work. Sections 4 to 8 discuss the design of the virtual ma-

chine for EPCC (the VEP) and the way in which the VEP

works. Having all these factors set, in Section 9, we make

the whole system work, bridging from theory to practice, by

presenting a sample use of an EPCC framework through an

implemented prototype. Finally, we summarize and give an

outlook of future work in Section 10 and present our con-

clusions in Section 11.

2. Existing Methods

2.1. Classes of Approaches

Authentication is a class of approaches in which one ac-

cepts only the codes that come equipped with the signature

of a trusted producer. Ideally, since this producer is trusted,



the code can be also trusted. This class of approaches has

several drawbacks. Applying this method on a large scale,

as a solution to the untrusted codes problem, is against the

second principle of security design. The principle of Mini-

mum TCB applies to any trust management system, where

the trusted party is the TCB and the trusting party is the

computing system. Considering the trusted companies to

be part of the TCB leads to a considerable enlargement of

the TCB. Furthermore, trusting a producer does not neces-

sarily mean that the produced code is safe and performs as

claimed.

Dynamic code analysis techniques are the techniques

that observe the execution of a code and perform an ap-

propriate action before the code violates the security pol-

icy. The systems that perform the dynamic code analysis

are called execution monitors. In dynamic analysis, it is im-

portant to create a safe analysis environment also known as

a sandbox (e.g., operating system, virtual machine, wrapper

program, etc.). Execution monitors (EMs) are usually easy

to implement and they can work with binary codes which

makes them language independent. Despite these strong

points, the EMs suffer from some drawbacks. The monitor

has to work every time we run the code and for the whole

running time which results in a big overhead. Another dis-

advantage of the monitor lies in its usual fail-stop behavior.

Fail-stop treatment does not fit well in projects where the

price of stopping the program is high. This stoppage may

lead to a great loss in time, money, or even other forms of

security in systems where the renewal of the untrusted code

is hard or even impossible. An execution monitor can only

confirm the safety of the current trace of the code execution

up to the current moment in the trace. While, for a code

to be safe, the set of all possible traces of the code should

be proven safe. Therefore, the safety of the code cannot be

proven through execution monitoring. The drawbacks of the

execution monitors are the consequences of execution-time

security enforcement.

Static analysis techniques find out a code’s possible be-

havior prior to its execution, rejecting a code whose set of

possible behaviors includes unacceptable behavior. This a

priori understanding of the code is the same as proving the

code safety. This can be done by providing the target com-

puting system (i.e. the code consumer) with a safety verifier

which can prove the safety of every untrusted code upon

receiving them. Since verifying the safety of a received

code is a hard task, the safety verifier would, inevitably, be

a complex program. “The complexity is the worst enemy of

security”, that is, placing a big and potentially buggy pro-

gram in the TCB compromises the security of the comput-

ing system. In order to ease this situation, Necula and Lee

introduced the Proof-Carrying Code (PCC) approach.

2.2. Proof­Carrying Code

The main idea behind the Proof-Carrying Code (PCC)

approach [22, 21, 13, 24] is to shift a large part of the re-

sponsibility from the code consumer to the code producer.

This is done by breaking the safety verifier into two compo-

nents: a complex safety prover and a simple proof checker,

placing the safety prover on the producer side and the proof

checker on the code consumer side (i.e. in the TCB). In this

way, the burden of proving the safety of the untrusted code

is put on the shoulders of the producer.

The PCC enables the consumer to verify that a piece

of code it has received from the untrusted producer com-

plies with its safety policy. The safety policy is specified

by means of a set of axioms and rules that the code pro-

ducer can use for the purpose of constructing a proof. Using

the verification condition generator (VCGen), the consumer

constructs a verification condition (VC) which is a formula

in a certain logic. The VC has the property that it is provable

only if the code respects the safety policy. The constructed

VC then is sent to the code producer (or the producer, given

a copy of the VCGen, can construct the VC himself). The

code is accompanied by what the code producer claims to

be the proof of the VC. Before executing the code, the con-

sumer uses a proof checker to verify that the received proof

is indeed a proof of the VC. If so, the code is safe and can

be executed. Figure 1 shows the interaction between the

entities involved.
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Figure 1. Traditional PCC framework

Since PCC is based on static analysis, once the safety

of an untrusted code is successfully established, there is no

need to check the code anymore. As a result, we have a

computing system with less overhead and more security [2,

25]. The following fundamental characteristics of the PCC

approach nominate it as one of the strongest frameworks to

be used in mobile-code security:

(1) PCC gives the highest priority to the security (raison

d’être);

(2) it intends to have a small TCB;



(3) it leaves the easier tasks to the consumer;

(4) while it is tamperproof.

2.3. PCC Variants

The traditional PCC approach suffers from some short-

comings. Apart from the difficulty of building or generating

the proofs for the code, one of the crucial obstacles for the

practical applicability of Proof-Carrying Code and related

techniques is the size of the proofs that must accompany

the code. It is important to have a compact representation

of the proofs because they are possibly sent through com-

munication networks. This difficulty of communicating the

proofs, which are inherently large, makes the PCC less scal-

able. In traditional PCC framework, it is not unusual to see

proofs that are 1000 times larger than the associated code,

which makes the use of PCC impractical for all but the tini-

est examples [26].

The size of the TCB in proof-carrying code is about

15000 to 20000 lines of code. Any bug in these components

can compromise the security of the whole system. One can

use the elusive standard of “residual defect density” as a

metric for faultiness to measure the number of faults that

remain in a software code at the delivery point. A typical

target in software development is to achieve a residual de-

fect density of less than one error per one thousand lines

of non-comment source code (KLOC) [17, 12]. However,

leading edge software development organizations typically

achieve a defect density of about 2 defects/KLOC [4]. Even

if the TCB has a residual defect density between 1 and 2, the

TCB’s number of lines of code is relatively large and cannot

easily be trusted. That is, the anxiety about the TCB grows

along with its number of lines. Therefore, to have a safe

and implementable PCC framework, one of the obstacles in

front is its relatively large TCB.

Another issue in PCC framework is that it does not pro-

vide the producer with enough flexibility. That is, the pro-

ducer is constrained to submit a proof in a logic which has

been imposed by the consumer. That is, even if the producer

finds it possible to build a simpler proof in a higher-order

logic, he is forced to build the proof in the consumer’s logic

which might result in an overweight proof.

Any solution to combat these obstacles and to make a

refinement in the PCC technology has to respect the men-

tioned fundamental characteristics of the PCC approach. In

order to reduce the TCB, Appel et al [1] introduced the no-

tion of foundational proof-carrying code (FPCC).

Although the TCB components in the traditional PCC

framework are simple, Appel pointed out that the VCGen

(and consequently the TCB) is too large [1] and it needs to

be verified itself. FPCC, in principle, is strictly more likely

to be secure than traditional PCC because it has a smaller

trusted computing base. As it is shown in Figure 2, in this
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Figure 2. Foundational PCC framework

technique, VCGen is removed from the consumer side, and

the TCB becomes minimal.

The proofs in FPCC, in comparison with traditional

PCC, are more complicated to produce. The size of the

proofs in FPCC is 20% bigger than that in traditional PCC

and can explode exponentially. Therefore, the proof size,

which is a crucial obstacle for the practical applicability of

traditional PCC and related techniques, remains unsolved.

This makes the proof communication harder and the use of

FPCC even less practical than that of traditional PCC [26].

Regarding the proof-size obstacle in traditional PCC,

Necula proposed a new strategy called Oracle-based Proof-

Carrying Code (OPCC) [26]. In this approach, the handling

of the proofs on the consumer side is changed. As shown

in Figure 3, this change in strategy led to a change in the

framework, namely, they assumed that the consumer uses

a non-deterministic proof checker. An untrusted theorem

prover on the left-hand side records a sequence of bits that

indicates which sub-goals failed and needed backtracking.

Then, the producer sends this bit stream to the consumer

and serves as a proof witness. On the consumer side, the re-

ceived bit stream works as an “oracle” which can be used by

the trusted non-deterministic proof checker to avoid back-

tracking. The oracle string guides the non-deterministic

checker. Every time the checker must make a choice be-

tween the possible ways to proceed, it consults some bits

from the oracle. It goes without saying that the oracle, like

proofs in PCC, needs not be trusted. That is, if the oracle is

wrong, then the trusted checker will go wrong, and will fail

to find the proof.

One of the biggest downsides of the OPCC is that

it involves complex trusted components, such as a non-

deterministic proof checker plus the usual PCC compo-

nents. The trusted computing base in OPCC is about 26000

lines of code which is bigger than the TCB size in tradi-

tional PCC. Any flaw in the implementation of these com-

ponents can compromise safety of the system. As men-

tioned in the PCC obstacles and as the second principle of

security design suggests, any bug in the TCB may cause an

unsafe program to be accepted. For example, the Special-J
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Figure 3. Oracle­based PCC framework

system [7] showed a critical leak in its type axioms found

by League [18]. Unfortunately, the big size of the TCB in

OPCC goes against the first and the second characteristics

of the PCC approach.

In contrast to these developments, we have worked on a

hybrid approach with some modifications on the level of the

framework which offers a solution to the PCC’s scalability

issue.

3. Extended Proof-Carrying Code Framework

As we mentioned earlier, one of the crucial issues for the

practical applicability of PCC and its related techniques is

the size of the proofs that must accompany the code. There-

fore, it is desirable that proofs be represented in a compact

format. One way to reach this goal is proof optimization

in which the proofs are rewritten in a more compact form

which preserves the meaning of the proof of the original

form [29, 6]. This could be done finding for a given term t a

smaller equivalent term s and replacing all the occurrences

of t with s in the proof (e.g., in the arithmetic system, there

could be a rule x + 0 → x which always reduces the size

of a term). Using proof optimization in an approach called

lemma extraction, Necula et al. could not obtain a reduction

better than 15% in the size of the proofs.

Another way of compacting the proofs is through data

compression. Data compression techniques try to find more

compact representations for data, from which the original

data can be reconstructed exactly. Many such algorithms

compress data by searching for more efficient encodings

that take advantage of repetition in the data. These tech-

niques are not well exploited in PCC framework due to

the following reasons. The consumer of compressed data

must first decompress it, this needs a safe decompresser

on the consumer side. Generating the proof of safety for

a normal decompressor (relatively big program with about

3000 lines of code) is a difficult task not worth perform-

ing because such a decompressor would be a specific de-

compresser that cannot have the potential to work with a

proof compressed by an appropriate but different compres-

sor. That is, to gain the advantage of a good compres-

sion, each time, the safety of a new decompresser should

be proven according to the compression method which is

appropriate for the safety proof of a code. In the OPCC

approach, Necula et al. used the idea of the proof com-

pression. Although their approach resulted in proofs which

were smaller than the original proofs, they payed the price

of a considerable enlargement of the TCB [26, 33, 23]. We

are not in favor of compromising the security of the system

with a big TCB expansion simply because the proofs are too

large.

We present an extended framework that allows the PCC

proofs to be represented as programs. This contributes to

reduce the negative impact of the size of the proof and en-

ables the PCC to handle even very large programs. The

idea of representing the proofs as programs is inspired by

the Kolmogorov complexity. Roughly speaking, the Kol-

mogorov complexity of a string x is the shortest computer

program that produces x, i.e., that computes it, prints it, and

then halts. One important observation is that this measure

of complexity indicates how much a string (or, in the con-

text of proof-carrying code, a proof) can be compressed:

the ideal compressed form for a given proof is the shortest

program that outputs that proof.

Formally, the Kolmogorov complexity KU(x) of a string

x is defined as the length of the shortest program capable

of producing x on a universal computer U (such as a Tur-

ing machine). Note that Kolmogorov complexity is incom-

putable.

KU(x) = min
p∈{0,1}∗

{ℓ(p): p on U outputs x}

The definition depends on the specific computer program-

ming language and the universal computer that is used. We

define these two components according to our proposed

framework.

The idea behind the Extended Proof-Carrying Code

(EPCC) is simply to send the proof in the form of a pro-

gram. In this way, we make it possible for the producer to

send a proof generator1 instead of the proof where, accord-

ing to Kolmogorov complexity, the proof generator ideally

can be the shortest program which can output the original

proof. For this to work, the consumer should be capable of

running the proof generator on a universal computer, in a

secure manner, and obtain the proof.

In order to benefit from the above idea in an organized

manner, we proposed a generic EPCC framework. A dia-

gram of an EPCC system is given in Figure 4. In an EPCC

system, there are two main parties, a code producer, who

1A proof generator is a program whose sole function is to output the

proof. This program aims to be a more compact representation of its re-

sulting proof and does not necessarily rediscover the proof.



sends a code along with its safety proof generator, on the

left-hand side, and a code consumer, who wishes to run the

code, provided that it is proven safe by the system, on the

right-hand side.
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Figure 4. The generic EPCC framework

The communication between these two parties may con-

sist of a multi-step interaction between the producer and

the consumer depending on the underlying proof-carrying

code framework that they extend. Generally, at the first

step, the producer runs a theorem prover to get a safety

proof of the code he intends to send. Here, in contrast with

other PCC frameworks, the consumer is not forced to gener-

ate the safety proof in the logic that the consumer imposes.

The producer can use this opportunity to build the proof in

a logic (e.g., a higher-order logic) that results in a smaller

proof. In other words, the producer has the possibility of re-

ducing the size of the safety proof by using a custom logic

which can be later converted (translated) to the logic set by

the consumer.

Then, the producer writes a proof generator. In accor-

dance with the Kolmogorov complexity, this proof gener-

ator can, in principle, be the shortest program which can

output the safety proof in the format which is acceptable to

the consumer. That is to say, the generic EPCC framework

provides the producer with the opportunity of compacting

the proof in two steps of optimization and compression.

In the next step, the producer submits the code accom-

panied by its safety proof generator to the consumer. The

consumer is required to check the proof before executing

the code submitted by the producer. Therefore, he runs the

safety proof generator on the virtual machine of EPCC (the

VEP) [28] and obtains the safety proof. Then he runs the

proof checker. After the proof check succeeds the consumer

can repeatedly execute the code safely. As one can easily

observe, the EPCC framework is tamper proof, like PCC.

One of the crucial components in the EPCC framework is

the VEP which is a universal computer in the trusted com-

puting base of the EPCC. The safe execution of the proof

generator depends on the safety of the VEP and the way it

imposes the security requirements. Here, we advert some

important aspects about the VEP. In the following, we dis-

cuss the ways in which the VEP provides us with the neces-

sary basis to apply the Kolmogorov complexity idea and en-

ables the execution of the proof generator on the consumer

side in a secure manner.

4. The VEP Virtual Machine

The most popular virtual machines, like Java Virtual Ma-

chine [19] and Common Language Runtime [20], use a

stack machine type rather than the register-oriented archi-

tectures used in real processors, due to the simplicity of

their implementation. Furthermore, the simple stack opera-

tions can be used to implement the evaluation of any arith-

metic or logical expression and any program written in any

programming language can be translated into an equivalent

stack machine program. Moreover, the stack machines are

easier to compile to.

The last among the reasons which led us to choose the

stack machine type over the register one is the properties of

the compiled code in these two types of machine. A com-

piled code for a stack machine has more density than the

one for the virtual machine. Davis et al. [8] translated Java

Virtual Machine stack code to a corresponding register ma-

chine code. The resulting register code (after elimination

of unnecessary instructions) in register format was around

45% larger than the VM stack code needed to perform the

same computation. This can specially affect the size of the

proof generator written for the VEP. Accordingly we chose

the stack machine type over the register one.

The VEP uses three blocks of memory: a code space

(whose cells are bytes), a heap (made to contain pairs of ma-

chine words), and a stack (whose cells are machine words).

The stack in the VEP is ascending (i.e. the stack grows to-

wards the high addresses) and conforms to the full stack

convention (i.e. the stack pointer points at the topmost el-

ement) and the first item pushed on the stack is stored at

address zero. The heap provides the programmers with ad-

ditional flexibility by supplying the VEP with memory for

objects of arbitrary lifespan. The VEP also provides auto-

matic memory management of the heap, thus there can be

no dangling reference or memory leak due to manual mem-

ory management errors and the programmer can put more

time on productivity instead of managing low-level mem-

ory operations.

The VEP provides us with a platform which has the po-

tential of working with the Kolmogorov ideal compressor.

According to the Kolmogorov complexity, this ideal com-

pressor runs on a universal computer. The current imple-

mentation of the VEP is a stack-based machine with random

access to the stack which makes it Turing complete. The

VEP executes the code and performs actions on its stack

and heap. Here, the code space can be regarded as a read-

only “tape” and the stack as a modifiable “tape” because the

VEP provides us with random access to the code and the

stack cells). Knowing that the VEP has finite resources, the



question pops up whether it can be considered as a univer-

sal computer destination for the proof generator according

to Kolmogorov complexity. The answer is yes, it is possi-

ble because in a finite amount of time, a universal computer

can only manipulate a finite amount of data which fits in fi-

nite resources. In this way, the VEP can be considered as a

universal computer destination for the proof generator.

On the VEP, we have two distinct types of values: num-

bers and pairs. Considering that the VEP is implemented

using 32-bits machine words, the rightmost bit of the cell

shows the data type of the stored value in that cell. This bit

is not visible to the programmer while the remaining 31 bits

are visible. If we have a cell that references a pair, the con-

tents of the cell represents the address of a pair in the heap

memory. For a cell with its type number, the contents of the

cell is a signed integers.

The VEP has a RISC-like instruction set which provides

random access to stack, plenty of arithmetic, logical, com-

parison, data transfer, and control instructions and restricted

access to the pair-based heap. This gives application devel-

opers tremendous flexibility in implementing their ideas and

innovations. The code space, being made of bytes, naturally

leads to an instruction set of 256 instructions. Since we in-

tend to execute proof generators on the VEP and they might

execute more efficiently on a machine with rich set of data

transfer instructions, we assign 224 of the opcodes to the

data transfer instructions.

In the EPCC framework, the proof generators are un-

trusted programs which have to be executed on the con-

sumer side. Since running untrusted programs on the con-

sumer side is against the raison d’être of the PCC approach

and can compromise the security of the system, we need a

security mechanism for running the proof generator safely.

For this to happen, the VEP provides a tightly-controlled

set of resources for proof generators to run in. In order to

be able to output the resulting proof, a proof generator is

allowed to print characters onto the standard output. This

is the sole way provided by the VEP for a proof generator

to communicate with the outside world. Other than that,

network access, the ability to inspect the host system, or

reading from input devices and writing into file streams are

disallowed. In this sense, the VEP performs the dynamic

analysis.

As we mentioned earlier, two main drawbacks of the

dynamic analysis approaches are their high overhead and

their fail-stop manner in case an unsafe code is encoun-

tered. Here, we discuss the existence of each of these is-

sues. An unbounded number of runs and/or execution time

of a virtual machine, each, incurs an unbounded cost on

the system that uses the execution monitor. In the case of

EPCC, we need the VEP to run only for a single time, in

which the proof generator outputs the proof or fails. Now,

given that we can run the monitor for a limited period of

time we can avoid the high overhead of the VEP. For that

reason, the VEP runs for a limited number of CPU cycles,

which is checked during the execution of the proof genera-

tor. In this way the VEP can enforce fine-grained memory

safety, control-flow safety, and type safety with an insignif-

icant overhead.

As for the second drawback of the dynamic analysis ap-

proaches, the fail-stop manner is aligned with the safety re-

quirement of the EPCC framework. That is, we want the

VEP to act in a fail-stop manner to prevent an unsafe proof

generator to continue its execution. Therefore, not only

does the fail-stop manner has no dangerous consequence

but it is required. Thus, in the context of EPCC, the ma-

jor drawbacks of the execution monitor of the VEP become

negligible or even advantageous.

5. The VEP: Security Requirements

We designed the VEP such that it guarantees a certain

number of fundamental safety properties in order to exe-

cute the untrusted code in a secure manner. The following

fundamental safety properties are the security requirements

of the VEP.

• Type safety verifies that a code is well-typed according

to a type system defined for the language. That is, the

operations are applied only to operands with appropri-

ate types.

• Numeric safety checks that programs perform arith-

metics correctly. In other words, the arithmetic in-

structions should have legal arguments. This security

requirement is to avoid erroneous use of partial oper-

ators with arguments outside of their defined domain

(e.g., division by zero).

• Memory safety prevents reading and writing to illegal

memory locations. One can only read from the code

space. The legal code space locations to read from are

the locations with their address in 0, ..., Nc − 1, where

Nc is the code size. Even the instruction loading must

be performed as legal reads from the code space.

In the case of the heap, reads and writes are provided

but in a very restricted manner. The only way to write

a piece of data in the heap is to build a pair which has

the data as its contents. All the pairs are legally built

by the VEP and the type bit of the references to pairs

is automatically set to 1 by the VEP. Likewise, in order

to read (access) any data in the heap, the VEP provides

instructions to access either of the two fields of a pair.

Since the construction of the pairs is governed by the

VEP, the programmer has no means to modify the type

bit to forge a new pair and he has no means to read

from the heap other than to access an existing pair.



In the case of the stack, reads and writes are permitted.

Any read or write to the stack is preceded by a mem-

ory check which ensures that the read and write are

going to be performed on valid stack locations as their

destination. What a valid destination is varies from in-

struction to instruction. Generally, the valid read desti-

nations are stack locations with their address less than

or equal to the stack pointer and greater or equal to the

stack base. The valid writing destinations are the same

as reading ones, except that the location just above the

top of the stack is valid for some instructions to write

in.

Furthermore, memory safety in the VEP asserts that

each operation has a sufficient amount of required

memory (stack and/or heap) to perform the instruction

(e.g., the VEP raises an error if an attempt is made to

pop when the stack is empty or to push an item onto a

full stack).

• Control-flow safety prevents jumps outside of the code

space.

• Resource bound check enforces limitations on the size

of the code space, the size of the stack, the size of the

heap, and the number of instructions the VEP may ex-

ecute.

• Exception handling properties ensure that all excep-

tions that can be thrown within a code can be handled

and the VEP has the ability to deal with errors auto-

matically.

6. The VEP: Security Enforcement

The security enforcement by the VEP is simple and

straightforward. The VEP enforces the security require-

ments at different levels. Categorizing the security checks

according to their enforcement level shows better how easy

the VEP security enforcement is to perform and understand.

6.1. Initial Security Enforcement

The VEP checks the following requests for resources,

only once, just before executing the code. Note that each

request is made using a declaration in the header of the

untrusted code. Each time, the VEP verifies whether the

requested amount of resources is no greater than the max-

imum value settled in an agreement between the producer

and the consumer.

• Code size: the producer inserts the demanded code size

(dcs) of the proof generator in the header of the un-

trusted code. If the VEP refuses or fails to allocate the

requested block of memory, the VEP refuses the un-

trusted code. Otherwise, the VEP allocates a block of

dcs bytes of memory as the code space and inserts the

code into the code space.

• Stack size: the VEP also checks the demanded stack

size (dss) declared in the header of the untrusted code.

If the VEP refuses or fails to allocate the requested

block of memory above agreed-upon limit, the VEP re-

fuses the untrusted code. Otherwise, the VEP allocates

a block of dss words of memory as the stack memory.

• Heap size: the amount of demanded heap size (dhs)

of the untrusted code is also mentioned in the code

header. If the VEP refuses or fails to allocate the re-

quested block of memory, the VEP refuses the proof

generator. Otherwise, the VEP allocates a block of dhs

words of memory as the heap memory.

• Timeout: the untrusted code should finish its task

within a definite time period (i.e. number of opera-

tions). The demanded number of operations (dno)

which is inserted by the code producer into the code

header is checked by the VEP to ensure that it is not

more than the agreed-upon limit. In the case where the

requested number of operations is more than the limit

the VEP refuses the proof generator.

6.2. Global Security Enforcement

When the code is not refused during the initial secu-

rity enforcement, it is ready to be executed by the VEP.

Throughout the execution, the VEP enforces two security

checks globally. That is, these two checks are independent

of the actual next instruction that is about to be executed.

The global security enforcement consists of checking the

followings.

• Execution time: before fetching the next instruction,

the VEP makes sure that the code execution time (mea-

sured as the number executed operations) has not ex-

ceeded the dno. If the number of executed operations

is less than the approved number, then the check is

passed, otherwise the code is refused for having run

for too long.

• Program counter: the VEP should check if the pro-

gram counter points inside the code space (i.e., non-

negative and less than the code size).

6.3. Instruction­wise Security Enforcement

The third level of security enforcement by the VEP is the

fine-grained level and is done per instruction. By enforcing

this level of security checks the untrusted code is prevented



to perform any unsafe operation. The instruction-wise secu-

rity enforcement can be introduced by the means of the in-

struction called POKE. The POKE instruction allows one to

write values in the stack. POKE pops p, pops q, then writes

q to the stack location specified by p1. If p is positive, the

writing destination is the stack position p from the bottom

of the stack. Otherwise, it is the stack position SP+p, where

SP is the stack pointer.

Figure 5 shows schemata of the stack in the VEP. The

top schemata is a snapshot of the stack before the execution

of the POKE operation. The human readable format of the

same snapshot is shown on its left-hand side in which 0p

represents the pair with address zero.

The POKE instruction needs two arguments. Therefore,

the VEP first checks if there exist at least two elements on

the stack. This check passes as there are 6 elements on the

stack. As mentioned above, the VEP uses the argument p

in order to calculate the destination in which the q has to

be written. Therefore, the VEP checks if the type of p (the

topmost element) is number. Here, the type bit of the top

element (-4) is zero which indicates the type number. Next,

the VEP checks if the calculated destination is a legal one.

The legal stack destinations for writing are the ones greater

than or equal to zero and smaller than or equal to SP. Here, p

is negative, hence the destination, which is equal to 1 (SP+(-

4) given that SP is 5), is a legal one. Since all these checks

are passed successfully, the POKE operation is safe. The

second schemata in Figure 5 shows the stack snapshot after

the execution of the POKE instruction where the content of

the stack location 1 is rewritten to 43.

 

5 -4  1 ... 1 1 1 1 1 0 0 0 

4 43  0 ... 0 1 0 1 0 1 1 0 

3 5  0 ... 0 0 0 0 1 0 1 0 

2 0p  0 ... 0 0 0 0 0 0 0 1 

1 7  0 ... 0 0 0 0 1 1 1 0 

0 -1  1 ... 1 1 1 1 1 1 1 0 

5             

4             

3 5  0 ... 0 0 0 0 1 0 1 0 

2 0p  0 ... 0 0 0 0 0 0 0 1 

1 43  0 ... 0 1 0 1 0 1 1 0 

0 -1  1 ... 1 1 1 1 1 1 1 0 

POKE 

Figure 5. Instruction­wise security enforce­
ment for POKE instruction

1The “push” and “pop” are not done incrementally and the stack pointer

is updated at the end of the execution of the instruction. The POKE in-

struction first reads the top two elements of the stack: p is popped then q

is popped. Then, it writes q to the stack location specified by p. Finally, it

does two consecutive pops (i.e. it decreases the stack pointer by two cells).

Generally, after fetching each instruction and before the

execution of the instruction, the VEP performs a combina-

tion of the following checks.

• Number of operands: the number of operands of an in-

struction can vary from zero to two implicit operands

on the stack, depending on the instruction. For an

instruction that requires with one or more operands

on the stack, the existence of a sufficient number of

operands must be checked before execution of the in-

struction. If insufficient operands lie on the stack, the

execution is discontinued and the untrusted code gets

refused.

• Type of operand: the VEP checks if the type of the

operands conforms with the operation. As mentioned

earlier, the values in the VEP can be numbers or pairs.

The VEP can distinguish the type of an operand ac-

cording to its type bit. Depending on the instruction

and the operand, the latter may have to be a number, it

may have to be a pair, or it may be free to be of either

types. Checking the type of operands ensures that a

code is well-typed according to the VEP’s type system.

That is, the operations are applied only to operands

with correct types.

• Legal range of operands: the arithmetic instructions

should have legal arguments. The VEP checks the

operand legality to prevent potential error of using par-

tial operators with arguments outside their defined do-

main (e.g., division by zero).

• Legal stack destination: For any instruction which re-

sults in a read or write to the stack, the VEP ensures

that the reads and writes have legal stack locations as

their destination.

• Sufficient memory: the VEP verifies whether there is

enough memory (stack and/or heap) to perform an in-

struction which works with memory.

• Legal code destination: before changing the program

counter to the jump destination, the VEP checks if the

destination is within the code space. It should be men-

tioned that the VEP does not enforce the concept of

instruction boundaries. Therefore, the VEP can accept

intertwined codes.

The complete set of instructions (32 kinds of instruc-

tions) along with their safety checks can be presented us-

ing a simple table. Due to lack of space, we do not present

it here (see [27]). In this way, it would be an easy task to

verify the safety of the VEP by pen and paper.



7. The VEP versus other VMs

There are many systems that execute untrusted codes in

virtual machines to limit their access to system resources.

Therefore, a question one could ask is “why not use another

existing virtual machine instead of the VEP?”. Here, we try

to highlight the main reasons of choosing the VEP over two

best-known virtual machines. These two virtual machines

are: Java virtual machine (JVM) [19] introduced in 1995

by Sun, and the .NET platform (CLR) [20] developed more

recently by Microsoft.

Any virtual machine that we choose would be a part of

the TCB in EPCC framework. Knowing that any bug in the

TCB can compromise the security of the whole system, we

should choose a virtual machine which increases the size

of the TCB the least (as required by the second principle

of security design). Using either JVM or .NET results in a

large TCB (these large TCBs were the motivations for in-

troducing the PCC approach in the first place). Appel et

al. [3] measured the TCBs of various Java virtual machines

at between 50,000 and 200,000 lines of code. The TCB

size in these JMVs is even bigger than the TCB size of the

traditional PCC. Therefore, using these virtual machines to

extend the PCC framework results in an undesirably huge

TCB and ineffective PCC framework.

For EPCC, we need a virtual machine so simple that, it is

feasible for a human to inspect and verify it by hand. None

of the mentioned virtual machines and any other that we are

aware of have been developed with this goal. JVM, .NET,

and other well-known virtual machines are mostly focused

on the performance, portability, etc. The implementation of

the VEP is less than 300 lines of code which makes it possi-

ble to be easily verified by human and gives it the potential

of being proven safe in future. Therefore, we have shown

that the VEP is orders of magnitude smaller and it is simpler

than popular virtual machines.

8. Accordance with Security Design Principles

It is of high importance for an approach to be in accor-

dance with the principles of security design. Obviously the

VEP and other execution monitors are in partial accordance

with the least privilege principle as they are intended to per-

form such task.

In addition to this natural accordance of the VEP with the

least privilege principle, we designed and built the VEP in a

way that it assigns only such resources that are necessary for

the proof generator to perform its legitimate purpose. This

is done through an agreement in which the producer and the

consumer settle the possible amount of resources that can be

used by the proof generator. Among these resources are the

heap, the stack, and the code space of the proof generator.

Any disobedience of the agreement by the proof gener-

ator is doomed to discontinuation of its execution. In this

way, the VEP puts the principle of least privilege strictly

into practice.

With regard to the second principle of the security de-

sign, we set a criterion for the size of the TCB. The cri-

terion was to design and build the VEP in a way that the

enlargement of the TCB be less than the difference between

the size of the TCB in Oracle-based PCC and the size of the

TCB in traditional PCC in terms of the lines of code. That

is, we aimed to implement the VEP such that the security of

EPCC be stronger than Oracle-based PCC according to the

second principle of security design.

The size difference between the two versions of the TCB

in traditional PCC and Oracle-based PCC is about 2000-

3000 lines of code. Interestingly, the current version of the

VEP is less than 300 lines of code which is much smaller

than the standard we set. Since the VEP consists of a small

number of lines it is feasible for a human to inspect and

verify it.

Furthermore, in principle, the VEP does not need to in-

crease the size of the TCB as it would be possible (without

difficulty) to prove it safe in a PCC framework. Though we

have not focused on proving the safety of the VEP through a

PCC framework, the small size of the VEP makes it suitable

for such work.

9. Sample Use of EPCC

In order to test the practicality of our approach, we have

constructed a prototype implementation of an EPCC frame-

work. Figure 6 shows the implemented framework in which

the PCC framework is extended by employing EPCC. To

complete the end-to-end chain we needed to implement the

proof generator builder which outputs a VEP executable

proof generator. Since it would be very tedious to write pro-

grams in the VEP machine language, we implemented an

assembler for the VEP that allows a programmer to use in-

struction mnemonics instead of opcodes. Writing the proof

generator program in a high-level language is even more

convenient. Thus, we implemented an assembler to gen-

erate the machine code for the VEP, a C compiler which

generates the assembly code for the assembler, and a proof

generator program in the C language. A detailed diagram

of our sample implementation is presented in Figure 7.

Next, we briefly talk about these three components, then

we present an overall view and the detailed diagram of the

implemented framework.

The VEP assembler translates source files written in the

assembly language into the VEP language. Our assembler

permits assembly-time arithmetic operations to take place

in order to compute constants to include in the assembled

program. Thus, the expressions are evaluated during the as-
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Figure 6. The EPCC version of the PCC frame­

work

sembly and the results become permanent parts of the code.

That is, none of the operations mentioned in the expressions

are to be performed by the VEP.

The C compiler that we implemented is simpler than a

complete C compiler because we used it to compile a spe-

cific application written in a subset of C language. Thus, we

used a free yet incomplete C89 complier and implemented

the two big and important phases of type checking and the

code generation

The safety proofs in PCC are represented in the Ed-

inburgh Logical Framework (LF) [15]. The typical LF

representation of the proofs is large, due to a significant

amount of redundancy. The fact that proofs contain many

repeated patterns of proof rules and redundant arguments,

makes them suitable for data compression. Compressing

the proofs can alleviate the problem of proof size in com-

munications, because it enables devices to transmit or store

the same amount of data in fewer bits. A compressed proof

can get decompressed using the corresponding decompres-

sor. Therefore, a bundle of the compressed proof and a VEP

machine executable decompressor which can decompress

the compressed proof can make a sample proof generator.

Figure 7 shows the implemented components that work to-

gether to make the proof generator. As it is shown in this

figure, in our experiment, we used our compiler, our as-

sembler and Gzip, an off-the-shelf compressor. Gzip [11]

is a popular data compression program that is based on the

DEFLATE [10] algorithm, which is a combination of Huff-

man coding [16] and LZ77 [34].

In Figure 7, “GUNzip C code” is the Gzip source

code stripped down so that it only performs the INFLATE

task (i.e. the decompression task which is the opposite of

DEFLATE). That is, we extracted the decompressor part of

the Gzip program. In this process, we modified the ex-

tracted source code in a way that it uses static allocation

(which is done by a compilation switch). In order to facili-

tate the implementation, all the preprocessor commands and

function prototypes are removed. Thus, we in-lined all the

function. In order to in-line the functions without causing

duplication of code and to avoid the code size increment,

we used computed gotos1. Since the computed goto is

not supported by the ANSI C89 grammar, we added it to

the grammar.

The reduced decompressor fetches its input (compressed

data) from a literal string (array of compressed data) and

outputs the decompressed data on the standard output. For

the decompressor to fetch its input from a literal string, and

to print a character, respectively, readcmp and putchar

were developed as two special functions. Calls to these cus-

tom functions are handled specially by our compiler and are

translated into the VEP assembly language.

The GUNzip C code is given to the compiler to generate

the VEP assembly code of the GUNzip. This assembly code

is then given to the assembler as input which results in hav-

ing the GUNzip machine code as its output. Meanwhile,

the proof is compressed by the Gzip compressor. Finally,

the GUNzip machine code and the compressed proof are

packed together as a proof generator. The packing is done

manually by allocating the compressed stream statically in

the code space. The compressed stream is then read by the

decompressor using the special function readcmp.

It should be mentioned that among the mentioned com-

ponents, the assembler can be regarded as a generic tool

which can be used regardless of the preceding components

which somewhat depend on the chosen technique of build-

ing the proof generator. In our experiment, the proof gener-

ator machine code without the compressed data is 10KB and

the proof generator bundled together with the compressed

proofs average 5% the original proofs which is about 20

times smaller than before. It takes us only a few minutes

to build a significantly small proof generator from a new

proof.

In the detailed diagram presented in Figure 7, the pro-

ducer builds a proof generator in the VEP machine language

using the proof generator maker components. Before send-

ing the proof generator, the producer has to add the request

in code size, heap size, stack size, and execution time to the

proof generator program header. For this, he has the op-

tion of running the proof generator on a copy of the VEP

on his side. This custom-made copy of the VEP automati-

cally adds the actual amount of the consumed resources to

the proof generator program header, when the execution is

finished.

In this sample implementation, we provide the producer

with the possibility of sending a proof generator. This gives

a chance to the producer to build a compact and special-

1A computed goto is a goto statement for which the address of the

target is computed by an expression of type void*. It is possible to obtain

the address of a label by applying the unary label value operator && to

the label. The target of a computed goto is known at run time only. The

language feature is an orthogonal extension to C99 and C++, implemented

to facilitate porting programs, and developed with GNU C.
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Figure 7. Detailed diagram of our sample im­

plementation of EPCC

ized proof generator which can output the same proof on

the consumer side. In this way, the proof size issue can be

alleviated while the parties are provided with a more flexible

framework in which the original logic of the proof generator

can be different than that of the generated proof.

10. Future Work

In the future, there are several directions to extend the

approach that we proposed in this paper.

Clearly, a first practical step will be to apply the frame-

work to other possible PCC frameworks like FPCC and

OPCC. The EPCC framework can be used to make the

FPCC approach more scalable. As for the OPCC, writ-

ing an oracle-based proof generator could be a possible

direction to explore. This proof generator could be one

which uses the proof witness in order to rebuild the orig-

inal proof. Therefore, there would be no need to use any

non-deterministic proof checker on the consumer side and

the verification could be done with the original PCC proof

checker. In this way, we would not force the consumer to

change the PCC structure to gain the benefit of small proofs

from using OPCC and there will be no need for compro-

mises in the size of TCB.

Another area of future work is to prove the VEP safe in

a PCC framework. In this way, the VEP would not increase

the size of the TCB at all.

One other direction to extend our approach is writing a

proof generator which can translate a proof from a higher-

order logic into a similar proof written in the logic set by the

consumer. In other words, the producer has the possibility

of reducing the size of the safety proof by writing it in a

custom logic which can be later translated to the logic set

by the consumer by the proof generator.

11. Conclusion

We described in this paper an extended version of the

Proof-Carrying Code framework that offers a solution to the

PCC’s scalability issue.

We have worked on a hybrid approach, in which, instead

of transmitting a proof, a proof generator for the code in

question is sent. The new extended framework enables the

execution of the proof generator on the consumer side in

a secure manner on a safe and small virtual machine (the

VEP). We showed empirically that the EPCC and its con-

joint virtual machine the VEP have the potential to be used

in an industrial-strength framework by implementing the

necessary programs to complete the end-to-end chain. The

fact that proofs contain many repeated patterns of proof

rules and redundant arguments, makes them suitable for

data compression. Our results show that proof generator



composed of an off-the-shelf decompressor and the com-

pressed proof is significantly smaller than the entire proof

(i.e. 20 times smaller). This allows us to scale PCC to

checking the type safety of programs up to several hundreds

of thousands of lines of code.

The EPCC framework makes the PCC idea more scal-

able and practical while respecting the characteristics of the

PCC technique. EPCC provides the code consumer with

the luxury of using a safe environment in which a big class

of proof generators can be executed in a secure manner, re-

gardless of the original logic in which the proofs were rep-

resented. In this way, EPCC leaves the easier tasks to the

consumer (like PCC) and gives adequate means to the pro-

ducer to do the hard task (to the contrary of PCC). This

major flexibility for the consumer and producer, in addition

to the alleviation of the proof size issue, are gained through

a minor TCB extension of less than 300 lines of code which

can be verified easily by pen and paper. In this way, EPCC

asks you to believe very little and gives the highest priority

to the security.
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