
Conservative Groupoids Reognize Only Regular Languages

Martin Beaudry

a

, Danny Dubé

b

, Maxime Dubé

b

, Mario Latendresse



, Pasal

Tesson

b,∗

a

Département d'informatique, Université de Sherbrooke

2500 Bld. de l'Université, Sherbrooke (Québe) J1K 2R1, Canada

b

Département d'informatique et de génie logiiel, Université Laval

1065 av. de la Médeine, Québe (Québe) G1V 0A6, Canada



SRI International

333 Ravenswood Ave, Menlo Park, CA 94025, USA

Abstrat

The notion of reognition of a language by a �nite semigroup an be generalized to

reognition by �nite groupoids, i.e. sets equipped with a binary operation ` · ' whih is

not neessarily assoiative. It is well known that L an be reognized by a groupoid i�

L is ontext-free. However it is also known that some sublasses of groupoids an only

reognize regular languages.

A groupoid H is said to be onservative if a · b ∈ {a, b} for all a, b ∈ H . The �rst

result of this paper is that onservative groupoids an only reognize regular languages.

This lass of groupoids is inomparable with the ones identi�ed so far whih share this

property, so we are exhibiting a new way in whih a groupoid an be too weak to reognize

non-regular languages.

We also study the lass Lcons of regular languages that an be reognized in this way

and explain how it �ts within the well-known Straubing-Thérien hierarhy. In partiular

we show that Lcons ontains depth 1/2 of the hierarhy and is entirely ontained in depth

3/2.

Keywords: groupoid, onservative algebra, algebrai automata theory

1. Introdution

A semigroup S is a set with a binary assoiative operation. It is a monoid if it also

has an identity element. The algebrai point of view on automata, whih is entral to

some of the most important results in the study of regular languages, relies on viewing

a �nite semigroup as a language reognizer. This makes it possible to lassify a regular

language aording to the semigroups or monoids able to reognize it. There are various

ways in whih to formalize this idea but the following one will be useful in our ontext: a

∗
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language L ⊆ A∗
is reognized by a �nite monoid M if there is a homomorphism h from

the free monoid A∗
to the free monoid M∗

and a set F ⊆M suh that w ∈ L i� h(w) is
a sequene of elements whose produt lies in F . Sine the operation of M is assoiative,

this produt is well de�ned. This framework underlies algebrai haraterizations of

many important lasses of regular languages (see [13℄ for a survey).

These ideas have been extended to non-assoiative binary algebras, i.e. groupoids. If

a groupoid is non-assoiative, a string of groupoid elements does not have a well-de�ned

produt so the above notion of language reognition must be tweaked. A language L
is said to be reognized by a �nite groupoid H if there is a homomorphism h from

the free monoid A∗
to the free monoid H∗

and a set F ⊆ H suh that w ∈ L i� the

sequene of groupoid elements h(w) an be braketed
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so that the resulting produt lies

in F . It has been shown that a language an be reognized by a �nite groupoid i� it is

ontext-free [9, 10, 18℄.

However, ertain groupoids are too weak to reognize non-regular languages. The

�rst non-trivial example was provided by Caussinus and Lemieux who showed that loops

(groupoids with an identity element and left/right inverses) an only reognize regular

languages [6℄. Beaudry et al. later showed that the languages reognized by loops are

preisely the regular open languages [3℄. Along the same lines, Beaudry showed in [2℄

that if H is a groupoid whose multipliation monoid M(H) is in the variety DA then it

an only reognize regular languages. (M(H) is the transformation monoid generated by

the rows and olumns of the multipliation table of H .) Finally, Beaudry et al. proved

that this still holds if the multipliation monoid lies in the larger variety DO [4℄.

A groupoid H with operation ` · ' is said to be onservative if a · b ∈ {a, b} for all

a, b ∈ H . The simplest example of a non-assoiative and onservative groupoid is the one

de�ned by the Rok-Paper-Sissors game. In this game, two players simultaneously make

a sign with their �ngers hosen among Rok, Paper, and Sissors. Rok beats Sissors,

Sissors beats Paper, Paper beats Rok, and idential signs result in a tie. The assoiated

groupoid has three elements r, p, s and the multipliation is given below (expliit list of

produts on the left, multipliation table on the right).

r · r = r · s = s · r = r

p · p = p · r = r · p = p

s · s = s · p = p · s = s

r p s

r r p r

p p p s

s r s s

Note that H is indeed onservative and non-assoiative sine

(r · p) · s = s 6= r = r · (p · s).

The main result of our paper is that onservative groupoids reognize only regular lan-

guages and in fat a very restrited lass of regular languages. Our results are inom-

parable to those of Beaudry et al. sine a straightforward alulation

2

shows that the

1

If h(w) is the empty word then it annot be braketed. To handle this exeption, we onsider that

the result of the evaluation of ǫ is a speial element η 6∈ H whih may or may not be a part of F . This

tehnial issue is without inidene for the main results of this paper.

2

This alulation is somewhat tangential to our results but we inlude it here for ompleteness. Let
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multipliation monoid of the Rok-Paper-Sissors groupoid does not belong to the variety

DO nor to the larger variety DS.

Conservative groupoids have already been studied in the literature (e.g. [7℄) and

antiommutative onservative groupoids were used as a model for undireted graphs

in [19℄. More generally, onservative algebras have also found appliations in theoretial

omputer siene. Most notably, they our naturally in the study of the omplexity of

the list-homomorphism problem [1, 5℄.

1.1. Conservative Groupoids and Tournaments

It is onvenient to think of onservative groupoids as de�ning a generalization of

the Rok-Paper-Sissors game. For any onservative groupoid H , we de�ne the game

in whih players 1 and 2 eah hoose an element of H (say a and b respetively) and

player 1 wins i� a · b = a. In fat, it is helpful to think of this game as a ompetition

between elements of H .

Consider now a sequene w ∈ H∗
of elements of the groupoid. A braketing of this

sequene an be viewed as speifying a tournament struture involving the symbols of

w, i.e. a spei� way to determine a winner among the elements of w. For instane, if

w = abcd, then (a · b) · (c · d) is the tournament that �rst pits a against b and c against d
and then has the two winners of that �rst round ompeting. Similarly in the tournament

((a · b) · c) · d we �rst have a faing b with the winner then faing c and the winner of

that faing d. Note that this analogy makes sense beause H is onservative and the

�winner� of any suh tournament (i.e. the value of the produt given this braketing) is

indeed one of the partiipants (in the above example, one of a, b, c, or d). We intend

to study languages of the form Λ(a) = {w ∈ H∗ | w an be braketed to give a} and

we aordingly think of them as Λ(a) = {w ∈ H∗ | an organizer an rig a tournament

struture for w to ensure that a wins}.
Let us de�ne ontest trees. We denote the set of all ontest trees by T . It is the

smallest set that ontains the single-node tree a for any a ∈ H , and suh that the tree

t1 ⊗ t2 is also in T , for any two trees t1 and t2 in T . Let T : H+ → 2T be the funtion

that omputes the set of possible ontest trees over a given word.

T (a) = {a}

T (w) = {t1 ⊗ t2 | u, v ∈ H+, uv = w, t1 ∈ T (u), t2 ∈ T (v)} if |w| > 1.

us �rst formally de�ne the multipliation monoid of a groupoid H. To eah element a ∈ H one an

assoiate the funtions ta, qa : H → H de�ned by ta(x) = ax and qa(x) = xa. The set TH of funtions

from H to H naturally forms a monoid under funtion omposition. The multipliation monoid of H is

the submonoid of TH generated by the set {ta, qa : a ∈ H}.
An element x of a monoid is idempotent if x2 = x. It is well known that for any �nite monoid M ,

there exists a positive integer ω suh that xω
is idempotent for all x ∈ M . A �nite monoid belongs to

the lass DO if it satis�es the identity (xy)ω(yx)ω(xy)ω = (xy)ω and belongs to the wider lass DS if

it satis�es the weaker identity ((xy)ω(yx)ω(xy)ω)ω = (xy)ω .
Let H be the Rok-Paper-Sissors groupoid. Note that beause H is ommutative, we have ta = qa

for eah a in H. Let us represent eah element t of TH as a triple [t(r); t(p); t(s)]. Thus tr = [r; p; r],
tp = [p;p; s] and ts = [r; s; s]. Now let x = ts and y = trtp = [p; p; r]. We have xy = [s; s; r] and
(xy)2 is the idempotent [r; r; s]. Moreover yx = [p; r; r] and (yx)2 is the idempotent [r;p; p]. Finally

(xy)2(yx)2(xy)2 = [r; r; r] whih is idempotent but di�erent from (xy)2. Therefore the multipliation

monoid of H violates the de�ning identity of DS.
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Note that, when performing the left-to-right traversal of a tree in T (w), the leaves that

we suessively reah are the symbols that form w. Next, funtionW : T → H omputes

the winner of a ontest tree.

W (a) = a

W (t1 ⊗ t2) = W (t1) ·W (t2)

Note that the winner of a ontest tree is unique. Next, we de�ne the set of possible

winners in a given ontest w by overloading funtion W with an additional de�nition of

type H+ → 2H . We de�ne W (w) as {W (t) | t ∈ T (w)}. Finally as de�ned earlier, we

denote by Λ(a) the language of the words for whih we an arrange a ontest in whih a
is the winner, i.e. Λ(a) as {w ∈ H+ | a ∈ W (w)}. When drawing ontest trees, we often

label interior nodes with the winner of that subtree (see Figure 1).

p

p

r p

r

r

s r

s

p s

Figure 1: A ontest tree on rpsrps over the Rok-Paper-Sissors groupoid.

It is onvenient to further abuse the above terminology and notation as follows. Let

w be a word and let t be a ontest tree in T (w). We say that t is a braketing of w and

write t(w) to denote the winner of the ontest tree t. For instane if H is the Rok-Paper-

Sissors groupoid then for w = rpsps and for t = r((ps)(ps)), we obtain t(w) = r. This
notation and terminology is partiularly onvenient beause of the following observation.

Remark 1. For any t ∈ T (w) and any x, y ∈ H∗
we have W (xt(w)y) ⊆ W (xwy).

Indeed the right-hand side is the set of elements that an win under some braketing of

xwy whereas the left-hand side represents the possible winners in the speial ase where

the segment w is braketed aording to t.

1.2. The Straubing-Thérien Hierarhy

The Straubing-Thérien hierarhy onsists of lasses of regular languages and is one

of the best-known examples of a so-alled onatenation hierarhy (see e.g. [13℄). A

language L ⊆ A∗
is in depth 0 of the hierarhy if it is either A∗

or ∅ and it is of depth 1/2

if it is a union of languages of the form A∗a1A
∗a2A

∗ . . . akA
∗
with eah ai ∈ A. For n ≥ 1

the rest of the hierarhy is de�ned indutively as follows: the language L is of depth n if

it is a Boolean ombination of languages of depth n− 1/2 and is of depth n+1/2 if it is

a union of languages of the form L0a1L1a2 . . . akLk with ai ∈ A and Li of depth n. It is
lear from the de�nition that the union of the lasses in the Straubing-Thérien hierarhy

is equal to the lass of star-free languages, i.e. languages that an be represented by a

regular expression using the union, onatenation and omplement operators but without

using the ∗ operator.
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The Straubing-Thérien hierarhy has a nie logial interpretation [17, 11℄ sine lan-

guages of depth n+ 1/2 are exatly those whih an be expressed by a Σn+1 �rst-order

sentene over words using the order prediate

3

. In the remainder of the paper we write

Σ1 (resp. Σ2) instead of �languages of Straubing-Thérien depth 1/2� (resp. 3/2). We also

denote as Π1 (resp. Π2) the lass of languages whose omplement lies in Σ1 (resp. Σ2).

The following is a useful ombinatorial haraterization of Σ2: a language is Σ2 i� it is

a �nite union of languages of the form A∗
0a1A

∗
1a2 . . . A

∗
k−1akA

∗
k where eah Ai ⊆ A [14℄.

The paper is organized as follows. In Setion 2, we show that the languages that

an be reognized by onservative groupoids are all regular and in fat lie in Σ2. In

Setion 3, we disuss the lass of languages reognized by onservative groupoids, its

losure properties and its plae in the Straubing-Thérien hierarhy.

A preliminary version of this paper appeared in the proeedings of the 6th Interna-

tional Conferene on Language and Automata Theory and Appliations (LATA 2012).

2. Main Theorem

The objetive of this setion is to establish our main theorem.

Theorem 2. For any onservative groupoid H and a ∈ H, the language Λ(a) is regular.
Furthermore Λ(a) lies in Σ2, i.e. it an be written as a �nite union of languages of the

form σ∗
0a1σ

∗
1 . . . σ

∗
k−1akσ

∗
k where the ai lie in H and the σi are subsets of H.

The demonstration proeeds in two steps. In the �rst step, we build a ontext-free

grammar G that generates Λ(a). In the seond step, we analyze this grammar and show

that the language it generates lies in Σ2.

2.1. Initial Observations

We begin by establishing some further notation and auxiliary lemmas whih are useful

in the sequel. In partiular our �rst objetive is to provide tools whih help identify the

set of winners over a given string.

If H is a onservative groupoid and a, b are elements of H then we say that a is

left-favorable to b if ab = b (i.e. a loses when plaed to the left of b) and that a is right-

favorable to b if ba = b (i.e. a loses when plaed to the right of b). Note of ourse that

for any a 6= b, it holds that a is right-favorable to b i� b is not left-favorable to a and

vie-versa. We de�ne the auxiliary funtions fL : H → 2H and fR : H → 2H that, given

a symbol b, return the symbols that are respetively left-favorable and right-favorable to

b. Formally fL(b) = {a ∈ H | a · b = b} and fR(b) = {a ∈ H | b · a = b}.
Let σ be a set of groupoid elements. We generalize our earlier de�nition of Λ by

setting Λ(σ) = {w ∈ H∗ | w an be braketed to give some a in σ}. We de�ne Λǫ(σ) =
Λ(σ) ∪ {ǫ}

3

Details an be found in e.g. [17, 11℄. A Σn sentene over words begins with n alternating bloks of

quanti�ers (starting with an existential blok) that quantify over positions in the word. The quanti�er-

free part is built from prediates of the form Qax (interpreted as �position x in the word holds an a�) and

omparisons between positions x < y. For instane, the language A∗aA∗bA∗
disussed in Setion 3.2

is de�ned by the Σ1 sentene ∃x∃y x < y ∧ Qax ∧ Qby. On the other hand, the language A∗aaA∗
of

Proposition 20 an be de�ned by the Σ2 sentene ∃x∃y∀z x < y ∧Qax ∧Qay ∧ (x < z < y → ¬Qbz).
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Lemma 3. Let a ∈ H and u ∈ H∗
. Then, a ∈W (u) if and only if there is a fatorization

u = vaw suh that

• if |v| ≥ 1, then there exists p ∈ fL(a) ∩W (v);

• if |w| ≥ 1, then there exists q ∈ fR(a) ∩W (w).

An alternative formulation of this statement is that for any a ∈ H, the language Λ(a)
is equal to the onatenation Λǫ(fL(a)) · {a} · Λǫ(fR(a)).

Proof.

(⇐)
Suppose that u = vaw and that s ∈ T (v) and t ∈ T (w) are suh that s(v) = p and

t(w) = q with pa = a and aq = a. Consider the braketing for u given by (s(v)(at(w))).
It evaluates to (p(aq)) = (pa) = a and therefore a ∈ W (u) as laimed.

(⇒)
Proeed by indution on |u|. For the base ase |u| = 1, note that if a ∈ W (u), then in

fat u = a and we trivially obtain a fatorization u = ǫ a ǫ.
For the indution step, suppose that a ∈ W (u) and |u| = k + 1. Consider a ontest

tree t in T (u) suh that t(u) = a. Consider the left-hild tL and the right-hild tR of

the root of t. Let x, y be the strings suh that u = xy and suh that tL ∈ T (x) and

tR ∈ T (y). Sine tL(x)tR(y) = a and sine H is onservative, one of the following must

hold:

1. tL(x) = a and atR(y) = a (i.e. tR(y) ∈ fR(a));

2. tR(y) = a and tL(x)a = a (i.e. tL(x) ∈ fL(a)).

Assume that ase 1 holds (ase 2 is handled symmetrially). Sine a ∈ W (x) and sine

|x| < |u| we know by indution that x an be fatorized as x = vaw suh that there exist

p ∈ W (v)∩ fL(a) (or v is empty) and q ∈ W (w) ∩ fR(a) (or w is empty). (See Figure 2)

If w = ǫ then u = vay is a fatorization with the properties required in the lemma's

x y

tL tR

a tR(y)

a

a

a

a

v w y

p q

tR

tR(y)

a

av w y

p q

tR

tR(y)

q′

a

a

Figure 2: Steps in the proof of Lemma 3.

statement. Otherwise u = vawy and we know that w and y an be braketed to obtain

q and tR(y) respetively. Sine both of these elements are in fR(a), their produt is also
in fR(a) so there exists q′ ∈ W (wy) ∩ fR(a) and we are done. �

Following the intuition behind this lemma, we say that an element a ∈ H is able

to beat a word u ∈ H∗
to its left (resp. to its right) if there exists b ∈ W (u) ∩ fL(a)
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p

r r

s s

p ǫ

p

p

r p

r

r

s r

s

p s

Figure 3: On the left, a favorable deomposition tree for p in the Rok-Paper-Sissors groupoid. The

yield of this tree is rpsrps. By Lemma 3, p wins on this word. On the right, a ontest tree over rpsrps

built from the deomposition at left.

(resp. b ∈ W (u) ∩ fR(a)). Moreover, a favorable deomposition tree D for a ∈ H is a

binary tree labelled by H ∪ {ǫ} suh that for all nodes a of D, if b is a left (resp. right)

hild of a, then b ∈ fL(a) ∪ {ǫ} (resp. b ∈ fR(a) ∪ {ǫ}). The yield λ(D) of D is an

inorder walk on D (see Figure 3). By Lemma 3, if D is a favorable deomposition tree

for a, then a ∈ W (λ(D)). On the other hand, if a ∈ W (u), then there is a favorable

deomposition tree D for a suh that u = λ(D). It is important to distinguish ontest

trees and favorable deomposition trees and Figure 3 gives an example of the ontrast.

Remark 4. Any subtree r of a favorable deomposition tree D is a favorable deomposi-

tion tree for its root.

Our proof of the main theorem relies on a generalization of Lemma 3.

Lemma 5. For any σ ⊆ H it holds that

Λ(σ) =
⋃

b∈σ

Λǫ(fL(b) ∪ σ) · {b} · Λ
ǫ(fR(b) ∪ σ).

Proof. Note that when σ is a singleton, the statement is exatly Lemma 3.

Let us �rst show the left to right ontainment.

Λ(σ) =
⋃

b∈σ

Λ(b)

⊆
⋃

b∈σ

Λǫ(fL(b)) · {b} · Λ
ǫ(fR(b)) (by Lemma 3)

⊆
⋃

b∈σ

Λǫ(fL(b) ∪ σ) · {b} · Λ
ǫ(fR(b) ∪ σ)

For the right to left inlusion, we need to show that for any b ∈ σ we have Λǫ(fL(b)∪
σ) · {b} · Λǫ(fR(b) ∪ σ) ⊆ Λ(σ). Suppose w = xby with x ∈ Λǫ(fL(b) ∪ σ) and y ∈
Λǫ(fR(b) ∪ σ) and assume for now that x and y are non-empty. By de�nition of Λ there

exists some a ∈ W (x) with a ∈ fL(b) ∪ σ and some c ∈ W (y) with c ∈ fR(b) ∪ σ. Sine
W (abc) ⊆W (xby) it su�es to show that W (abc) ∩ σ 6= ∅. If a and c both lie in σ then

W (abc) ⊆ σ and we are done. If a ∈ fL(b) and c ∈ σ then (ab)c = bc ∈ {b, c} ⊆ σ.
Symmetrially, if c ∈ fR(b) and a ∈ σ then a(bc) = ab ∈ {a, b} ⊆ σ. Finally if a ∈ fL(b)
and c ∈ fR(b) then (ab)c = bc = b ∈ σ.

The ase where x or y is empty an be handled just like the ase where a (resp. b)
lies in fL(b) (resp. fR(b)). �
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2.2. A Context-free Grammar for Λ(a)

We onstrut, for a onservative groupoid H and any a ∈ H , a ontext-free grammar

generating Λ(a). This an be ahieved in a number of ways but the following grammar

suggested by Lemma 5 is partiularly useful for our purpose. Let GH be the grammar

with the non-terminals N = {Sa} ∪ {Bσ | ∅ 6= σ ⊆ H} (with Sa as the initial non-

terminal) and the prodution rules

R = {Sa → Bσ′ aBσ′′ | σ′ = fL(a), σ
′′ = fR(a)}

∪ {Bσ → Bσ′ bBσ′′ | ∅ 6= σ ⊆ H, b ∈ σ, σ′ = σ ∪ fL(b), σ
′′ = σ ∪ fR(b)}

∪ {Bσ → ǫ | ∅ 6= σ ⊆ H}.

Lemma 6. Let GH be the grammar desribed above. For eah non-terminal Bσ it holds

that L(Bσ) = Λǫ(σ) and the language generated by GH is L(Sa) = Λ(a).

Proof. This is almost immediate from Lemma 5. Formally, we show that L(Bσ) ⊆
Λǫ(σ) for all σ by indution on |u| for a u ∈ L(Bσ). If u = ǫ then by de�nition u ∈ Λǫ(σ).
If |u| = k+1 and u ∈ L(Bσ) then the �rst prodution used to derive u from Bσ is of the

form Bσ → Bσ′ bBσ′′
with σ′ = fL(b) ∪ σ and σ′′ = fR(b) ∪ σ. Therefore u = xby with

x ∈ L(Bσ′) and y ∈ L(Bσ′′ ). By indution x ∈ Λǫ(σ′) and y ∈ Λǫ(σ′′) so u ∈ Λǫ(σ) by
Lemma 5.

To show L(Bσ) ⊇ Λǫ(σ) we again use indution. For the base ase, note that ǫ ∈
L(Bσ) sine GH ontains the prodution Bσ → ǫ. If |u| = k + 1 then by Lemma 5

we have u = xby with b ∈ σ and x ∈ Λǫ(σ′) and y ∈ Λǫ(σ′′). By indution we get

x ∈ L(Bσ′) and y ∈ L(Bσ′′) and thus u ∈ L(Bσ) using a derivation that starts with the

rule Bσ → Bσ′ bBσ′′
.

It is now obvious that sine the only rule for Sa is Sa → BfL(a) aBfR(a), Lemma 3

guarantees that L(Sa) = Λ(a). �

2.3. From the grammar to a Σ2 expression

Let H be a onservative groupoid with a some element of H and let L = Λ(a) ⊆ H∗
.

We are now ready to prove Theorem 2, and show that L is in fat in Σ2, i.e. it is a �nite

union of sets of the form σ∗
0a1σ

∗
1 · · ·anσ

∗
n, with eah ai ∈ H and σi ⊆ H .

Build from H the ontext-free grammar GH with the method of Setion 2.2; its initial

non-terminal is Sa. We say that a derivation δ is nonerasing if no prodution of the form

B → ǫ is used in it. An indution on the length of δ shows that a nonerasing derivation

outputs a string Y (δ) = Bσ0
a1Bσ1

· · · anBσn
, where eah Bσi

is a non-terminal and eah

ai a terminal. We slightly abuse notation and use δ to denote both the derivation and

the orresponding derivation tree. Then, we also write Y (δ) to denote the output of a

tree δ, i.e. the left-to-right sequene of leaves of δ. Erasing the non-terminals in Y (δ)
we obtain a word w(δ) = a1 · · ·an. Replaing eah non-terminal Bσ in Y (δ) with σ∗

, we

obtain a regular expression for the language L(δ) = σ∗
0a1σ

∗
1 · · · anσ

∗
n ⊆ L.

Let ∆ denote the set of all nonerasing derivations from Sa; we have

⋃

δ∈∆

L(δ) ⊆ L = { w(δ) : δ ∈ ∆ } ⊆
⋃

δ∈∆

L(δ) (1)
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so that L is a union of sets of the form σ∗
0a1σ

∗
1 · · ·anσ

∗
n. The union in Equation 1 is

in�nite but we will prove that all but a �nite numbers of the terms L(δ) it ontains are
redundant. More spei�ally, we say that a non-erasing derivation δ is dominated by a

non-erasing derivation δ′ if L(δ) ⊆ L(δ′). Note that if δ is a non-erasing derivation that

ontains γ as a subtree and if γ is dominated by some γ′ with the same root then the

tree δ′ obtained by replaing γ in δ by γ′ dominates δ.
We will de�ne a �nite set F ⊂ ∆ of non-erasing derivations suh that every non-

erasing derivation in ∆ is dominated by one in F . Consequently, we will have L =
⋃

δ∈F L(δ), a �nite union. We prove this in a sequene of steps, where eah step uses a

partiular transformation on derivation trees. The suessive transformations we present

onsist in ollapsing homogeneous subtrees, eliminating hiup nodes, straightening paths

with multiple angles, and shortening paths that are too long. These transformations

ollaborate to redue any redundant tree δ ∈ ∆�in partiular, one whose depth is more

than 3|H |�into a tree δ′ ∈ F that dominates δ.
We say that γ is homogeneous for Bσ if Bσ is the only non-terminal involved in γ,

i.e. every node in the derivation tree is either labeled by Bσ or by a letter in σ. In

partiular we have w(γ) ∈ σ∗
and therefore L(γ) ⊆ σ∗

. We laim that every δ ontaining
a homogeneous subtree γ for Bσ is dominated by the derivation obtained by replaing γ
in δ by Bσ. By our earlier observation, it su�es to establish that the tree γσ onsisting

of the single node labeled Bσ dominates γ. This is obvious sine L(γσ) = σ∗
. Therefore

any derivation δ is dominated by a δ′ with |δ| ≥ |δ′| and suh that δ′ has no homogeneous

subtree.

The tehnique we use in the rest of this proof and whih we all �reursive top-down

relabeling� is based on the following simple property of GH .

Proposition 7. For any two subsets σ ⊂ σ′
and any prodution Bσ → BρaBτ in the

grammar, there exists another prodution Bσ′ → Bρ′aBτ ′
with ρ ⊆ ρ′ and τ ⊆ τ ′.

This is immediate from the de�nition of GH and in fat we an be more preise and

establish that ρ′ = ρ ∪ σ′
and τ ′ = τ ∪ σ′

.

Let δ be a nontrivial derivation tree, let Bσ, Bτ1 , b and Bτ2 be the root and its

sons, respetively, and let Y (δ) = B̺0
a1B̺1

· · · akB̺k
. The �rst prodution used in the

orresponding derivation is Bσ → Bτ1bBτ2 . By the proposition, for every superset σ′
of

σ, there exists a prodution Bσ′ → Bτ ′

1
bBτ ′

2
with τ1 ⊆ τ ′1 and τ2 ⊆ τ ′2. We an relabel

the nodes of δ, �rst replaing with Bσ′
, Bτ ′

1
, b and Bτ ′

2
the root and its sons, and then by

doing similar replaements reursively in a top-down manner. The result is a derivation

tree δ′ with root labelled Bσ′
, whose output is Y (δ′) = B̺′

0
a1B̺′

1
· · · akB̺′

k
, where ̺i ⊆ ̺′i

for every 0 ≤ i ≤ k, and therefore δ′ dominates δ.
We �rst apply this tehnique to those derivations whih involve a prodution of the

form Bσ → BσbBσ, and therefore suh that δ ontains the pattern v:

v : Bσ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇

Bσ b Bσ

We say that a node, as above, with the same label as its left- and rightmost hildren is

a hiup node. We want to show that every tree δ ontaining a hiup node is dominated

9



by one of equal or lesser size that is hiup-free.

Let γ be a subtree of δ rooted at a hiup node x suh that no anestor of x is a

hiup node (i.e. we hoose γ to be as lose to the root of δ as possible). First note that
if all non-terminal labels in γ are also labeled Bσ then, by the homogeneous ase, γ an

be replaed by Bσ.

Otherwise, γ ontains a subtree u whih breaks away from homogeneity:

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇

u : Tσ b Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆

Tτ c Tχ

where Tσ, Tτ , Tχ are subtrees with roots Bσ, Bτ , Bχ respetively and where at least

one of τ 6= σ and χ 6= σ holds; the ase where the leftmost Bσ is expanded is symmetri.

The output of this subtree is Y (u) = Y (Tσ)bY (Tτ )cY (Tχ).
We want to show that if the �rst break in homogeneity ours at depth i in γ, then

γ an be dominated by a γ′ of idential size and with Bσ as its root but where the �rst

break in homogeneity ours at depth i − 1. To do this, onsider u and reverse in the

derivation the order of produtions Bσ → BσbBσ and Bσ → Bτ bBχ, and apply our

top-down relabeling tehnique to the left son of the root and its subtree; the result is a

subtree u′ whih dominates u:

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆

u′ : Bτ

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

��   
❆❆

❆❆
❆❆

❆❆
c Tχ

T̺ b Tτ

where T̺ is obtained from Tσ by replaing the root by Bτ and using top-down relabeling.

Note that sine either σ 6= τ or σ 6= χ, the break in homogeneity has been moved up

to the root of u′ and by substituting u by u′ in γ, we obtain, as laimed, a γ′ in whih

the �rst break in homogeneity ours at depth i− 1. By iterating this onstrution i− 1
times, we obtain a γ′′ that dominates γ and has the same root Bσ but where the root is

not a hiup anymore. Note that this proess might reate new hiups in the subtree γ′′

but our onstrution an be iterated to eliminate these in turn. It is ruial to point out

that our relabeling always replaes a Bσ by a Bσ′
where σ ⊆ σ′

so the depth of reursion

in our hiup elimination proedure is at most |H |.
We have thus far shown that any non-erasing derivation is dominated by one of equal

or lesser size in whih no two sons of a node arry the same label as their parent. There

is still an in�nite number of trees to onsider sine trees an ontain a root-leaf path with

an arbitrarily long sequene of nodes labelled with the same non-terminal.
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Along suh a sequene, we say that the path moves to the left (resp. right) from a

given node if the left hild (resp. right hild) of that node is labeled Bσ. We show below

that any subtree that begins with a Bσ path is dominated by one where the path is of

length at most two and in fat onsists of at most one move to the left followed by one

move to the right.

We say that a right Bσ-angle ours at a node if this node is a leftmost son and both

the node, its father and its rightmost son arry the same label Bσ (see pattern p in the

diagram below). We de�ne a left Bσ-angle dually (see pattern p′).

p p′

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❆❆

❆❆
❆❆

❆❆
Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❇❇

❇❇
❇❇

❇❇

Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❆❆

❆❆
❆❆

❆❆
c Tχ Tρ a Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

��   
❆❆

❆❆
❆❆

❆❆

Tρ a Tσ Tσ c Tχ

In the above, Tρ, Tσ and Tχ are trees with roots labeled Bρ, Bσ and Bχ respetively.

Seen as portions of a derivation tree, both patterns in this diagram have the same output

so that any derivation tree γ whih ontains p is dominated by the tree γ′ whih ontains

p′ instead of p (and vie versa). Observe that any other angle that may exist in γ is

una�eted.

Therefore if γ is a hiup-free subtree rooted at Bσ, we an repeat this substitution

4

proess until the Bσ path starting at the root ontains no more than one Bσ-angle and

we assume without loss of generality that it is a right angle. In other words, the path

onsists of a ertain number of moves to the left followed by a ertain number of moves

to the right. Suppose that the Bσ path begins by at least two moves to the left, i.e. we

are in the following on�guration:

Bσ

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

��   
❇❇

❇❇
❇❇

❇❇

Bσ

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

�� !!
❇❇

❇❇
❇❇

❇❇
c2 S2

Tσ c1 S1

where Tσ is a tree with root Bσ and S1, S2 are trees with roots Bχ1
, Bχ2

respetively and

where χ1, χ2 are both strit supersets of σ.

4

This substitution is reminisent of the tree rotations that are performed on AVL trees and other

balaned trees.

11



This subtree is dominated by the following one

Bσ

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

�� !!
❈❈

❈❈
❈❈

❈❈

Tσ c1 Bχ1

}}④④
④④
④④
④④

��
  
❇❇

❇❇
❇❇

❇❇

S1 c2 S′
2

where S′
2 is the tree obtained by top-down relabeling S2 using the root Bχ1∪χ2

, following

Proposition 7. Note that, sine χ1 ∪ σ = χ1, we an safely attah the subtree S1 as the

leftmost hild of Bχ1
.

This shows that any subtree with a Bσ path starting at the root with i ≥ 2 moves

to the left an be dominated by a subtree where the Bσ path starts with i − 1 moves

to the left. Applying this argument i− 2 times, we obtain a subtree where the Bσ path

begins with one left move possibly followed by a sequene of right moves. A symmetri

argument shows that we an assume that the latter sequene onsists of at most one

right move.

By applying the above transformations repeatedly, we an dominate any derivation

tree by one of equal or smaller size whih is hiup-free and where every Bσ path is of

length no more than 2. The set F of suh trees is �nite sine they all have depth at

most 3|H | so this translates into a �nite Σ2 expression for the language generated by the

grammar. This onludes the proof of Theorem 2.

Example 8. To illustrate the above proof, let us go bak to the Rok-Paper-Sissors

game and onstrut a regular expression for Λ(p) the set of words in {r, p, s}∗ on whih

Paper an win. The grammar generating Λ(p) is given by the rules:

Sp → B{r,p} pB{r,p}

B{r,p} → B{r,p} pB{r,p} | B{r,p,s} r B{r,p,s} | ǫ

B{r,p,s} → B{r,p,s} r B{r,p,s} | B{r,p,s} pB{r,p,s} | B{r,p,s} sB{r,p,s} | ǫ

Note that we an exlude the non-terminals B{r}, B{p}, B{s}, B{r,s}, B{p,s} whih are in

fat unreahable from Sp.

Every non-erasing derivation from Sp begins with Sp ⇒ B{r,p} pB{r,p}. In turn,

derivations from B{r,p} start with either B{r,p} ⇒ B{r,p} pB{r,p} or B{r,p} ⇒ B{r,p,s} r
B{r,p,s}. The �rst ase immediately reates a hiup node and an therefore be dominated

and safely ignored. In the seond ase, one is left with two ourrenes of B{r,p,s} but

any further derivation from these non-terminals must also reate hiup nodes. We are

therefore left with a Σ2 expression ontaining only four useful terms orresponding to the

following non-erasing derivations.

Sp ⇒ B{r,p} pB{r,p}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p} pB{r,p,s} r B{r,p,s}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p,s} r B{r,p,s}pB{r,p}

Sp ⇒ B{r,p} pB{r,p} ⇒ B{r,p,s} r B{r,p,s} pB{r,p,s} r B{r,p,s}
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Aordingly, Λ(p) is represented by the regular expression

(r|p)∗p(r|p)∗ | (r|p)∗p(r|p|s)∗r(r|p|s)∗ | (r|p|s)∗r(r|p|s)∗p(r|p)∗ |

(r|p|s)∗r(r|p|s)∗p(r|p|s)∗r(r|p|s)∗.

This expression basially says that Paper an win on a string x if and only if x = upv
where both u and v either onsist only of Papers and Roks or ontain a Rok. The same

language an be desribed more suintly by the expression

[ p∗| (r|p|s)∗r(r|p|s)∗] p [ p∗| (r|p|s)∗r(r|p|s)∗].

3. Languages Reognized by Conservative Groupoids

We now know that languages reognized by onservative groupoids are regular. In

this setion we seek a more preise haraterization.

3.1. Conservative Semigroups

One starting point is to onsider onservative groupoids whih are also assoiative,

i.e. semigroups for whih x · y ∈ {x, y}. In partiular, these satisfy x2 = x but we an

give an exat haraterization.

Lemma 9. A semigroup S is onservative i� its set of elements an be partitioned into

k lasses C1, . . . , Ck suh that

1. x · y = y · x = x whenever x ∈ Ci and y ∈ Cj for i < j;

2. x · y = x for all x, y ∈ Cj (left-zero) or x · y = y for all x, y ∈ Cj (right-zero) for

any j.

Proof. (⇐)

By de�nition, suh a semigroup is onservative. Also, the operation de�ned above is

assoiative. Indeed if x, y, z are three elements lying in the same lass Ci then (x ·y) ·z =
x · (y · z) = x if Ci is left-zero and (x · y) · z = x · (y · z) = z if Ci is right-zero. If x, y, z
are not in the same lass then assoiativity follows beause the elements in the most

absorbing lass are the only ones that matter. Suppose for instane that x and z lie in

the same lass Ci while y lies in some Cj with i > j. Sine x · y = x and y · z = z we

learly have (x · y) · z = x · (y · z) = xz.
(⇒)

Conversely, suppose that S is a onservative semigroup. Let us reall the de�nition

of Green's J -preorder noted ≤J . Let x, y ∈ S. We write x ≤J y if there exists α, β ∈ S
suh that x = αyβ. Finally, let us remind that x J y is Green's J -equivalene relation

built with ≤J .

Let us denote the J -lasses of S by C1, . . . , Ck. Firstly, x ≤J y or y ≤J x for all

x, y ∈ S sine S is onservative. Then, the J -lasses are totally ordered by ≤J and we

an assume that C1, . . . , Ck are labelled suh that Ci ≤J Cj i� i ≤ j.
(1). Let x ∈ Ci, y ∈ Cj suh that i < j. Thus, xy ≤J x <J y and then, xy 6= y.

Sine S is onservative, xy = x. We an show yx = x in the same way.

(2). Let x, y ∈ Ci. We suppose that x 6= y, otherwise the result is learly true. Sine

x, y ∈ Ci, then x ≤J y and y ≤J x; i.e. there exist α, β, γ, ρ ∈ S suh that x = αyβ and
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y = γxρ. Sine S is onservative, then we have one of α = x or β = x and one of γ = y
or ρ = y. This is equivalent to having one of xy = x or yx = x and one of yx = y or

xy = y. Note that we annot have xy = x and yx = x at the same time beause neither

of xy = y or yx = y would be true and that would ause a ontradition. If we have

xy = x, then yx = y and the left element wins in both ases. If we have yx = x, then
xy = y and the right element wins in both ases.

�

This haraterization an be translated into a desription of the languages reogniz-

able by onservative semigroups. For an alphabet A, onsider a partition C1, . . . , Ck eah

with an assoiated diretion d1, . . . , dk with di ∈ {L,R,C} given in the following way:

• if Ci has at least two elements and is a left-zero, di = L;

• if Ci has at least two elements and is a right-zero, di = R;

• otherwise Ci has one element and di = C.

For a ∈ Cj with dj = L (resp. dj = R), de�ne the language La (resp. Ra) of words

with at least one a that ontain no ourrene of letters in lasses Ci with i < j and

where the �rst (resp. last) ourrene of a letter in Cj is an a. If dj = C, de�ne the

language Ca of words with at least one a that ontain no ourrene of letters in lasses

Ci with i < j.

Corollary 10. A language an be reognized by a onservative semigroup i� it is the

disjoint union of some La, Ra and Ca.

Note that the lass of languages reognized by onservative semigroups does not have

many losure properties. For instane, it is not losed under union or intersetion: eah

of the languages A∗aA∗
and A∗bA∗

an be reognized but their union (or intersetion)

has a syntati semigroup whih is not onservative.

3.2. Basi Properties of the Non-Assoiative Case

The apparent absene of losure properties makes it di�ult to provide a om-

plete haraterization of languages reognized by non-assoiative, onservative groupoids.

Moreover the de�nition of reognition by a groupoid allows a homomorphism h : A∗ →
H∗

that �translates� a word over the original alphabet into a string of groupoid elements

and this an be surprisingly powerful. Consider for instane the alphabet A = {a, b}
and the language K = A∗aA∗bA∗

. This language is not ommutative (i.e. there exist

x, y suh that xy ∈ K and yx 6∈ K) yet it an be reognized by the rok-paper-sissors

groupoid H = {r, p, s} whih is ommutative. Indeed, if one hooses the aepting set

F = {p} and if h(a) = ps and h(b) = r then it is possible to show that w ∈ K i�

W (h(w)) ∩ F 6= ∅. Indeed if w 6∈ K then h(w) = rn(ps)m for some n,m ∈ N and by

Example 8, it is impossible for p to win suh a word. Conversely, suppose that w ∈ K.

Consider the �rst p ourring in h(w). On its left one �nds rn for some n ≥ 0 and on its

right there is at least one Rok beause w ∈ K. Therefore by Example 8, Paper is able

to win on h(w).
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In the rest of this setion we prove a number of results whih provide important insight

into the plae that languages reognizable by onservative groupoids oupy within the

Straubing-Thérien hierarhy.

We begin by four simple lemmas.

Lemma 11. The lass of languages reognized by onservative groupoids is losed under

inverse homomorphisms h : B∗ → A∗
from one free monoid to the other, i.e. if L ⊆ A∗

an be reognized by the onservative groupoid H then h−1(L) an also be reognized by

H.

Proof. This is a well-known straightforward onsequene of the de�nition of reognition

by a groupoid and does not depend on the fat that H is onservative. Indeed if L is

reognized using the mapping φ : A∗ → H∗
and the aepting subset F then by setting

ψ = φ ◦ h we obtain a homomorphism from B∗
to H∗

and we have

W (ψ(x)) ∩ F 6= ∅ ⇔W (φ(h(x))) ∩ F 6= ∅ ⇔ h(x) ∈ L⇔ x ∈ h−1(L).

�

Corollary 12. Every language reognizable by a onservative groupoid lies in Σ2.

Proof. Suppose L ⊆ A∗
is reognizable by a onservative groupoid H using the homo-

morphism h : A∗ → H∗
and the aepting subset F ⊆ H . By de�nition, L = h−1(Λ(F ))

and Λ(F ) lies in Σ2 by Theorem 2. It is known (see [13℄) that Σ2 is losed under inverse

homomorphi images. �

Lemma 13. If L ⊆ A∗
is reognizable by a onservative groupoid, then for any B ⊆ A

the language L ∩B∗
is also reognizable by a onservative groupoid.

Proof. Suppose L is reognized by the onservative groupoid H using the homomor-

phism h : A∗ → H∗
and aepting subset F ⊆ H . De�ne H0 by adding a new absorbing

element 0 in H (i.e. 0x = x0 = 0 for all x ∈ H). Note that the groupoid H0 is still on-

servative. Now de�ne g : A∗ → H∗
0 by setting g(a) = h(a) if a ∈ B and g(a) = 0 if a 6∈ B.

For any w 6∈ B∗
, we therefore have a 0 ourring in g(w) and thus W (g(w)) = {0}. On

the other hand if w ∈ B∗
then g(w) = h(w) and therefore L ∩B∗

is preisely the set of

words suh that W (g(w)) ∩ F 6= ∅. �

Lemma 14. If L ⊆ A∗
is reognized by a onservative groupoid H then L = L+

(where

L+
denotes LL∗

).

Proof. Suppose L is reognized using h : A∗ → H∗
and aepting subset F . Consider

a word of L+
i.e. x = x1 . . . xk with eah xi in L. We know that for eah i there

exists some ai ∈ F suh that h(xi) an be braketed to get ai as the winner. Now

h(x) = h(x1) . . . h(xk) so W (h(x)) ⊇W (a1 . . . ak). Sine H is onservative and sine all

ai lie in F , the set W (h(x)) ontains at least one of the ai and x ∈ L. �

Let L be a language over A∗
. The syntati pre-order of L on A∗

is de�ned by setting

x <L y i� for all s, t ∈ A∗
it holds that syt ∈ L ⇒ sxt ∈ L. Note that <L is ompatible

with onatenation in the sense that x <L y ⇒ uxv <L uyv for any x, y, u, v ∈ A∗
. This
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pre-order and the orresponding equivalene relation (x ≡L y if sxt ∈ L ⇔ syt ∈ L for

all s, t ∈ A∗
) are entral to algebrai automata theory. A theorem of Pin [12℄ states

that every positive variety of languages, i.e. every lass L of languages losed under

union, intersetion, inverse morphi images (if K ⊆ A∗
is in L and h : B∗ → A∗

is a

homomorphism then h−1(K) ∈ L) and left and right quotients (if K ∈ L and a ∈ A then

a−1K ∈ L and Ka−1 ∈ L where a−1K = {x : ax ∈ K} and Ka−1 = {x : xa ∈ K})
an be haraterized by a (possibly in�nite) set of de�ning identities of the syntati

pre-order. A formal treatment of identities an be found in [13℄ but the following two

examples are somewhat typial and partiularly relevant in our ontext. A language L
lies in Σ1 i� x <L ǫ for all x (see e.g. [15, 13℄). A language L lies in Σ2 i� there exists

some ω suh that xωyxω <L x
ω
whenever the set of letters ourring in x is equal to the

set of letters ourring in y [15℄.

The syntati pre-order allows us to give a simple neessary ondition for reogniz-

ability by a onservative groupoid.

Lemma 15. If L ⊆ A∗
is reognized by a onservative groupoid then x2 <L x for all

x ∈ A∗
.

Proof. It su�es to show that for any onservative groupoid H and any s, u, t ∈ H∗
it

holds that W (sut) ⊆W (su2t).
Suppose u = u1 . . . uk. Pik any element in W (u), i.e. �x some j suh that uj

is a winner in u given the orret braketing. By Lemma 3, there exist ontest trees

τ ∈ T (u1 . . . uj−1) and τ ′ ∈ T (uj+1 . . . uk) suh that τ(u1 . . . uj−1) = ℓ ∈ fL(uj)
and τ ′(uj+1 . . . uk) = r ∈ fR(uj). Now onsider the partial braketing of su2t =
su1 . . . uku1 . . . ukt given by

su1 . . . ujτ
′(uj+1 . . . uk)τ(u1 . . . uj−1)uj . . . ukt = su1 . . . ujrℓuj . . . ukt.

In turn, the latter an be braketed as

su1 . . . uj−1((ujr)(ℓuj))uj+1 . . . ukt = su1 . . . uj−1(ujuj)uj+1 . . . ukt

= su1 . . . ukt = sut.

In partiular W (sut) ⊆W (su2t). �

Corollary 16. The lass of languages reognized by onservative groupoids

1. is not losed under omplement

2. is not losed under union.

Proof.

1. We showed earlier that L = Σ∗aΣ∗bΣ∗
is reognizable by the Rok-Paper-Sissors

groupoid but Lemma 14 guarantees that its omplement Lc
is not reognizable by

a onservative groupoid. Indeed note that Lc
ontains the words a, b and ǫ so

(Lc)+ = {a, b}∗ 6= Lc
.

2. The language L1 = a{a, b}∗ an be reognized by the two element onservative

groupoid {x, y} where xy = x and yx = y. (This groupoid is in fat assoiative.)

Similarly, L2 = {a, b}∗b an be reognized by a two element onservative groupoid.

Sine a ∈ L1 and b ∈ L2 we have a, b ∈ L1 ∪L2 and therefore ba ∈ (L1 ∪L2)
+
even

though ba 6∈ L1 ∪L2. By Lemma 14, this proves that L1 ∪L2 annot be reognized

by a onservative groupoid. �
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Whether the lass of languages reognizable by onservative groupoids is losed under

intersetion remains an open question.

Finally, the following lemma is useful for analyzing partiular sequenes of groupoid

elements sine it shows that repetitions of a given element an be eliminated without

hanging the set of potential winners.

Lemma 17. Let H be a onservative groupoid and let a ∈ H. For any s, t ∈ H∗
we have

W (sat) =W (saat).

Proof. By Lemma 15, we have W (sat) ⊆W (saat) for all a ∈ H .

Let b ∈ W (saat). Let D be a favorable deomposition tree for b suh that λ(D) =
saat. Let a1 and a2 be the two instanes of a. Without loss of generality, we an suppose

that a1 is a desendant of a2 in D beause a1 and a2 are neighbours. Moreover, there

is a subtree r of D rooted at a1 suh that saat = xλ(r)a2t. Let r′ be the left subtree

of a1 in r. Sine r is a favorable deomposition tree for a, there exists a ontest tree

p ∈ T (λ(r′)a2) suh that p(λ(r′)a2) = a2.
For this reason, we just need to show that b ∈W (xa2t). By replaing r by a leaf ǫ in

D, we get a favorable deomposition tree D′
for b suh that λ(D′) = xa2t = xat. Thus,

b ∈W (xat) ⊆W (sat). �

Lemma 17 says that for any onservative groupoid H , any h ∈ H and any s, t ∈ H∗

the language Λ(h) has the following property

sat ∈ Λ(h) ⇔ saat ∈ Λ(h).

This property is known as stutter invariane and has been extensively studied, in parti-

ular in the ontext of automated veri�ation (e.g. [8℄).

3.3. Plae in the Straubing-Thérien Hierarhy

Our main theorem shows that if L an be reognized by a onservative groupoid then

L is in Σ2 but examples in Corollary 16 show that the onverse is not true. We begin

this setion by showing that eah L in Σ1 is reognizable by a onservative groupoid.

Lemma 18. Let A = {a1,1, . . . , a1,k1
, . . . , aℓ,1, . . . , aℓ,kℓ

} be some alphabet. (Let us stress

that the ai,j are all distint.) Then

A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗al,1A
∗ . . . A∗al,kl

A∗

an be reognized by a onservative groupoid.

Proof. Let Hi = {αi,1, βi,1, . . . , αi,ki
, βi,ki

} and let H =
⋃

1≤i≤l

Hi. We hoose the

homomorphism h : A → H∗
de�ned by h(ai,j) = αi,jβi,j and the aepting subset

F = {β1,k1
, . . . , βl,kl

}. We de�ne the onservative operation on H by �rst de�ning it

within eah Hi:

• αi,jαi,k = αi,k;

• αi,jβi,ki
=

{

αi,j for all j 6= 1

βi,ki
if j = 1
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• αi,jβi,k =

{

αi,j for all j ≥ k 6= ki

βi,k for all j < k 6= ki

• βi,jαi,k =

{

αi,k for all j < k − 1

βi,j for all j ≥ k − 1

• βi,jβi,k =

{

βi,j for all j ≥ k

βi,k for all j < k

The above rules speify the multipliation within eah Hi. In the rules below, we

de�ne the other produts and therefore assume i 6= r.

• αi,jαr,k = αr,k;

• αi,jβr,k =

{

βr,k if k 6= kr

αi,j if k = kr

• βi,jαr,k =

{

αr,k if j 6= ki

βi,j if j = ki

• βi,jβr,k =

{

βr,k if j 6= ki and k 6= kr

βi,j if j = ki or k = kr

Let us point out a few important properties of H . First, for any i, the element βi,ki

is weak when faing an opponent on its left sine fL(βi,ki
) = {αi,1, βi,ki

}. It is however
strong when faing an element on its right sine fR(βi,ki

) = H . Seondly, an element

αi,j loses on its right against any element outside of Hi with the sole exeption of the

βr,kr
. The same is true for any element βi,j with j 6= ki.

Claim (†). Let u = h(v) and |u| > 0. There is an αi,j in W (u).

Proof. By de�nition of h, the word u is a sequene of pairs αri,siβri,si . We begin by

onsidering the following partial braketing of u:

(αr1,s1βr1,s1)(αr2,s2βr2,s2) . . . (αrn,snβrn,sn).

The result within eah pair of brakets is of α type and so any further braketing will

produe a winner of α type. �

Claim.

w ∈ A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗al,1A
∗ . . . A∗al,kl

A∗
i� F ∩W (h(w)) 6= ∅.

Proof.

(⇒)
By hypothesis, h(w) = u1αi,1βi,1u2 . . . uki

αi,ki
βi,ki

uki+1. By the laim †, there exists

λℓ ∈ W (uℓ) for all 1 ≤ ℓ ≤ ki + 1 suh that λℓ is of the form αi,j . Let tℓ be the ontest

tree over eah uℓ suh that tℓ(uℓ) = λℓ.
18



Consider the following partial braketing of u1αi,1βi,1u2 . . . uki
αi,ki

βi,ki
uki+1

(t1(u1)αi,1)βi,1(t2(u2)αi,2) . . . (tki
(uki

)αi,ki
)(βi,ki

t(uki+1))

= (λ1αi,1)βi,1(λ2αi,2) . . . (λki
αi,ki

)(βi,ki
λki+1)).

Sine αi,jαr,k = αr,k for all i, j, r, k and βi,ki
αr,k = βi,ki

for any i, r, k, the latter partial

braketing evaluates to

αi,1βi,1αi,2βi,2 . . . αi,ki
βi,ki

.

It thus su�es to show that βi,ki
an win on this string and this is ahieved through

the following braketing:

(αi,1(βi,1(. . . (βi,ki−2(αi,ki−1(βi,ki−1αi,ki
))) . . .)βi,ki

).

(⇐)
By de�nition h(w) is a sequene of pairs αi,kβi,k whih we all ompanion pairs. Note �rst

that for any favorable deomposition tree D, if λ(D) = sαβv where α, β are ompanion

letters, then either α is the rightmost node of the left subtree of the subtree rooted at β
in D or β is the leftmost node of the right subtree of the subtree rooted at α in D.

Suppose βp,kp
∈ W (h(w)) and let h(w) = sαp,kp

βp,kp
v where this ourrene of βp,kp

is the eventual winner. By Lemma 3, there exists a favorable deomposition tree D for

βp,kp
. A perfet subtree D′

of D is a favorable deomposition tree suh that

• the root of D′
is βq,kq

for some q ∈ {1, . . . , l};

• βq,kq
is an anestor of its ompanion element αq,kq

;

• any proper subtree D′′
of D′

is not a perfet subtree of D′
.

There is at least one perfet subtree in D beause if D does not have a perfet proper

subtree, then D itself is a perfet subtree. Therefore let D′
be a perfet subtree with

root of label βq,kq
. We observe the following fats about D′

:

• αq,kq
is the rightmost node of the left subtree of βq,kq

sine αq,kq
is not the anestor

of βq,kq
;

(⋆) D′
does not ontain another βz,kz

whih is the anestor of its ompanion element

αz,kz
beause this would imply that D′

has a perfet proper subtree rooted at this

βz,kz
;

• αq,1 is the left hild of βq,kq
beause fL(βq,kq

) = {αq,1, βq,kq
} and by ⋆ the hoie

of βq,kq
is exluded;

• let 1 ≤ t < kq, then the right hild of αq,t an only be αq,t or βq,s with s ≤ t
beause the only other hoies in fR(αq,t) are of βz,kz

type and this annot happen

by ⋆;
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βq,kq

αq,1

. . .

αq,kq

ǫ

Figure 4: The struture of the perfet subtree D′

• let 1 ≤ t < kq, then the right hild of βq,t an only be αq,t+1, βq,s or αq,s with

s ≤ t beause the only other hoies in fR(βq,t) are of βz,kz
type and this annot

happen by ⋆.

Now onsider the left subtree D′′
of βq,kq

with root αq,1 and onsider the rightmost

path in that subtree (see Figure 4). This sequene of labels starts at αq,1, ends at αq,kq

and by the above fats it must therefore inlude a subsequene αq,1, βq,1, αq,2, . . . , αq,kq
.

Thus, λ(D′) inludes the subsequene αq,1, βq,1, . . . , αq,kq
, βq,kq

, i.e.

λ(D′) ∈ H∗αq,1H
∗βq,1H

∗ . . .H∗αq,kq
H∗βq,kq

H∗,

so does λ(D), and this implies that

w ∈ A∗aq,1A
∗ . . . A∗aq,kq

A∗

by the de�nition of h. �

Theorem 19. Eah language in Σ1 is reognizable by a onservative groupoid.

Proof. Suppose L is in Σ1, i.e. that

L = B∗b1,1B
∗ . . . B∗b1,k1

B∗ ∪ . . . ∪B∗bℓ,1B
∗ . . . B∗bℓ,kℓ

B∗.

Lemma 18 establishes the theorem for the speial ase where all the bi,j are distint. If

they are not distint, then let A = {a1,1, . . . , a1,k1
, . . . , aℓ,1, . . . , aℓ,kℓ

} be a new alphabet

in whih all ai,j are distint and de�ne

K = A∗a1,1A
∗ . . . A∗a1,k1

A∗ ∪ . . . ∪ A∗aℓ,1A
∗ . . . A∗aℓ,kℓ

A∗.

Sine K is reognizable by a onservative groupoid, it is su�ient by Lemma 11 to give

a homomorphism h : B∗ → A∗
suh that h−1(K) = L. Suppose B = {c1, . . . , cq}. We

de�ne

h(cr) = a
δr,1,k1
1,k1

a
δr,1,k1−1

1,k1−1 . . . a
δr,1,1
1,1 a

δr,2,k2
2,k2

. . . a
δr,2,1
2,1 . . . a

δr,ℓ,kℓ
ℓ,kℓ

. . . a
δr,ℓ,1
ℓ,1

where δr,i,j = 1 if bi,j = cr and δr,i,j = 0 if bi,j 6= cr. Thus ai,j ours in h(cr) i� bi,j = cr.
Let us �rst show that h(L) ⊆ K. Suppose w ∈ L and without loss of general-

ity that w ∈ B∗b1,1B
∗ . . . B∗b1,k1

B∗
. Then b1,1b1,2 . . . b1,k1

is a subsequene of w and

h(b1,1)h(b1,2) . . . h(b1,k1
) is a subsequene of h(w). By de�nition of h the letter ai,j o-

urs in h(bi,j) so a1,1a1,2 . . . a1,k1
is a subsequene of h(w) and thus h(w) ∈ K.
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Conversely, suppose h(w) ontains the subsequene a1,1a1,2 . . . a1,k1
. Eah a1,j in this

sequene omes from some h(cr) where b1,j = cr. A single h(cr) may ontain more than

one a1,j but note that these our in dereasing order with respet to j. Therefore these
a1,j must be the result of distint ourrenes of letters in w and therefore w ontains

the subsequene b1,1 . . . b1,k1
and w ∈ L. �

Our results thus far show that the lass of languages reognizable by onservative

groupoids ontains Σ1 and is ontained in Σ2. We omplete this piture by establish-

ing two partial results that larify the plae of this lass within the Straubing-Thérien

hierarhy.

The lass of languages that lie both in Σ2 and in Π2 is well-studied and admits a long

list of logial, algebrai and ombinatorial haraterizations [16℄. It is therefore natural

to ask if the lass of languages reognizable by onservative groupoids is ontained in Π2.

As the next example shows, this is in fat not the ase.

Proposition 20. The language {a, b}∗aa{a, b}∗ is reognizable by a onservative group-

oid. This language is known to lie outside Π2 (see e.g. [16℄).

Proof. Let w ∈ A∗
. Consider the groupoid H with the following multipliation table

1 2 3 4

1 1 2 1 1

2 2 2 3 4

3 1 3 3 4

4 4 2 3 4

with h(a) = 123, h(b) = 4 and F = {2}. We laim that w ∈ A∗aaA∗
if and only if

2 ∈W (h(w)).

(⇒)
If w ∈ A∗aaA∗

, then h(w) = x123123y with x, y ∈ H∗
. Consider the partial braketing

x12(31)(23)y = x1213y. We laim that the 2 in this word an win. Indeed, to its left one

�nds x1 and we need to show that x1 ∈ Λ(fL(2)). If we pik an arbitrary ontest tree t in
T (x) then (t(x)1) 6= 3 sine 31 = 1. Therefore (t(x)1) ∈ {1, 2, 4} = fL(2). Similarly, to

the right of 2 one �nds 13y. For any ontest tree s ∈ T (3y) we have (1(s(3y))) ∈ {1, 2}
sine 1 beats every element on its right exept 2. Therefore 13y ∈ Λ(fR(2)) and by

Lemma 3 we have 2 ∈W (x123123y).

(⇐)
For any i, j ∈ {1, 2, 3, 4}, let Ai,j denote the set of strings whih begin with i, end with

j and are substrings of (1234)n for some n. For instane A3,2 = {3412, 34123412, . . . ,
34(1234)i12, . . .} and A2,3 = {23(4123)i|i ≥ 0}. In the following table, we ompute

upper bounds Vi,j for the set of elements that an win on some word in Ai,j . To ompute

suh bounds, it su�es to ensure that Vi,i ontains i and that for every i, j we have

Vi,j ⊇
⋃

k{st|s ∈ Vi,k, t ∈ Vk+1,j}. We laim that Table 1 provides the minimal solution

to these onstraints although it is su�ient for our purposes to verify that it is a solution.

21



1 2 3 4

1 {1,4} {1,2,3,4} {1,3,4} {1,4}

2 {4} {2,3,4} {3,4} {4}

3 {4} {2,3,4} {3,4} {4}

4 {4} {2,3,4} {3,4} {4}

Table 1: The set Vi,j upper bounds the set of elements that an win on a substring of (1234)n that

begins with i and ends with j.

Now suppose that 2 ∈ W (h(w)) but assume for the sake of ontradition that w 6∈
A∗aaA∗

. Beause 2 wins on h(w), then w has at least one a. If it has exatly one a,
then h(w) ∈ h(b∗ab∗) = 4∗1234∗ and sine we are interested in W (h(w)), we an use

Lemma 17 and assume that the bloks of 4's are of length at most 1. If w has more than

one a then

h(w) ∈ h(b∗ab+ . . . b+ab∗) = 4∗1234+ . . . 4+1234∗.

By Lemma 17, we an remove repeated ourrenes of 4 and simply assume that h(w) is
in 4∗1234 . . .12341234∗ with the initial and �nal bloks of 4 of length at most 1. Therefore
if 2 ∈W (h(w)) then 2 wins on a substring of (1234)n whih begins with 1 or 4 and ends

with 3 or 4 but this ontradits the upper bounds Vi,j omputed in the preeding table.

�

Lemma 21. If L ⊆ A∗
is a language in Π1 that an be reognized by a onservative

groupoid then there exists B ⊆ A suh that either L = B∗
or L = B+

.

Proof. If L ∈ Π1 then x >L ǫ for all x and this implies that x2 >L x for all x. On

the other hand, sine L an be reognized by a onservative groupoid then x2 <L x by

Lemma 15. Therefore x2 ≡L x for all x. In partiular yz ≡L yzyz and sine x >L ǫ
we get yzyz >L zy. Thus yz ≡L zy. It is well known that if L satis�es x2 ≡L x and

yx ≡L xy then x ≡L y whenever x and y ontain the same set of letters. Now let

B = {a ∈ A|a ∈ L}. Sine L = L+
by Lemma 14 we have B+ ⊆ L and if ǫ ∈ L we

further have B∗ ⊆ L. Suppose that there exists x ∈ L − B∗
. This means that x = ycz

for some c 6∈ B. By de�nition of B we have c 6∈ L but sine y >L ǫ and z >L ǫ we get

ycz >L c. However this shows that x 6∈ L, a ontradition. Therefore L ⊆ B∗
. �

4. Conlusion and Future Work

We have shown that onservative groupoids an only reognize regular languages.

Beaudry, Lemieux, and Thérien had previously exhibited a large lass of groupoids with

the same limitations [3, 2, 4℄ but our work is inomparable to theirs and our methods are,

aordingly, quite di�erent. It is natural to ask whether our approah an be generalized

to �nd a wider lass of �weak� groupoids and an obvious target are the 0-onservative
groupoids, that is groupoids H with a 0 element suh that 0 · x = x · 0 = 0 for all x ∈ H
and x · y ∈ {x, y, 0} for all x, y ∈ H ; i.e. all non-onservative produts are 0.

Moreover, we have shown that the languages reognizable by onservative groupoids

inlude all of Σ1 and are ontained in Σ2. We also established some neessary onditions
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for reognizability by onservative groupoids but the piture is still inomplete and leads

to some interesting open problems.

While we have shown that the lass of languages reognizable by onservative group-

oids is not losed under union or omplement, we still do not know if it is losed under

intersetion. We onjeture that it is not but note that Lemmas 14 and 15 an be of no

help in proving this sine they are based on neessary onditions that are preserved by

intersetion.

Another interesting question onerns the optimality of our onstrutions. With

A = {a} the language Ck = {at : t ≥ k} is in Σ1 sine it is represented by the expression

A∗aA∗aA∗ . . . aA∗
(with k as). The onstrution of Lemma 18 shows that Ck an be

reognized by a onservative groupoid of size 2k. Intuitively, one might expet that any

onservative groupoid requires size at least k to reognize Ck sine this language basially

ounts up to k. But surprisingly it is possible to ount up to 6 with the following groupoid

that only has �ve elements.

1 2 3 4 5

1 1 2 1 1 5

2 2 2 3 4 2

3 1 3 3 3 5

4 4 2 3 4 5

5 5 2 3 5 5

We leave it as a (fun) exerise to hek that if one sets h(a) = 12345 and F = {4}
then h−1(F ) = {at : t ≥ 6}, i.e. that W ((12345)t) ontains 4 if and only if t ≥ 6. We

do not have any non-trivial lower bounds for the optimal size of a onservative groupoid

reognizing Ck and our best upper bound is 2k (guaranteed by Lemma 18).
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