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Abstract—The bit recycling compression technique has been
introduced to minimize the redundancy caused by the multiplicity
of encodings present in many compression techniques. It has
achieved about 9% as a reduction in the size of the files com-
pressed by Gzip. In prior work, we have proposed an arbitrary-
precision technique to adapt bit recycling to arithmetic code
instead of Huffman code. We have shown that this adaptation
enables bit recycling to achieve better compression and a much
wider applicability. We have also presented a theoretical analysis
that estimates the average amount of data compression that
can be achieved by this adaptation. In this paper, we propose
the finite-precision version of this adaptation so that it can be
implemented efficiently using conventional computer registers.

I. INTRODUCTION

Data compression aims to reduce the size of data so that
it requires less storage space and less bandwidth of the com-
munication channels. Data compression has recently started to
be used to reduce the energy consumption in many wireless
applications, such as wireless-networked handheld devices [1]
and wireless sensor networks [2], since wireless transmission
of a bit can require over 1000 times more energy than a single
32-bit computation [3]. Many compression techniques suffer
from a problem that we call the redundancy caused by the
multiplicity of encodings (ME). ME means that the source
data may be encoded in more than one way. In its simplest
form, it occurs when a compression technique with ME has
the freedom, at certain steps during the encoding process,
to encode the next symbol in different ways; i.e. different
codewords for the same symbol can be sent to the decoder and
any one of theses codewords can be decoded correctly. Upon
occurrence of such a situation, the default behavior of most
techniques is to encode the symbol using the shortest codeword
and, possibly, the least computation. Many applications suffer
from ME, such as LZ77 (Lempel and Ziv, 1977) and its
variants, some variants of the Prediction by Partial Matching
(PPM) technique, Volf and Willems switching compression
technique [4], and Knuth’s algorithm [5] for the generation
of balanced codes.

The Bit Recycling (BR) technique has been introduced to
reduce the redundancy caused by ME [6]. It reduces that kind
of redundancy by harnessing ME in a certain way, so that it
is not always necessary to select the shortest codeword, but
instead, so that all the appropriate codewords are taken into
account with some agreement between the encoder and the
decoder. Variants of BR have been applied on LZ77 algorithm
by Dubé and Beaudoin. The experimental results showed that
BR has achieved better compression (a reduction of about 9%

in the size of files that has been compressed by Gzip) by
exploiting ME rather than systematically selecting the shortest
codeword [7], [8].

The authors of BR have pointed out that their technique
could not minimize the redundancy perfectly since it is built
on Huffman codes (HC), which does not have the ability to
deal with codewords of fractional lengths; i.e. it is constrained
to generate codewords of integral lengths. Moreover, Huffman-
Coding-based BR (HCBR) has imposed additional burdens to
avoid some situations that affect its performance negatively.
Unlike HC, Arithmetic Coding (AC) does have the capability
of manipulating codewords of fractional lengths. Furthermore,
it has attracted the researchers in the last few decades since it
is more powerful and flexible than HC. Consequently, a new
technique named Arithmetic-Coding-based BR (ACBR) has
been proposed to resolve the weakness of HCBR by adapting it
to AC [9]. A theoretical analysis showed that ACBR achieves
perfect recycling in all cases whereas HCBR achieves perfect
recycling only in very specific cases. Accordingly, significantly
better compression could be obtained using ACBR.

The problem of ACBR, as proposed by the authors, is
that it uses arbitrary-precision calculations, which require
unbounded (or infinite) resources [9]. Hence, in order to
benefit from ACBR in practice, ACBR needs to be adapted
so that it can perform finite-precision calculations instead of
arbitrary-precision calculations. This would make it efficiently
applicable on computers with conventional fixed-size registers.
This work aims to address the problems of arbitrary-precision
ACBR (APACBR).

The outline of the next sections are as follows. In Sec-
tion II, we briefly review the LZ77 technique, ME, the objec-
tives of HCBR and its weakness, the principle of APACBR,
and the problems of APACBR. In Section III, we present
a finite-precision technique that addresses the problems of
APACBR. The new proposed technique consists of two al-
gorithms: the coder and the decoder. Finally, the conclusion
and future work are given in Section IV.

II. BACKGROUND

A. The principle of LZ77, HCBR, and ME

The reasons of the remaining redundancy in compressed
data are: inappropriate modeling of the data, incorrect (or
inaccurate) random source statistics, and ME. The concern of
this work is the third reason: ME. Let us show an instance
of redundancy caused by ME by using the following LZ77
example. LZ77 is a compression technique that compresses a



TABLE I. THE PROBABILITY DISTRIBUTION AND THE

CORRESPONDING HUFFMAN CODEWORDS OF α AT TIME t.

Message

(mi)

Count

(Cnti)

Probability

(pi)

Cumulative

probability

(Qi)

Huffman

codeword

(Huffi)

m0 3 0.064 0.000 0101

m1 (M1) 15 0.319 0.064 11

m2 12 0.255 0.383 10

m3 (M2) 3 0.064 0.638 0100

m4 8 0.170 0.702 00

m5 (M3) 6 0.128 0.872 011

Total 47 1.000

string of characters, S, by transmitting a sequence of messages.
A message is either a literal message, denoted by [c], which
means that the next character is c, or a match message,
denoted by 〈l, d〉, which means that the next l characters are
identical to those located at distance d prior to the current
position in S. For example, let S be ”abbaaabbabbabbb”, the
underlined substring is the prefix that has been encoded so
far. The next character to be encoded is ”a”, which can be
encoded by transmitting the literal message [a]. However, the
encoder can also encode, for instance, ”abb” by transmitting
any one of the match messages 〈3, 3〉, 〈3, 6〉, and 〈3, 11〉,
since ”abb” has three copies at the distances 3, 6, and 11 in
the underlined substring. LZ77 typically selects the longest
match (”abb”) at the closest distance (d = 3), therefore the
match message 〈3, 3〉 will be transmitted and the encoder
proceeds to the last ”b”. It is clear that LZ77 has the freedom
to encode ”abb” by selecting any message from the set of
the equivalent messages M≡ = {M1,M2,M3}, where M1 =
〈3, 3〉, M2 = 〈3, 6〉, and M3 = 〈3, 11〉. These messages are
called the equivalent messages since any message in M≡

can be used to encode ”abb”. Accordingly, many different
sequences of messages may be transmitted to describe S, and
any possible sequence will be decoded correctly. It is clear that
this property represents an instance of ME.

BR aims at improving code efficiency by exploiting the
redundancy caused by ME [6]. In BR, the compressor is
not restricted to select the default choice, i.e. the shortest
codeword, and to ignore the other choices. Instead, thanks to
some agreement between the compressor and decompressor,
it uses ME to implicitly carry information from the com-
pressor to the decompressor. Let us illustrate this using the
following example, which will be used as a running example
in the remainder of this paper. Assume that, at time t, the

alphabet α is {mi}
5

i=0
and the corresponding distribution

and Huffman codewords for α are as shown in Table I.
Let M≡ = {M1,M2,M3} be the set of equivalent messages
at time t, where M1 = m1, M2 = m3, and M3 = m5 (similar
to the equivalent messages for ”abb” in the above example).
Suppose that the string to be encoded, S, can be described first
using any message in M≡ at time t, and then, at time t+ 1,
using solely message m3 (without equivalents). The Huffman
codeword Huffi corresponding to message mi is generated
using HC, based on the count of occurrences (Cnti) of mi.
The default behavior (without recycling) is that the equivalent
message with the shortest codeword, M1 = m1, gets selected
and Huff1 (i.e. 11) is transmitted to the decoder.

Let us review the principle of HCBR and show how it can
reduce the default cost (Cdefault = 2 bits) by adding some
computations and the exchange of extra information between

the model and coder/decoder. At time t, the compressor has
the freedom to encode M1, M2, or M3 of costs 2 bits,
4 bits, and 3 bits, respectively. The compressor, using HC,
constructs a prefix codeword ri for each Mi according to the
corresponding Cnti; let us say 0, 10, and 11 for M1, M2,
and M3, respectively. The created codewords, are called the
recycled codewords. Thus, each Mi will have two codewords:
the explicit codeword Huffi that will be sent to the decoder,
and the corresponding implicit codeword ri that will be con-
structed implicitly and identically by the compressor and the
decompressor as follows. Suppose that each ri is compared
with the first bit(s), let us say b0b1, of the codeword of the
next message, then definitely, one and only one match should
occur. The equivalent message whose ri matches b0b1 is sent
to the decompressor. In other words, b0 should be either 0

or 1. If b0 = 0, select M1. Otherwise, b0b1 has to be either 10
or 11. If b0b1 = 10, select M2. Otherwise, select M3. The
decompressor, after receiving one particular Mi, i ∈ {1, 2, 3},
would be able to acknowledge that the selection of the received
message among M1, M2, and M3 was intentional and it
would then be able to recover ri from the received Mi.
Accordingly, the compressor is freed from the obligation to
insert the matched bits into the compressed stream since the
decompressor can implicitly deduce the corresponding ri from
the received Huffi and restore them at the same location.

Let us evaluate the performance of HCBR in the previous
example. The average net cost NC of the set of equivalent
messages, M≡ = {Mi}

n

i=1
, is given by:

NC =

n
∑

i=1

(ci − |ri|)×
1

2|ri|
, (1)

where n is the number of the equivalent messages, ci is the
cost of Mi, i.e. the length of its codeword (ci = |Huffi|),
and |ri| is the length of the recycled codeword. So NC for M≡

is 1.25 bits, which is less than the default cost (Cdefault =
2 bits). This benefit is brought by HCBR but did BR achieve
the perfect (maximum) recycling by this average net cost? To
answer this question, we first need to know what is the ideal
(minimum) average net cost of M≡ according to the associated
probabilities. The self-information of M≡, say T , represents
the minimum average net cost of M≡, and T is given by:

T = − log

n
∑

i=1

pi. (2)

The value of T in our example is 0.97 bit, so HCBR did
not achieve perfect recycling. The reason behind this is that
HC is constrained to generate recycled codewords of integer
lengths, which correspond to probabilities that are powers of 1

2

only. Therefore, HCBR could not achieve perfect recycling
due to the nature of HC. Moreover, HCBR has imposed the
additional burden to avoid some situations that affect its per-
formance negatively. AC is more flexible and it does have the
ability to utilize the ratio between the messages’ probabilities
fractionally and to recycle fractions of bits. Accordingly, the
authors have proposed APACBR to resolve this weakness and
to improve the code efficiency and the flexibility of BR [9].
Next, we explain the principle of APACBR.



Fig. 1. (A) The binary tree of α at time t. (B) The skeleton tree of the
equivalent messages.

B. The principle of APACBR

We consider the same running example to describe the
principle of APACBR. Let us first describe the model that will
be used in our technique. The alphabet shown in Table I can
be decomposed into the corresponding binary tree depicted in
Figure 1, which represents the statistical model at time t. This
decomposition enables the model to accommodate a larger and
more skewed alphabets. The root node in Figure 1-A, contains
the total counts (47) of the alphabet messages, the leaves of the
tree represent α. The shaded leaves represent M≡ at time t.
The skeleton tree depicted in Figure 1-B is derived from the
main tree and describes the relative weights and locations of
equivalent messages. The trees in Figure 1-A and Figure 1-B
will be used by the model to provide the encoder/decoder
with necessary information to perform coding/decoding and
recycling, respectively.

The statistical model describes the message to be encoded
by transmitting a sequence of binary events B associated
with the corresponding probability, P0 or P1 (we assume
P0 + P1 = 1), that are formed by traversing from the root
to the leaf that corresponds to the message to be encoded. For
example, to encode M2 = m3 as one of the equivalent mes-
sages at time t, the model has to send the following sequence
of coding orders of the form (B, P0, P1) to the encoder:
(1, 18

47
, 29

47
), (0, 15

29
, 14

29
), and (1, 12

15
, 3

15
). Since ACBR uses

AC to encode S, the encoder starts executing each order by
gradually dividing the unit interval [0, 1) into two subintervals
according to P0 and P1. The interval of event 0 is IEvt0 and
that of event 1 is IEvt1 . Only one subinterval is kept, from
time t to time t′, according to B, as shown in Figure 2.
Similarly, the skeleton tree is used to transmit a sequence of
recycling orders to perform recycling as we will show later in
this paper.

Let the subinterval corresponding to the equivalent mes-
sage Mi at time t, denoted by Iit . APACBR aims to let any Mi

from M≡ be selected according to the next message, providing
that the next message, at t+1, will be encoded using the total
of M≡ sub-intervals It+1 instead of the subinterval of the
selected message Iit+1 as shown in Figure 2, which results in
fewer bits to be sent to the decoder to describe any message
at t + 1. The length of the interval at time t + 1 represents
the self-information of the available equivalent messages;
i.e. #It+1 = #I1t+1 +#I2t+1 +#I3t+1.

Let us assume that the location (cumulative probability)
of the messages at time t + 1 is indicated by the arrow in
Figure 2. According to the location of the arrow, one and only

It+1

M3

M2

m0

mk-1

M1

     

 H=1.0

It

t'

 L=0.0

t+1  t

Fig. 2. The principle of APACBR.

one of the equivalent messages will be selected (and encoded)
as follows. Since the arrow points to It+1 and to I2t+1 at

the same time and I2t+1 belongs to M2 (in its scope), then
the encoder selects message M2. The encoder provides the
new interval It+1 for the next message to be encoded instead
of I2t+1. The same thing for M1 and M3 as follows. If the arrow

points above I2t+1, so it points to I3t+1, which is the part of It+1

related to M3, accordingly, the encoder selects M3 and so on.
Hence, each Mi in M≡ has an opportunity to be encoded
using It+1 instead of Iit+1 but one and only one of them will be
used according to the cumulative probability of next message
to be encoded. Widening the interval from I2t+1 to It+1

represents the arithmetic recycling according to equation (2).

On the other side, the decoder undoes what the encoder
did based on the aforementioned arrangement as follows. The
decoder at time t will have the same information represented
by the tree in Figure 1 based on the already decoded string (be-
fore t). The decoder starts decoding using the value represented
by the position of the arrow with respect to It. The model at
this point has to provide the decoder with P0 ( 18

47
) so that the

decoder can accordingly split It into IEvt0 and IEvt1 , now the
decoder can determine that the arrow is pointing to the upper
part, i.e. IEvt1 , accordingly the decoder tells the model that the
first decoded binary event B is 1, which tells the model that
the message to be encoded is located to the right in the tree in
Figure 1. The decoder continues using the same procedure until
the model reaches the leaf (m3) at time t′, where the decoder
can realize that the decoded message (M2 = m3) has two
other equivalents, M1 and M3 (recall LZ77), accordingly, it
has to rebuild It+1 based on the decoder’s implicit knowledge
about M≡ represented by the skeleton tree Figure 1-B; i.e. the
decoder can retrieve the necessary information that enables the
decoder to decode the next message according to It+1 instead
of I2t+1. At time t + 1, the same position of the arrow with
respect to It+1 will be used to decode the next message as
described above and so on.

The authors have compared the performance of ACBR
and HCBR in terms of the compression efficiency and time
complexity [9]. We found that the average net cost, NC, of
any message in M≡, that can be achieved by HCBR, NCH ,
is bounded by T ≤ NCH ≤ Cdefault, and NCH ≈ T
only when the messages in M≡ have equal probabilities,
while NC of ACBR, NCA ≈ T in all cases, regardless of
the ratio between the probabilities of the messages in M≡.



Furthermore, in recent work, the authors have used both HCBR
and APACBR as the means to reduce the redundancy caused by
ME in plurally parsable dictionaries designed by Savari [10],
[11]. We were able to reduce this redundancy significantly,
and we have theoretically shown that ACBR (in general)
is more efficient and flexible than HCBR, but due to some
shortcomings in the applicability of APACBR, we could not
evaluate its performance in practice. However, we next discuss
these shortcomings in detail.

C. The problems and the associated needs of APACBR

The main problem of the technique described above is that
it uses arbitrary-precision AC (APAC) to encode each message
at a time, which entails too many resources and makes it
impractical, therefore we need to adapt the encoder to finite-
precision AC (FPAC) so that we can reduce the computational
requirements and it can then be applied in practice. Next, we
discuss (using the same example) the basic needs, settings, and
consequences that are required to address this problem.

Traditional FPAC encodes one message, mi, at a time, as
we have shown above, the ACBR coder has to be able to
encode and keep track of more than one message (M≡) at a
time, so that the ACBR coder can exploit the self information
of M≡, and consequently, achieve more compression. Hence,
the ACBR coder has to proceed non-deterministically (ND) by
assigning a separate thread, Θi for each Mi ∈ M≡.

In FPAC, the unit interval [0, 1) gets mapped into [0, N) =
[

0, 2b
)

, where AC uses b-bit registers to encode S, [L, H) is
defined as {x | L ≤ x < H}. The interval [L, H) is updated
for each encoding step, when the width of the interval shrinks
to a certain limit, the encoder according to the values of L
and H , performs one of the three types of upscaling as
follows: E1, E2 or E3 when [L, H) lies in

[

0, N
2

)

,
[

N
2
, N

)

,

or
[

N
4
, 3N

4

)

respectively. According to FPAC, the encoder
at time t′, in the above example, needs first to upscale
(enlarge) I2t′ so that it becomes large enough to encode the
message at time t + 1. At time t + 1, the encoder needs
to merge the intervals of the other equivalent messages, but
it has to consider the new length, #I2t+1, as a reference

after upscaling. As we assumed above that #I1t = 5 × #I2t
and #I3t = 2×#I2t , then the total length of merged interval
at time t + 1 would exceed the used finite-precision limits.
To address this raised problem, we need to downscale the
interval so that we can accommodate the intervals of the other
equivalent messages within the used finite limits. Hence, we
propose next a finite-precision variant of ACBR (FPACBR)
that addresses the aforementioned problem and the associated
needs.

III. DESCRIPTION OF FPACBR

In this section, we propose FPACBR, which has the fol-
lowing main features. It has to be based on AC and to proceed
ND for the reasons explained above, and it can be easily
interfaced with the models of several different compression
techniques that suffer from the redundancy caused by ME.
We use the same running example to explain the pseudo-code
shown in Figure 3 for the encoder algorithm, on lines 1–63,
and the decoder algorithm, on lines 65–84, with the help of
Figure 4, which illustrates the steps of encoding M2 = m3

Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

16 H TOP

15

14

13

12

11

10

9 mid

8

7

6

5

4

3

2

1

0 L

0 1 0 1 0 0 0

    Bottom

   0,1

ρ
=

0

ρ
=

0
0

ρ
=

1
0

0

2

6

84
4 tiles below

6 tiles up

=

Fig. 4. The steps of encoding {M1,M2,M3} m3, where M1 = m1,
M2 = m3, and M3 = m5.

at time t followed by m3 at time t + 1 based on a sequence
of encoding and recycling orders received from the model.
The encoder interprets the received ordered into a compressed
binary stream σ that will be sent to decoder.

In APACBR, the limits of the intervals and the arrow were
regarded as points (real numbers) in the unit interval [0, 1).
Here, we need to map these points into tiles, and the arrow into
pointed tile. The FPACBR coder uses a convention different
from that used by FPAC, which will be explained throughout
this section.

Let #I be the number of tiles occupied by an interval I .
#I is now an integer. The coder uses a global interval G
of at most 2b tiles, and inside G, the encoder uses a fixed
central interval, F = [Bot , Top) of length #F = (Top −
Bot) = B = 2b−2 tiles. The working interval W = [L, H)
is initialized to [Bot , Top). The size of W increases and
decreases according to the coding steps and it is bounded
by 1 = B ≤ #W ≤B. L and H are allowed to slide outside
of F for a limited number of tiles, B − 1. The interval F
contains the active interval, A = [a1, a2) ⊆ W , which is the
portion of W that belongs to the current thread Θcur. The ratio
of A to W in Θcur represent the relative weight and location
of Mi to the weights and locations of M≡. Accordingly, the
inactive (rest of) interval will be Iinact = W −A, which is the
portion of W that belongs to other concurrent threads. Note
that Iinact need not be an interval.

To encode the first message (M2 = m3) at time t, the
model sends the same sequence of coding orders that has
been sent to the APAC encoder: (1, 18

47
), (0, 15

29
), and (1, 12

15
).

The encoder and decoder follow the same principle described
in APACBR, but using a finite-precision coding/decoding.
Thus, the encoder gradually divides the initial interval Iinit =
[L, H) = [0, 16) into two subintervals, IEvt0 and IEvt1 ,
of integer lengths according to P0 using the rounding rule
stated in line 2 in the pseudo-code, the encoder then considers
either IEvt0 or IEvt1 according to B to continue executing
the next coding orders as stated on lines 3–7 in the pseudo-
code. The steps of encoding the aforementioned sequence of
coding orders are illustrated in Figure 4, from steps 1 to 5.
The decoder uses the same procedure followed by the encoder
to split the current interval according to P0, and according to
the arrow location, it decodes the associated binary event. The



1: procedure Encode(B, P0, P1)
2: x← ⌊(#W × P0) +

1

2
⌋

3: x← min(max(1, x), #W − 1)
4: if B = 0 then
5: W ← [L, L+ x)
6: else
7: W ← [L+ x, H)

8: if W ∩A = ∅ then
9: abort Θcur /* current thread */

10: trim A to W
11: while #W ≤ Half do
12: if A ⊆ [Bot , Mid) then
13: W ← E1(W )
14: A← E1(A)
15: w ← w · 0
16: else if A ⊆ [Mid , Top) then
17: W ← E2(W )
18: A← E2(A)
19: w ← w · 1
20: else
21: fork Θcur into Θ0, Θ1:
22: In Θ0: trim A to [L, Mid)
23: In Θ1: trim A to [Mid , H)

24: Emit(w)
25:

26: procedure E1([l, h)):
27: return [2× l − Bot , 2× h− Bot)
28:

29: procedure E2([l, h)):
30: return [2× l − Top, 2× h− Top)

31: procedure Emit(w):
32: if w = ǫ ∨ ρ = ǫ then
33: σ ← σ · w
34: else if head(w) = head(ρ) then
35: ρ← tail(ρ)
36: Emit(tail(w))
37: else
38: abort Θcur /* current thread */

39:

40: procedure RecycleE(R, P0, P1)
41: P1 ← 1− P0

42: P ← P1−R /* prob. of Θcur’s option */

43: Ext ←
⌊

#W × ( 1

P
− 1)

⌋

44: while #W > max(B− Ext , B) do
45: if (R = 0) then
46: W ← S2(W )
47: A← S2(A)
48: ρ← 1 · ρ
49: else
50: W ← S1(W )
51: A← S1(A)
52: ρ← 0 · ρ

53: Ext ←
⌊

#W × ( 1

P
− 1)

⌋

54: Ext ← min(Ext , B−#W )
55: if (R = 0) then
56: W ← [L− Ext , H)
57: else
58: W ← [L, H + Ext)

59: procedure S1([l, h))
60: return

[⌊

Bot+l

2

⌋

,
⌈

Bot+h

2

⌉)

61:

62: procedure S2([l, h))
63: return

[⌊

l+Top

2

⌋

,
⌈

h+Top

2

⌉)

64:

65: procedure Decode(P0, P1)
66: Calculate x as in lines 2–3
67: if v < L+ x then
68: Evt ← 0 /* Evt0 gets decoded */
69: W ← [L, L+ x)
70: else
71: Evt ← 1 /* Evt1 gets decoded */
72: W ← [L+ x, H)

73: while #W ≤ Half do
74: if MSB(v) = 0 then
75: W ← E1(W )
76: else
77: W ← E2(W )

78: Shift v to the left by one bit
79: Read σ’s next bit into LSB(v)

80: return Evt
81:

82: procedure RecycleD(R,P0, P1)
83: /* Like RecycleE but replace */
84: /* ρ by v in lines 48 and 52. */

Fig. 3. Pseudo-code for the algorithms of the encoder and the decoder.

arrow location here is represented by a finite number (b − 2)
of bits of the compressed stream σ as we will show next.
Let us show this by executing the first coding order (1, 18

47
)

at time t. Initially, at time t, #Iinit = 16, and P0 = 18

47
,

so #IEvt0 = #Iinit × P0 = 6.13, the result (6.13) gets
rounded to 6, and therefore #IEvt1 = 16−6 = 10. According
to B = 1, the encoder ignores IEvt0 and considers IEvt1 as
the current interval to execute the next orders. Thereby W is
updated to [L, H) = [6, 16).

During the encoding/decoding process, if W shrinks to less

than or equal to half the length of F , that is Half = Top−Bot

2
,

the coder is triggered to upscale W so that it is scaled up
above Half tiles as stated on lines 11–23 in the pseudo-
code, the encoder can then continue executing the next orders.
The coder performs only two types of upscaling, E1 and E2
according to the location of A and the mid point of F , Mid =
Top+Bot

2
, as follows. E1 is performed if A ⊆ [Bot , Mid),

yielding 0 to σ. E2 is performed if A ⊆ [Mid , Bot), yielding 1

to σ. Such yielded bits (1010), indicated at the lowest row in
Figure 4, are kept temporarily in register w. Since the coder
proceeds ND, we chose to avoid E3 upscaling completely.
When A straddles Mid , instead of using E3, we take advantage
of the ND process, as shown at steps 3 and 4 in Figure 4 and as
stated on lines 21–23 in the pseudo-code. This is achieved by
splitting Θcur into two new separate threads, Θ0 and Θ1, each
with their specific active interval. The encoder will enventually
kill the non-proper thread according to the upcoming coding
orders.

The decoder uses the same two types of upscaling, E1

and E2, but in different way as described in the pseudo-code
on lines 73–79 and as follows. Initially, the decoder loads
register v of size b − 2 (i.e. 4) bits with the first 4 bits
of σ (v = 1010). The decoder performs E1 or E2 upscaling
according to the Most Significant Bit of v, MSB(v). For each
upscaling, the contents of v is shifted left by one bit and one
bit is consumed from σ to become the Least Significant Bit
of v, LSB(v).

The situations at step 8 in Figure 4, represent the greatest
challenge of FPACBR, since the encoder needs to merge the
corresponding intervals of the other equivalent messages to the
current interval W = [0, 16) after upscaling, and the whole
merged interval should be accommodated within the limits
of G. To do so, another procedure named RecycleE is required.
The main purpose of RecycleE is to downscale W until it
becomes small enough to accommodate the whole merged
interval within G as described in the pseudo-code on lines 40–
58. Therefore, the model has to provide RecycleE with a
sequence of recycling orders that describe the relative weights
and locations of M≡ using the skeleton tree of M≡ shown
in Figure 1-B as follows. Let us describe the recycling orders
using our example. Starting from the internal node labeled 9

24

(9/24 in the picture), which connects the current message m3

with the first (closest) neighbor m5, the position of the first
neighbor (m5) is to the right, let us say R = 1, of the internal
node labeled 9

24
, and the weight of the left branch is P0 = 3

9
.

In other words, R tells the encoder/decoder if the interval to
be merged is above (R = 1) or below (R = 0) of the current
interval, and the associated P0 tells the encoder/decoder about
the ratio of the current interval to the interval to be merged. So



the recycling order (1, 3

9
) of the form (R, P0) describes m5 as

the first equivalent message, and similarly, the second recycling
order (0, 15

24
) describes the internal node labeled 9

24
as the

current message and m1 as the closest neighbor node.

The encoder and decoder use two types of downscaling: S2
and S1. The S2 downscaling undoes E2 and S1 undoes E1
upscaling. Let ρ be a variable that keeps the recycled bits,
that need not to be sent to σ. The variable ρ is initialized
to ǫ, where ǫ is the empty string. Each S2 and S1 yields 1

and 0 to ρ, respectively. Accordingly, from steps 9 to 11,
RecycleE interprets the recycling orders (1, 3

9
) then (0, 15

24
)

into the following sequence of downscaling: S1, S1, and S2,
yielding the the corresponding binary sequence, 100, to ρ. The
RecycleD procedure is identical to RecycleE except that it
inserts the bits that have been removed by the coder from σ,
just to the left of σ, this entails to change only two lines of the
programming of RecycleE, as described in the pseudo-code on
lines 82–84.

In addition to the main function of the recycling procedure
(accommodating the whole merged interval within G), let us
explain why the coder proceeds in this certain way. If we look
at W at step 11 and try to upscale the active interval of the
message being encoded, A = [a1, a2) = [8, 10), from right
to left; i.e. upscale A in reverse order from step 11 to step 8,
then the yielded bits that need to be sent to σ are the same
as the bits kept in ρ! Which means that if Θcur is the proper
thread for the next message, then the first three bits of the
next message will be 100 = ρ, accordingly, these bits can be
recycled, because it can be inferred implicitly by the decoder
as described above.

We assumed that the next message to be encoded at
time t + 1 is m3 without equivalents. The coder encodes m3

as described above from steps 12 to 18. At step 18, procedure
Emit is called to check if the current thread is to be continued
(the proper thread of the message being encoded) or to be
killed (not the proper thread). The thread is to be continued
if the first bit of ρ (100) matches the first bit of w (1000)
and, accordingly, the matched bits are removed (recycled)
from ρ and w. (The first bit of a string w is extracted
using head(w) and the rest of w is extracted using tail(w).)
Otherwise, if no match is found, the current thread is then
terminated since it will not be the proper thread to encode m3

at time t+1. As a result, the encoder will send the compressed
stream σ = 10100 to the decoder, and the decoder can
decode σ into the string S = M2m3.

The pseudo-code, on lines 60 and 63, uses two types of
rounding in procedures S1 and S2: floor and ceiling. The floor
and ceiling rounding operations are used to round down L and
round up H , respectively. The reason behind using these two
types of optimistic rounding is to ensure that there is no portion
of the downscaled interval that will not be used (covered) by
any concurrent thread, which would lead to the existence of a
specific message that can not be encoded permanently.

The pseudo-code, on line 3, covers a special (highly
skewed) case when the ratio of the received order occupies
less than one tile or the entire available space (#Icur), to avoid
assigning zero or one probability to any highly skewed event.
Similarly, the pseudo-code, on line 54, handles another special
(highly skewed) case for M≡, where the recycling procedures

stop downscaling if #Icur in A reaches the minimum, B = 1,
and allocates the maximum possible size to the highly probable
message. Notice that the proposed technique was able to
encode/decode M2mm and to improve the code efficiency
using fixed-size (b-bit) registers, which is the main goal of
FPACBR.

IV. CONCLUSION

In prior work, we have theoretically shown that ACBR
can achieve a significant amount of better compression than
HCBR. In this work, we have proposed FPACBR, which can
be implemented and applied in practice. FPACBR is easy to
interface with the compression techniques that suffer from the
problem of redundancy caused by ME. As a future work,
we intent to implement and apply FPACBR on the proper
applications mentioned in this paper, in order to evaluate
and measure its performance in practice comparably with the
results obtained by HCBR.
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ABBREVIATIONS

ME Multiplicity of Encodings

HC Huffman Coding

AC Arithmetic Coding

BR Bit Recycling

HCBR HC-based BR

ND Non-Determinism (or Non-Deterministic or Non-Deterministically)

ACBR AC-based BR

APAC Arbitrary-Precision AC

FPAC Finite-Precision AC

APACBR Arbitrary-Precision ACBR

FPACBR Finite-Precision ACBR


