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Abstract—Originally, compression by substring enumeration
(CSE) is a lossless compression technique that is intended for
strings of bits. As such, the original version is one-dimensional.
An extension of CSE for strings drawn from a larger alphabet
has later been introduced. Also, CSE has recently been extended
to two-dimensional (2D) data. As such, 2D CSE can be used
directly to compress images. Unfortunately, CSE generally does
not perform on data drawn from large alphabets as well as on
binary data. This means that, although we can expect 2D CSE
to perform well on bilevel images, we must expect a loss of
performance on grayscale and colour images, where the alphabet
sizes may be 28 and 224, respectively, as in common image
formats. As a workaround for this difficulty, we propose to handle
grayscale and colour images by remaining in the realm of binary
data but by extending CSE to higher dimensions. Grayscale
images may have the levels of gray of their pixels decomposed
into bit planes and, then, get compressed using a 3D CSE. Colour
images may have their three colour channels treated as yet
another dimension and, then, get compressed using a 4D CSE.
Actual empirical measurements are deferred to another paper as
we do not have a working implementation of multidimensional
CSE yet.

Index Terms—data compression, image compression, lossless
data compression, bit planes, multidimensional data

I. Introduction

Many lossless image compressors proceed by predicting

and encoding the colour of pixels. In certain compression

techniques, it is instead the prediction error that is encoded.

The process is applied on one pixel after the other, in some

predefined order; e.g. row by row. The prediction of the

colour of a pixel can be improved by taking into account

the colours of surrounding, already described pixels. The

collection of these surrounding pixels is usually referred to

as the context of the prediction. This frequently adopted and

general strategy can be seen as the two-dimensional (2D)

equivalent of the prediction by partial matching (PPM) lossless

text compression technique [1].

Not all text compression techniques lend themselves to a

natural adaptation to image compression. Some techniques

have no 2D equivalent, either because the presumption of

linearity of the data is too inherent or simply because a

2D equivalent hasn’t been figured out yet. It was the case

of a technique called compression by substring enumeration

(CSE) for which it is only recently that a 2D variant has

been introduced. In this paper, we point out that certain kinds

of images can automatically be handled by 2D CSE and,

moreover, we propose to use a straightforward generalization

of CSE to higher dimensions in order to handle all the kinds

of images.

The paper is structured as follows. Section II presents

background information on CSE, with a focus on the research

developments that are relevant to the technique proposed here.

Section III introduces the generalization of CSE for data rep-

resented under an arbitrary number of dimensions. Section IV

proposes to handle grayscale images using 3D CSE. Similarly,

Section V proposes to handle colour images using 4D CSE.

II. Background on CSE

A. Original CSE

CSE has been introduced by Dubé and Beaudoin in

2010 [2]. It is intended to compress a string of bits, which

we refer to as the input text. The basic idea in CSE is exactly

what its name says: it indicates how many of each possible

substring there exists in the input text. Figure 1 shows an

example of enumeration. The table indicates how many times

a particular substring occurs. Implicitly, when a substring is

not mentioned in the table, it means that it does not occur

in the input text. There are two things we need to mention

about this example. First, CSE considers the input text to be

circular; i.e. to the right of the last bit of the text, there lies

the first bit of the text; analogously in the other direction.

Second, the table merely illustrates the kind of information

that is manipulated by CSE. It is not intended to be an exact

description of how CSE proceeds to the enumeration. We refer

the reader to previous work to obtain full details about the

procedure followed by CSE.

To make mathematical reasoning easier, we denote the

number of occurrences of substring w by Cw. For example,

the indication “2 × 010” in Figure 1 translates into the fact

that C010 is 2. Note that Cw exists even when w does not occur

in the input text; then, we simply have Cw = 0. Technically,

a “substring” may even be longer than the input text. In that

case, the substring wraps around the boundary one or multiple

times. Note that the table in Figure 1 intentionally includes

a row for substrings of length 8 to illustrate that point. The

numbers of occurrences obey the following equations, where

N is the length of the input text and ǫ denotes the empty string.



Length Substrings

0 7 × ǫ
1 3 × 0 4 × 1
2 3 × 01 3 × 10 1 × 11
3 2 × 010 1 × 011 3 × 101 1 × 110
4 2 × 0101 1 × 0110 2 × 1010 1 × 1011 1 × 1101
5 1 × 01010 1 × 01011 1 × 01101 2 × 10101 1 × 10110 1 × 11010
6 1 × 010101 1 × 010110 1 × 011010 1 × 101010 1 × 101011 1 × 101101 1 × 110101
7 1 × 0101011 1 × 0101101 1 × 0110101 1 × 1010101 1 × 1010110 1 × 1011010 1 × 1101010
8 1 × 01010110 1 × 01011010 1 × 01101010 1 × 10101011 1 × 10101101 1 × 10110101 1 × 11010101

Fig. 1. Enumeration table for the substrings of 1011010.

Cǫ = N (1)

C0w +C1w = Cw = Cw0 +Cw1, ∀w ∈ {0, 1}∗ (2)∑

w∈{0,1}n

Cw = N, ∀n ∈ N (3)

Although we do not present the full procedure for CSE,

we must mention that the enumeration strictly proceeds row

by row, i.e. by completely enumerating all the substrings of

length ℓ (and less) before enumerating those of length ℓ + 1.

This order allows CSE to exploit the information it has about

the shorter substrings to improve its predictions about the

longer substrings. In particular, the following bounds constrain

the set of values that are considered in the prediction of C0w0.

max(0,C0w −Cw1) ≤ C0w0 ≤ min(C0w,Cw0) (4)

Here, the prediction on the number of occurrences of the

substring 0w0 takes advantage of the preliminary knowledge

about substrings like 0w, w0, and w1. We call the central part w

the core of 0w0. This notion of core is crucial in CSE. Below,

we see that it is too, in 2D CSE.

Some of the developments on CSE include the theoretical

analysis of its performance [3]–[6], improvements on the

bounds used in the prediction of C0w0 [7]–[9], its relation

to antidictionaries [10], [11], and approaches to achieve a

practical implementation [12]–[14].

B. CSE with a Larger Alphabet

Multiple researchers have proposed an extension of CSE to

larger alphabets [15]–[21]. When considering larger alphabets,

we lose the simplicity of Eq. 2. The equivalent for a larger

alphabet Σ is the following.
∑

a∈Σ

Caw = Cw =
∑

b∈Σ

Cwb, ∀w ∈ Σ∗ (5)

In particular, when CSE tries to predict Cawb, there are

many counters that “rival” with Cawb to obtain their share

of occurrence units from Caw and Cwb. A nice illustration

of that effect is made using a contingency table, which has

been introduced by Ota et al. [19]. When predicting Cawb,

the counters for all the extensions of core w have to be

considered. Figure 2(b) shows this table. The first and last

symbols in a general alphabet are symbolically denoted by ¢

C¢w¢ C¢w$ C¢w

C$w¢ C$w$ C$w

Cw¢ Cw$ Cw

C¢w¢ · · · C¢wb · · · C¢w$ C¢w

...
...

...
...

Caw¢ · · · Cawb · · · Caw$ Caw

...
...

...
...

C$w¢ · · · C$wb · · · C$w$ C$w

Cw¢ · · · Cwb · · · Cw$ Cw

(a) Binary alphabet (b) Larger alphabet

Fig. 2. Contingency tables.

and $, respectively. Bounds can still be obtained but they

tend to be quite loose. Ota et al. explain how to best use

the information carried by the counters that have already been

encoded; these appear in gray in Figure 2(b). On the other

hand, Figure 2(a) shows the contingency table that one faces

when predicting C0w0 (denoted C¢w¢ here). Only the top-left

counter needs to be predicted and encoded, since the other

three can be deduced afterwards. The looser bounds in the case

of larger alphabets has the tendency to worsen the performance

of CSE, unfortunately.

C. Phase-Aware CSE

Béliveau and Dubé have rather addressed the issue of larger

alphabets in a different way [22]. The input text, drawn from

large alphabet Σ, is first converted into a binary text in a

straightforward way: each original symbol is transformed into

a string of ⌈log2 |Σ|⌉ bits; all of the latter get concatenated

together. Then, CSE compresses the converted text. However,

in order to preserve CSE from confusing bits with different

significance, the notion of phase has been integrated directly

into the procedure of CSE. For instance, a byte of value 75

would be converted into the string of bits 0716050413021110.

The indices on the bits are used to mark the phase of each bit,

relative to the separations between bytes. This phase marking

causes CSE to work with 8 distinct binary alphabets. Thanks

to the markings, the prediction made for C011010 in phase,

say, 6 is kept separate from the predictions for C011010 in

the 7 other phases. Indeed, it is normal to expect different

statistical behaviours from bits located at different phases.

Earlier work has indirectly given a sense of phase to CSE

by using synchronization codes [23]–[25].



Subblocks

Height
Width 0 1 2 3

0 6 × • 6 × 6 × 6 ×

1 6 ×
3 × 0

3 × 1

2 ×

0

0

1 ×

1

0

1 ×

0

1

2 ×

1

1

2 ×

0

0

0

1 ×

1

0

1

1 ×

0

1

0

2 ×

1

1

1

2 6 ×

1 × 0 0

2 × 0 1

2 × 1 0

1 × 1 1

1 ×

0 0

1 0

1 ×

1 0

0 0

1 ×

1 1

1 0

2 ×

0 1

0 1

1 ×

1 0

1 1

1 ×

0 0

1 0

0 0

1 ×

1 0

0 0

1 0

1 ×

1 1

1 0

1 1

2 ×

0 1

0 1

0 1

1 ×

1 0

1 1

1 0

3 6 ×

1 × 0 0 1

1 × 0 1 0

1 × 0 1 1

1 × 1 0 0

1 × 1 0 1

1 × 1 1 0

1 ×

0 0 1

1 0 1

1 ×

0 1 1

0 1 0

1 ×

1 0 1

0 0 1

1 ×

0 1 0

0 1 1

1 ×

1 0 0

1 1 0

1 ×

1 1 0

1 0 0

1 ×

0 0 1

1 0 1

0 0 1

1 ×

0 1 1

0 1 0

0 1 1

1 ×

1 0 1

0 0 1

1 0 1

1 ×

0 1 0

0 1 1

0 1 0

1 ×

1 0 0

1 1 0

1 0 0

1 ×

1 1 0

1 0 0

1 1 0

4 6 ×

1 × 0 0 1 0

1 × 0 1 0 0

1 × 0 1 1 0

1 × 1 0 0 1

1 × 1 0 1 1

1 × 1 1 0 1

1 ×

0 0 1 0

1 0 1 1

1 ×

0 1 1 0

0 1 0 0

1 ×

1 0 1 1

0 0 1 0

1 ×

0 1 0 0

0 1 1 0

1 ×

1 0 0 1

1 1 0 1

1 ×

1 1 0 1

1 0 0 1

1 ×

0 0 1 0

1 0 1 1

0 0 1 0

1 ×

0 1 1 0

0 1 0 0

0 1 1 0

1 ×

1 0 1 1

0 0 1 0

1 0 1 1

1 ×

0 1 0 0

0 1 1 0

0 1 0 0

1 ×

1 0 0 1

1 1 0 1

1 0 0 1

1 ×

1 1 0 1

1 0 0 1

1 1 0 1

Fig. 3. Enumeration table for the subblocks of
0 1 0
0 1 1 .

D. Two-Dimensional CSE

In 2017, Ota et al. have introduced a 2D variant of CSE [26].

Instead of compressing a string drawn from Σ, 2D CSE

compresses a rectangular array of symbols drawn from Σ. Like

1D CSE, 2D CSE considers the input block to be circular.

In fact, the block is circular in each of the two dimensions:

to the right of the last column, there lies the first column;

below the last row, there lies the first row; and so on. Although

2D CSE could readily handle input blocks drawn from a large

alphabet, we restrict our presentation to the case of the binary

alphabet. Figure 3 shows the enumeration of the subblocks for

an example input block. Once again, a subblock may be wider

or taller than the input block. This is illustrated in the table

by considering subblocks wider by one column and subblocks

higher by one row. Notice how bits start to repeat in subblocks

that are wider or higher than the input block.

An extra complication of 2D CSE is that predicting and

encoding the number of occurrences of a particular subblock

can be made by viewing it as either a horizontal or a verti-

cal extension of smaller subblocks. This fact is depicted in

Figure 4.



1 0

1 1

0 0

⊕x

0 0

1 0

0 1

=

1 0 0

1 1 0

0 0 1

=

1 0 0

1 1 0

⊕y

1 1 0

0 0 1

Fig. 4. Extended blocks as horizontal or vertical extensions.

Let us introduce some notation. Let Σw,h be the set of

rectangular arrays of width w and height h of symbols drawn

from Σ. Let ‘·x’ be the operator that horizontally concatenates

two blocks of sizes w′ by h and w′′ by h, respectively. The

resulting block has size w by h, where w is w′+w′′. Likewise,

let ‘·y’ be the operator that vertically concatenates two blocks

of sizes w by h′ and w by h′′, respectively. Extended block B

is the horizontal extension of B′ and B′′, denoted B′ ⊕x B′′, if

there exist EL, ER ∈ Σ1,h and D ∈ Σw,h, such that B′ = EL ·x D,

B′′ = D ·x ER, and B = EL ·x D ·x ER. Similarly, B is the

vertical extension of B′ and B′′, denoted B′ ⊕y B′′, if there

exist Et, Eb ∈ Σw,1 and D ∈ Σw,h, such that B′ = Et ·y D,

B′′ = D ·y Eb, and B = Et ·y D ·y Eb. Note that D is the core,

in either direction.

Given that an extended block B can be seen as either a

horizontal or a vertical extension whenever its size is non

trivial, this leads to the existence of two distinct pairs of

bounds, one per direction. Each pair of bounds is similar to

those obtained in 1D CSE in Eq. 4. Ota et al. propose to

calculate both pairs of bounds and then to choose the direction

that leads to the pair of bounds that constrain CB the most.

Theoretically, contingency tables can be defined for 2D CSE.

However, their sizes are huge. For instance, if we consider B to

be a horizontal extension, i.e. B = EL ·x D ·x ER, the number of

rows of the table would be the number of different columns EL

that it would be possible to concatenate to the left of D and

the number of columns of the table would be the number of

different columns ER that it would be possible to concatenate

to the right of D. It is not clear, due to the novelty of 2D CSE

and the actual sizes of the contingency tables, how to make

the technique fast. The paper on 2D CSE does not include

experimental results [26].

III. Generalization of CSE to Higher Dimensions

Following the work by Ota et al., it is natural to extend

2D CSE to more dimensions. In k dimensions, we may

simply define k concatenation operators ‘·1’, . . . , ‘·k’, one

per dimension, and then derive the corresponding k extension

operators ‘⊕1’, . . . , ‘⊕k’. We merely state that it is simple

to mathematically define the operators and generalize the

equations introduced by Ota et al. Note that we do not describe

any means to build a simple, fast, and efficient implementation

of 3D CSE, 4D CSE, . . .
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Fig. 5. Decomposition of a grayscale image into a 3D block of bits.

IV. Handling of Grayscale Images

As presented by Ota et al., 2D CSE could in principle handle

all kinds of images: bilevel, grayscale, and colour. Clearly,

bilevel images could readily be handled by 2D CSE. But in

the case of grayscale images, the alphabet would typically

be quite large. And in the case of colour images, the alphabet

could be ridiculously large; e.g., when the colour of each pixel

is encoded using three bytes. Recall that large alphabets lead

to large (to the square) contingency tables. Moreover, due to

the inefficiency observed in the case of non-binary alphabets,

we believe that non-binary alphabets should be avoided.

Let us propose a different way to handle grayscale images,

to start with. A grayscale image may be converted into a

3D block of bits, as illustrated in Figure 5. The x and y

dimensions of the image are preserved in the 3D block.

A third dimension is introduced to accommodate for the

decomposition of the levels of gray into bit planes. As in

the approach by Béliveau and Dubé [22], each gray level

drawn from the alphabet Σ is converted into a bit string of

length ⌈log2 |Σ|⌉. Due to the various statistical behaviours to be

expected from each of the ⌈log2 |Σ|⌉ bits of the converted gray

levels, we argue that we should make CSE aware of the phase

of the bits in this third dimension. This conversion would turn

a “regular” 3D CSE compressor into a compressor specialized

from grayscale images. Indeed, 3D CSE would not need to be

aware in any way that the 3D block of bits originates from an

image.

V. Handling of Colour Images

In a similar way, we propose to handle the compression of

colour images by first converting the images into 4D blocks

of bits. In this case, a fourth dimension is used to separate

the three colour channels. Figure 6 illustrates the conversion.

Of course, illustrating 4D objects can only be suggestive, at

best. By using the picture of three bits that connect to the

next, we suggest that the fourth dimension is used to list the

bits for the successive bits of a particular significance for a

particular pixel of the original image. We propose that the

dimension of the colour channels should also require phase
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Fig. 6. Decomposition of a colour image into a 4D block of bits.

awareness from the 4D CSE compressor. To summarize the

dimensions and their characteristics, the 4D block would go

along the x, y, significance, and colour directions, where the

first two dimensions should be left phase unaware and the last

two, phase aware.

VI. Conclusion

We have presented a theoretical proposition to use CSE

as an image compressor. The original CSE is intended to

compress strings of bits. Recently, a 2D variant of CSE

has been proposed by Ota et al. Also, variants of CSE that

are able to handle strings drawn for a non-binary alphabet

had been introduced earlier. Unfortunately, CSE seems to

suffer from lower efficiency on non-binary data. Here, we

have proposed to remain in the realm of binary data for the

compression of images by considering CSE variants of higher

dimensions and turning gray levels into bit planes and coloured

pixels into vectors in yet another dimension. We describe our

proposition as “theoretical” since we have not run experiments

using a multidimensional CSE. In fact, we do not have an

implementation of it, yet.

There remains much work to carry out from this point.

We need to implement a multidimensional variant of CSE. A

sub-task of this consists in dealing with the huge size of the

contingency tables, once 2D (or higher) CSE is considered.

Once a multidimensional CSE is implemented, a relatively

simple extra task consists in implementing the conversions

from grayscale or coloured images to multidimensional blocks

of bits.
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