
Fast Construction of Almost Optimal Symbol

Distributions for Asymmetric Numeral Systems

Danny Dubé

Department of Computer Science and Software Engineering

Université Laval, Canada

Email: Danny.Dube@ift.ulaval.ca

Hidetoshi Yokoo

Division of Electronics and Informatics

Gunma University, Japan

Email: Yokoo@gunma-u.ac.jp

Abstract—A crucial task in the design of an efficient ANS
encoder consists in choosing a favourable symbol distribution.
This task seems to be hard, due to its combinatorial nature, in
particular for the tANS variant of ANS, which is the focus of
this work. We present a fast technique that builds almost optimal
symbol distributions for the stream variant of tANS.

I. INTRODUCTION

Asymmetric numeral systems (ANS) have been proposed by

Duda [2], [3] and they start to attract more and more attention.

ANS is an entropy-coding technique that combines the speed

of Huffman coding with the performance of arithmetic coding,

in terms of redundancy. ANS has been used in various appli-

cations [4], [5], [8]–[11]. It has also been theoretically studied

under different angles: its redundancy [12]–[14], the charac-

teristics of its uniform variant [6], [7], and the construction of

the symbol distributions it is based on [1]. In this paper, we

propose a fast technique that allows one to build very good,

yet not always optimal, symbol distributions for the stream

variant of ANS.

II. BACKGROUND ON ANS

Here, we present a brief introduction to ANS. First, we

present ANS with unbounded states. Second, we present the

variant that manipulates a finite number of states, which is

called stream ANS. Third, we describe how to determine the

average codeword length (ACL) of a stream ANS encoder.

Finally, we mention various existing techniques to construct

the so-called symbol distributions.

A. Basics of ANS

In essence, ANS is an entropy coding technique designed

for a stationary and memoryless random source over a finite

alphabet. Let A be the source alphabet. The symbol probabili-

ties are assumed to be known. Let p(s) denote the probability

of s ∈ A. Duda calls the technique Asymmetric Binary

Systems (ABS) when A is binary and ANS, otherwise. In this

paper, without loss of generality, we choose to systematically

call the technique ANS.

An ANS encoder processes a sequence of symbols from A
by updating a state, which is simply a natural number. The

more symbols get encoded, the larger the state becomes. The

encoding of a symbol is made injectively, in the following

sense. Let the current state be x ∈ N and the symbol that

gets encoded be s ∈ A, resulting in the new state x′ ∈ N,

then x′ uniquely determines x and s. When the ANS encoder

is used to encode a complete string w ∈ A∗, then the

encoder starts with the initial state xI, encodes each symbol

of w successively, and finally transmits the state xF that

has ultimately been reached. The initial state xI is a pre-

determined state in the communication protocol between the

ANS encoder and the corresponding ANS decoder. Thanks to

the injective mapping, the ANS decoder is able to recover each

symbol of w successively, from the last to the first, starting

from xF and decoding symbols until it reaches xI.

The most crucial element in the design of an ANS encoder-

decoder pair is the symbol distribution s. In this paper, we

rather refer to s as the key of the encoder-decoder pair. Key s
is an infinite string on A. Minimally, s has to obey the

property that it contains an infinite number of each symbol

of A. Figure 1 shows an example of a key for the alpha-

bet A = {a, b, c}. When the encoder is in state x, encodes

symbol s, and makes a transition to state x′, then x′ is the

position of the (x + 1)st occurrence of s in s. Note that we

count positions from zero. If we come back to the example in

Figure 1 and assume that symbol ‘b’ gets encoded, then we

have that: if x is 0, then x′ is 1; if x is 1, then x′ is 5; if x
is 2, then x′ is 8; and so on. This way of encoding symbols

is injective because of the following two reasons: first, s can

be recovered from x′ since we have s(x′) = s; second, x can

be recovered since s(x′) is the (x+1)st occurrence of s in s.

The encoding of a symbol by the ANS encoder and the

inverse operation of decoding a symbol can be easily expressed

using the ‘rank’ and ‘select’ functions. These functions

are well known in computer science, especially in string-

manipulation algorithms and in compressed data structures.

C : A× N → N

C (s, x) = selects(x, s) // counting from 0

D : N → A× N

D (x) = (s, ranks(x, s)) , // counting from 0
where s = s(x)

B. Stream Variant of ANS

The main problem with the basic ANS technique is the need

to manipulate large numbers. In order to solve this problem,

s
e.g.

= a

0

b

1

a

2

c

3

a

4

b

5

a

6

a

7

b

8

a

9

a

10

b

11

c

12

a

13

a

14

b

15

a

16

a

17

b

18

a

19

c

20

a

21

b

22

a

23

a

24

. . .

Fig. 1. Example key from Duda’14 [3].

Duda proposed a variant called stream ANS that constrains the

states to lie in a chosen interval I of natural numbers.

Since the encoding of symbols causes the current state

to grow, stream ANS includes an additional mechanism that

flushes bits out of the current state in order to reduce its

magnitude. Duda presented a general setting in which the

output alphabet has arbitrary size b and the reduction of the

magnitude of the current state is performed by emitting base b
numbers. In this paper, we consider only the binary output

alphabet; i.e. bits get extracted out of the current state and

their emission forms the compressed data.

Choosing I reduces to selecting its smallest element l:

I = {l, l + 1, . . . , 2l − 1} .

Since encoding a symbol s when the encoder is in state x ∈ I
might cause the updated state x′ = C (s, x) to lie beyond I .

In order to prevent such an overflow, safe pre-images are

determined for each symbol s ∈ A:

Is = {x ∈ N | C (s, x) ∈ I} .

These pre-images are intervals, like I . They are not contained

in I but they may have a non-empty intersection with I . Let ls
be the smallest element in Is, for each s ∈ A. Each pre-

image Is must have a specific length:

Is = {ls, ls + 1, . . . , 2ls − 1} .

The constraints on the length of I and every Is make all of

these 2-absorbing.1 The fact that I is 2-absorbing means that,

for any n ∈ N − {0}, there exists a unique k ∈ Z such that
⌊

2kn
⌋

∈ I; similarly for every Is.

The encoding function for the stream variant makes sure

to flush bits out of the current state prior to really encoding

the prescribed symbol. It returns both the bits to emit and the

updated state, which is guaranteed to lie in I .

~C : A× N → {0, 1}∗ × I

~C (s, x) =







(ǫ, C (s, x)) , if x ∈ Is
((x mod 2) · v, x′) , otherwise

where (v, x′) = ~C
(

s,
⌊

x
2

⌋)

Note that, in the type of ~C, we write N instead of I as the

type of the second argument. This is because ~C may call itself

recursively with state numbers that get below I .2

1When a more general output alphabet of size b is considered, then all
these intervals have to be b-absorbing; i.e. I = {l, l + 1, . . . , b · l − 1}
and Is = {ls, ls + 1, . . . , b · ls − 1}, for every s ∈ A.

2Note that these smaller state numbers cannot get below ls, when ~C
encodes symbol s, because Is is 2-absorbing. More specifically, in calls like
~C (s, x), x is guaranteed to lie in {ls, ls + 1, . . . , 2l − 1}.

The decoding function ~D for the stream variant basically

acts like D, except that, after decoding the symbol s from the

current state x ∈ I and recovering the smaller pre-state x′ ∈
Is, it takes care of enlarging x′ with compressed bits in order

to inflate it up to x′′ ∈ I .

~D : I → A× I

~D (x) =
(

s, ~Daux (x
′)
)

, where (s, x′) = D (x)

~Daux : N → I

~Daux (x) =

{

x, if x ∈ I
~Daux (2x+ receive_bit()) , otherwise

Note that this definition of ~D is not as clean as its inverse ~C.

This is because ~D uses the function ‘receive_bit’, which

causes a side effect by reading a bit from the compressed data.

Providing a definition of ~D that is free of side effects would

be messy. It would have to receive the whole sequence of

compressed bits, extract some prefix, depending on its needs,

and return the rest of the bit sequence. We believe that it is

slightly more elegant to use a function with side effects.

Example. Let us present the example of a stream ANS

encoder. The encoder is designed for A = {a, b, c} and

key s as shown in Figure 1. Let us suppose that we choose I
to be {7, 8, . . . , 13}. Note that I is 2-absorbing. We must

determine Ia, Ib, and Ic. The occurrences of ‘a’ that I contains

are the 5th to the 8th. So, Ia is {4, 5, 6, 7}. In a similar

fashion, we can determine that Ib is {2, 3} and Ic is {1}.

Note that all of Ia, Ib, and Ic are 2-absorbing.3 Finally, we

determine how the encoder proceeds when it is in state x and

it encodes s, for all s ∈ A and x ∈ I . Figure 2 shows all the

possible cases. Each cell of the table indicates, in this order:

the bits that get flushed out by reducing x down into Is, the

reduced state thus obtained, and ~C (s, x).
In order to provide a more detailed explanation about this

example, we describe what happens when the encoder is in

state x = 13 and symbol s = b gets encoded. First, we note

that x is too high to be in Ib. So a bit must get flushed out of x.

This bit is the parity bit of x, which is 1. The reduced state

is ⌊ 13

2
⌋ = 6. Still, 6 is too high to be in Ib. So another bit must

get flushed out of 6. This second bit is the parity bit of 6, which

is 0. The once again reduced state is 3, which lies in Ib. Now,

the symbol can effectively be encoded into C (b, 3) = 11.

To summarize the contents of the cell in the table, the current

state x was too high to lie in Ib, so by flushing the two bits 10

(in that order), we obtain the reduced state 3 ∈ Ib, which gets

mapped to 11 by encoding ‘b’.

3As a technical note, we point out that the choice of I cannot be made arbi-
trarily, since some choices would induce pre-images that are not 2-absorbing.
The particular I used in this example has been chosen appropriately.

x/s 7 8 9 10 11 12 13

a

ǫ
7
13

0

4
7

1

4
7

0

5
9

1

5
9

0

6
10

1

6
10

b

1

3
11

00

2
8

10

2
8

01

2
8

11

2
8

00

3
11

10

3
11

c

11

1
12

000

1
12

100

1
12

010

1
12

110

1
12

001

1
12

101

1
12

Fig. 2. Transition table of an example stream ANS encoder.

C. Measuring the Efficiency of Stream ANS

The efficiency of an ANS encoder is measured in terms of

its ACL. In order to compute the ACL of a stream encoder, one

first has to compute the stationary probability distribution P
on the states of I , where P : I → (0, 1). Then one computes

the expected length L(P) of the bit sequence that gets output

when encoding a randomly chosen source symbol.

As shown in Figure 2, the length of the bit sequence that

gets output varies depending on the symbol and the state, but

it does so by at most one bit, for any given symbol. In fact,

if we let λs be ⌈− log2(ls/l)⌉ and ξs be ls2
λs , then we can

show that, when l ≤ x < ξs, the length of the codeword for

symbol s is λs−1 bits and, when ξs ≤ x < 2l, it is λs bits [1],

[3], [4], [7]. Then, the ACL is given by:

L(P) =
∑

s∈A

p(s)



(λs − 1)

ξs−1
∑

x=l

P (x) + λs

2l−1
∑

x=ξs

P (x)





=
∑

s∈A

p(s)λs −
∑

s∈A

p(s)

ξs−1
∑

x=l

P (x) (1)

Equation (1) suggests that it is beneficial to have more

probability mass on the left side in P . The technique that

we propose in Section III is based on these observations.

D. Construction of Keys

Duda proposed three techniques for constructing keys. We

point out that, in each technique, the number of states that

are granted to each symbol of A tends to be proportional to

the symbol’s probability. The difference comes from the way

specific states get associated to symbols.

1) Uniform ANS: Uniform ANS is a key-construction tech-

nique that tries to spread occurrences of the symbols in the key

as evenly as possible, according to the probabilities. For ex-

ample, a symbol with probability 1/3 would be placed roughly

once every three positions in the key. We write “roughly”

because the needs of the other symbols to be spread as evenly

as possible conflict with this symbol’s needs. Figure 1 shows

a key that could have been built using uANS.

In the case of a binary alphabet A = {a, b}, Duda could

give a direct formula that determines s(x), for all x ∈ N.

According to the formula, x is associated to ‘b’ if and only if

⌈(x+1) ·p(b)⌉−⌈x ·p(b)⌉ = 1. Duda could also derive direct

formulas for C and D. These allow one to avoid the explicit

construction of the key and the use of ‘rank’ and ‘select’. Such

formulas have been devised only for the case |A| = 2, which

justifies the use of a specific name for the ANS technique in

this case: asymmetric binary systems (ABS). The construction

in a uniform way is referred to as uABS. The existence of the

direct formulas makes uABS adequate for use in both stream

and non-stream variants of ANS.

On the other hand, when |A| > 2, there are no direct

formulas that have been derived for an analogous uANS

technique. So, s cannot be represented implicitly using a direct

formula. The key would have to be built explicitly using

an algorithm that would allocate states to symbols, while

attempting to spread them evenly. Also, the use of ‘rank’

and ‘select’ would be mandatory. In that respect, uANS would

not be adequate for the non-stream variant of ANS.

2) Tabled ANS: Tabled ANS (tANS) is a construction

technique that consists in constructing a segment of the key

and defining the key as the concatenation of infinitely many

copies of that segment. Let k be the length of the segment.

The contents of the segment must be selected explicitly and

stored. Direct formulas can be obtained which, given a state x,

manipulate the number of the segment copy that contains x,

⌊x
k
⌋, and the position of x inside the segment, x mod k. The

details about the contents of the segment, like the symbols

that are associated to the positions in the segment, are kept in

tables, hence the name of the tANS technique. It is adequate

to build the key using tANS in both stream and non-stream

variants of ANS. The memory footprint of tANS’s tables is

modest. By carefully constructing the segment, tANS can lead

to efficient encoders. The key shown in Figure 1 could also

have been built using tANS, with a segment of size 17.

The main difficulty in constructing the segment is that

it is a combinatorial task. The segment may be any string

in Ak such that every symbol of A appears at least once.

In principle, we can decompose the construction of a segment

into two operations: choosing a size-k bag of symbols from A;

selecting an order for these symbols. The bag specifies how

many times s appears in the segment, for each s ∈ A.

From now on, the numbers of occurrences of the symbols

in the bag are collectively called the type of the segment.

If A is {s1, . . . , s|A|}, then a type is a tuple (k1, . . . , k|A|)

of strictly positive integers such that
∑|A|

i=1
ki = k. So,

using standard combinatorics, we can determine that there are
(

k−1

|A|−1

)

ways to choose the type and, given a type, there are
(

k
k1,...,k|A|

)

ways to order the symbols in the segment. It is

especially the selection of an order given a type, rather than

the choice of a type, that leads to a large search space. In

the state of the art, there is no evidence yet that building an

optimal key takes polynomial time, in the worst case.

3) Range ANS: The construction technique called range

ANS (rANS) shares with tANS the fact that the key is made of

an infinite concatenation of a segment. The difference comes

from the arrangement of the symbols in the segment: these

appear in lexicographic order. As a consequence, the type

directly determines the segment: sk1

1
sk2

2
. . . s

k|A|

|A| . The segment

is made of |A| runs (or ranges), hence the name of rANS. An

advantage of rANS is that the encoder only has to keep a table

about the segment’s type, which has size θ(|A|), rather than a

table about the segment’s actual contents, which has size θ(k).
A disadvantage of rANS comes from the incapacity to perform

any tuning on the order of the symbols in the segment. This

usually leads to a lower efficiency than tANS, for the same

segment size. The first segment that is shown in Figure 3 is

one that would typically be built using rANS.

III. SORT-BASED CONSTRUCTION

The main contribution of this paper consists in proposing a

technique that builds very good keys with little computations.

Our technique can be viewed as an instance of the tANS

key-construction technique. It defines the segment to have

length k = l = |I|. Specifically, it offers a way to quickly

select an order for the symbols in the segment, given the

preliminary choice of l and the segment type.

We call our technique a sort-based construction because it

proceeds by sorting the symbols occurrences in the segment

according to the stationary probabilities of the corresponding

states. Given a candidate segment, it computes the stationary

probability distribution P on the states that is induced by the

segment. Then, if P is not such that P (l) ≥ P (l + 1) ≥
. . . ≥ P (2l − 1), then a new candidate segment is obtained

by sorting the symbols according to the stationary probabilities

of the corresponding states. By repeating this process, the can-

didates quickly get closer to having P sorted. The ACL tends

to improve during the process. After a few iterations, some

obtained candidate happens to be identical to a previously

seen candidate. Then the technique stops and the best of the

considered candidates is retained.

Let us illustrate the operations performed by the sort-based

construction using an example; see Figure 3. We consider a

random source with A = {a, b, c}, with p(a) = 10/17, p(b) =
5/17, and p(c) = 2/17, and where I is {17, 18, . . . , 33}.

The initial segment is one that would be selected by the

rANS technique. This segment induces P . Interestingly, we

can observe that the initial candidate, which has a very regular

order of the symbols, induces a P function that is very

irregular. Next, the second candidate is obtained by assigning

symbols to the states of I by following the order set by P
in the first segment. In details, the maximal value P (x) is

obtained with x = 17 and 17 is associated to ‘a’ in the

initial candidate, so the second candidate starts with ‘a’. The

state x′ with the second maximal value P (x′) is 27 and 27
is associated to ‘b’ in the initial candidate, so the second

candidate continues with ‘b’. The sorting continues up to the

full construction of the second candidate. Now, we can observe

that P for the second candidate is much more regular, but

not completely sorted. So the technique continues with the

construction of another candidate by sorting the symbols again.

The third candidate induces a P that is almost sorted: the only

inversion comes from P (31) < P (32). Sorting the symbols

Initial segment: 1.3612 bps (bits per symbol)

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0.02

0.09

P

Second segment: 1.3355 bps

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0.02

0.09

P

Third segment: 1.3341 bps

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0.02

0.09

P

Final segment: 1.3340 bps

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0.02

0.09

P

Fig. 3. Sort-based construction of a segment.

again brings the fourth candidate. This candidate happens to

be the final one. Indeed, P is sorted, so sorting the segment

again would not change it. The ACL is indicated for each

candidate. We can observe that the performance improves from

one candidate to the next. We point out that we chose A
and p(·) after an example by Duda [3] and the final candidate

that we obtain is one of the 32 optimal segments that exist for

that random source.

IV. CHARACTERISTICS OF THE CONSTRUCTION

Here we highlight characteristics of our proposed technique.

The existence of nice properties might help to address the

hardness of the problem caused by its combinatorial nature.

Unfortunately, the problem of constructing optimal keys seems

to be inherently hard.

A. Convergence to the Global Minimum

One may wonder whether, given the choice of a segment

type and I , the sort-based technique guarantees to converge

to the optimal order. We observed that it does not. For

example, if we consider the random source of Section III

and I = {17, 18, . . . , 33} again and choose a type where

there are 13 ‘a’s, 1 ‘b’, and 3 ‘c’s, we observe that the ACL

starts at 1.7932 bps, drops to 1.6549 bps, then to 1.6545 bps,

and finally goes up to 1.6548 bps.

B. Symbol Frequencies versus Symbol Probabilities

Possibly, one may be satisfied with the pragmatic approach

of using the sort-based technique to select an order of the

symbols, given a particular type. However, our technique does

not provide a solution to the (less hard) problem of choosing

a type for the segment. One may wonder if, in the problem of

choosing a type, it is correct to assume that a more probable

symbol should be assigned more states. Apparently, it seems

not to be the case.4 When we considered the random source

such that A = {a, b, . . . , f}, p(a) = 10/37, p(b) = 8/37,
p(c) = 7/37, p(d) = 5/37, p(e) = 4/37, p(f) = 3/37, and

I = {11, 12, . . . , 21}, the type with 2 ‘a’s and 3 ‘b’s brought

the best ACL (along with 2 ‘c’s, 2 ‘d’s, 1 ‘e’, and 1 ‘f’).

C. Interval Size versus Average Codeword Length

One may also wonder if a larger I necessarily improves the

ACL. Apparently, it is not the case either. For example, for the

random source where A = {a, b}, p(a) = 7/10, and p(b) =
3/10, the ACL deteriorates from .88652 bps to .88654 bps,

when l goes from 7 to 8.

D. Proximity to the Optimal Average Codeword Length

In order to get an idea of how close to optimality our sort-

based technique is, we have run experiments on a family of

ternary random sources. The ith source of the family, for 1 ≤
i ≤ 18, defines p1 as 2i−1

80
and fixes p2 and p3, with p2 < p3,

so that the entropy of the source is 1. Interval I has size 11
in all these experiments.

Figure 4 presents the ACLs achieved for the various random

sources using different key-construction techniques. For most

random sources, our proposed technique builds a key that is

virtually optimal, if not optimal. The keys built using uANS

are generally less efficient, except in two cases. The keys built

using rANS are generally not competitive.

V. CONCLUSION AND FUTURE WORK

We propose a technique for building keys (i.e. symbol

distributions) for tANS quickly that achieve very good average

codeword lengths. The technique uses sorting, based on the

stationary probabilities of the states in the stream variant of

ANS. Choosing a key can be decomposed into two sub-tasks:

choosing a type for a segment of the key and then selecting an

order, given that type. In future work, better ways to choose

the segment type ought to be devised.

4We write that it is “apparently” not the case because we merely use our
sort-based technique to select a good order, given the type. It is not like
identifying the optimal order, given the type.

0 4 8 12 16 20 24 28 32 36

1

1.05

p1 (· 1/80)

A
C

L
(b

p
s)

rANS

uANS

proposed

optimal

entropy

Fig. 4. ACLs obtained on a family of ternary random sources with keys built
using different techniques.

ACKNOWLEDGMENT

The first author wishes to thank Jarek Duda for the numerous and

extended discussions on ANS. The research of the second author is

supported by the JSPS Kakenhi grant number JP17K00004. We also

wish to thank the anonymous reviewers of this paper.

REFERENCES

[1] D. Dubé and H. Yokoo, “Empirical evaluation of the effect of the symbol
distribution on the performance of ANS,” poster presented at the SITA
Symposium, December 2018.

[2] J. Duda, “Asymmetric numeral systems,” 2009, arXiv:0902.0271.
[3] ——, “Asymmetric numeral systems: entropy coding combining speed

of Huffman coding with compression rate of arithmetic coding,” 2014,
arXiv:1311.2540v2.

[4] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of
asymmetric numeral systems as an accurate replacement for Huffman
coding,” in Proceedings of the Picture Coding Symposium, Cairns,
Australia, May 2015, pp. 65–69.

[5] J. Duda and M. Niemiec, “Lightweight compression with encryption
based on asymmetric numeral systems,” 2016, arXiv:1612.04662.

[6] H. Fujisaki, “Invariant measures for the subshifts associated with the
asymmetric binary systems,” in Proceedings of the International Sym-

posium on Information Theory and its Applications, Singapore, October
2018, pp. 675–679.

[7] ——, “On irreducibility of the stream version of the asymmetric binary
systems,” in Proceedings of the SITA Symposium, Iwaki, Fukushima,
Japan, December 2018, pp. 218–222.

[8] F. Giesen, “Interleaved entropy coders,” February 2014, arXiv:1402.
3392v1.

[9] A. Moffat and M. Petri, “ANS-based index compression,” in Proceed-

ings of the International Conference on Information and Knowledge

Management, Singapore, November 2017, pp. 677–686.
[10] ——, “Index compression using byte-aligned ANS coding and two-

dimensional contexts,” in Proceedings of the International Conference

on Web Search and Data Mining, Marina del Rey, California, USA,
February 2018, pp. 405–413.

[11] S. M. Najmabadi, T.-H. Tran, S. Eissa, H. S. Tungal, and S. Simon,
“An architecture for asymmetric numeral systems entropy decoder -
a comparison with a canonical Huffman decoder,” Journal of Signal

Processing Systems, November 2018.
[12] H. Yokoo, “On the stationary distribution of asymmetric binary systems,”

in Proceedings of the International Symposium on Information Theory,
Barcelona, Spain, July 2016, pp. 11–15.

[13] ——, “On the stationary distribution of asymmetric numeral systems,” in
Proceedings of the International Symposium on Information Theory and

its Applications, Monterey, California, USA, October 2016, pp. 631–635.
[14] H. Yokoo and T. Shimizu, “Probability approximation in asymmetric

numeral systems,” in Proceedings of the International Symposium on

Information Theory and its Applications, Singapore, October 2018, pp.
670–674.

