
Individually Optimal Single- and Multiple-Tree

Almost Instantaneous Variable-to-Fixed Codes

Danny Dubé and Fatma Haddad

Université Laval, Quebec City, Canada

Email: Danny.Dube@ift.ulaval.ca, Fatma.Haddad.1@ulaval.ca

Abstract—Variable-to-fixed (VF) codes are often based on
dictionaries that obey the prefix-free property; e.g., the Tunstall
codes. However, correct VF codes need not be prefix free. Re-
moving that constraint may offer the opportunity to build more
efficient codes. Here, we come back to the almost instantaneous
VF codes introduced by Yamamoto and Yokoo. They considered
both single trees and multiple trees to perform the parsing of the
source string. We show that, in some cases, their technique builds
suboptimal codes. We propose correctives accordingly. We also
propose a new, completely different technique based on dynamic
programming that builds individually optimal dictionary trees.

I. INTRODUCTION

When it comes to variable-to-fixed (VF) codes, Tunstall’s

technique is usually mentioned [1], as it is “optimal”. In order

to be more accurate, we should say that Tunstall’s technique

selects optimal VF codes among the VF codes whose dictio-

naries obey the prefix-free (PF) property (i.e. among PFVF

codes). However, the dictionary of a correct VF code does not

need to be PF. The dictionary only needs to be exhaustive.

As such, VF codes with dictionaries that are not PF have

been considered by Savari [2] and Yamamoto and Yokoo [3],

leading to strictly superior performance in certain cases.

In this paper, we focus on the VF codes considered by

Yamamoto and Yokoo, which are called almost instantaneous

(AI) VF codes (AIVF codes) [3]. They present a technique that

aims at building VF codes that maximize the average length of

the prefix that gets matched on the source string per step. The

technique may build AIVF codes for two modes: the single-

tree and the multiple-tree modes. As the name suggests, in

single-tree mode, a single dictionary is used while, in multiple-

tree mode, a family of dictionaries is used, where the latter are

specialized for contexts where certain symbols are known not

to start the remainder of the source string. At any given step,

such partial information, denoted by i, about the source string

is obtained from the previous step: if the next symbol had

been one in {a1, a2, . . . , ai}, then a longer match would have

been possible, and since the longer match did not happen, it

implies that the next symbol is instead one in {ai+1, . . . , aA}.
Unfortunately, the Yamamoto-Yokoo construction technique

(YY) fails to build optimal VF codes, in certain cases. We

show the existence of such failures and propose correctives.

As an alternative to YY, we propose a different approach which

is based on dynamic programming (DP).

The rest of the paper is organized as follows. Section II

establishes some notation and definitions. Section III presents

the Tunstall and YY techniques. Section IV shows failure cases

of YY and proposes correctives. Section V proposes our new

DP technique. Note that a preliminary and summarized version

of this paper was presented recently [4].

II. NOTATION, DEFINITIONS, AND CONVENTIONS

Let the source alphabet be A. Let A contain A symbols:

a1, a2, . . . , aA. The probability of ai is p(ai). For conve-

nience, we suppose that p(a1) ≥ p(a2) ≥ . . . ≥ p(aA). We

consider the case where the symbols of the source string are

generated independently and using an identical distribution

(IID hypothesis). A source string w = c1 c2 . . . cn ∈ An has

probability p(w) = ∏ni=1 p(ci) of being generated. Since we

consider VF codes, the exact definition of the target alphabet

is not relevant here and we keep it implicit. In a context where

i > 0, p(w) must be divided by ∑Aj=i+1 p(aj).
A crucial parameter for any VF code is the desired size M

of its dictionaries. A VF code maps each parseword of a

dictionary D of M parsewords to a corresponding codeword

of a dictionary of M codewords. As with the target alphabet,

we keep the dictionary of codewords implicit.

The term “parseword” is used because a VF code parses

the source string w by decomposing it into a concatenation

of parsewords from D. In this paper, we ignore the issue of

handling the few remaining symbols of w that cannot be parsed

exactly into dictionary entries. Source string w gets encoded

by repeating the following three operations: some prefix v

of w gets matched to a parseword v ∈ D, the prefix v gets

extracted from w, and the codeword corresponding to v gets

emitted. The sequence of emitted codewords provides a full

description of w and a copy of w may be losslessly rebuilt

from that description.

The choice of the parsewords in the dictionary D of a

VF code is crucial as it determines the correctness and the

efficiency of the code. In order for a VF code to be correct,

D has to be exhaustive. D is exhaustive if, for any sufficiently

long1 string w, it is always possible to match some prefix of w

with a parseword. A VF code is optimized by maximizing the

average length of the matched parsewords; that is, we must

choose D such that we maximize:

len(D) = ∑
v∈D

pselection(v) ⋅ ∣v∣ , where

pselection(v) = p(v) − ∑
u∈D−{v}, v is a prefix of u

pselection(u) .

1A sufficiently long string may indiscriminately be an infinite string or a
finite string that is at least as long as the longest parseword.

○

○

○

●

a1

●

a2

●

a3

a1

●

a2

●

a3

a1

●

a2

●

a3

○

○

●

●

a1

a1

●

a2

●

a3

a1

●

●

a1

a2

●

a3

○

○

○

●

●

a1

a1

●

a2

●

a3

a1

●

a2

●

a3

a2

●

a3

(a) Tunstall TTun. (b) YY T0. (c) YY T1.

Fig. 1. Dictionary trees built using the Tunstall and the YY techniques.

Note that the equation uses pselection instead of p as the

probability of a parseword. Probability pselection(v) is the

probability that v ∈ D gets selected. In the case of an AIVF

code, multiple parsewords of varying lengths may compete

to match different prefixes of the source string. As a conse-

quence, we generally have pselection(v) ≤ p(v). On the other

hand, in the case of a PFVF code, we systematically have

pselection(v) = p(v).
For convenience, we allow ourselves to manipulate D under

the form of a dictionary tree as well as under the form of

a set of parsewords. The dictionary tree associated to D is

depicted as follows. In the tree, there exists one and only

one node per prefix of a parseword (or parsewords), even for

improper prefixes2. We denote by nv the node that corresponds

to prefix v and, by abuse of language, we may say that nv is v’s

node. Whenever prefixes v and vc both exist, for c ∈ A, an arc

labelled with c connects the parent nv to the child nvc. Some

nodes correspond (exactly) to parsewords and they get marked

accordingly. In the tree, such a node is depicted as a filled

circle. We also say that such a node is assigned a codeword.

On the other hand, a node for a prefix that is not a parseword is

depicted as an empty circle. Figure 1 shows instances of trees

that correspond to different dictionaries. In pseudo-code below,

we write t +W to denote a new tree like t that is augmented

with all the new nodes whose paths are given in W . Also,

we obtain the number of codewords that are assigned to the

nodes of tree t using the notation #t. In fact, when tree t is

the graphical representation of dictionary D, we have #t = ∣D∣
(provided D contains no superfluous parsewords). Finally, if

node n can be reached by following the path v from the root,

then we may use the notation π(n) = v. Obviously, we have

π(nv) = v for any parseword prefix v. Additional notation

about trees is introduced in Section V but it is specialized for

our DP technique.

Now, thanks to the correspondence with trees, we may easily

define the AIVF codes: a VF code is an AIVF code if, in the

tree that corresponds to its dictionary of parsewords, every

incomplete node gets assigned a codeword; such nodes are

the leaves and the incomplete internal nodes.

Let us describe the process of parsing using the example

source string wex = a2a2a1a1a1a1a1a2a3. We first consider

2A prefix v of a string w is improper if v is the empty string or v is equal
to w. Otherwise, v is a proper prefix of w.

the Tunstall tree TTun. The parsing of wex would decompose

it into the concatenation of the following parsewords: a2 ⋅ a2 ⋅

a1a1a1 ⋅ a1a1a2 ⋅ a3. Each parseword would then be encoded

into the corresponding codeword. Now, let us consider the

YY tree T0 in single-tree mode. A notable difference in T0,

compared to TTun, is that there exist incomplete internal nodes.

Parsing wex would decompose it into: a2 ⋅a2a1 ⋅a1a1a1 ⋅a1a2 ⋅

a3. Note that the first parseword is limited to a single symbol

since a2 is not followed by a1. On the other hand, the second

parseword has to be two-symbols long, even if parseword a2
exists, because matching must always be performed in a greedy

fashion. Finally, let us consider both YY trees in multiple-tree

mode. This mode is more complicated since matching may

be performed using a different tree at each step. String wex

would be parsed this way: a2 ⋅a2a1a1a1 ⋅a1a1 ⋅a2a3. The first

parseword would be identified by matching against T0. Note

that node na2 is an internal node with only one (1) outgoing

arc, which is labelled a1. This fact, plus the rule of greedy

matching, implies that the next source symbol cannot be a1.

This partial information about the source string is to be used

in the second step. As a consequence, the second parseword is

identified by matching against T1. The reached node na2a1a1a1
is a leaf (i.e. a node with no (0) outgoing arcs), which means

that the third parseword should be matched against T0. The

third parseword leads to na1a1 , which has one (1) outgoing

arc, which means that the last parseword should be identified

by matching against T1.

We comment on the definition of our goal, which consists

in designing D such that len(D) is maximized. Unfortunately,

this definition is an oversimplification. In single-tree mode,

only tree T0 has to be built, as if we were always in a

context where we do not have any information about the next

symbol of the source; i.e. as if i = 0. However, if T0 contains

incomplete internal nodes, then, after an encoding step has

been performed, the source may be left in a state such that

i > 0. So, in general, every matching step except the first one

starts in a context that is a probabilistic mixture of different

values of i. Taking the probabilistic mixture into account is

not a difficult problem and it is addressed in the paper by

Martinez et al [5]. In multiple-tree mode, each tree Ti is

used exactly in the contexts where the partial information is i.

However, having a family of trees where each tree individually

has a maximal average parseword length does not guarantee

that their joint use causes the best compression. The best

compression also depends on the frequency of every value

of i. We come back to this issue in Section VI.

III. THE TUNSTALL AND YAMAMOTO-YOKOO

TECHNIQUES

We present YY for the single- and multiple-tree modes.

Also, for the sake of completeness, we start by presenting the

Tunstall code construction technique. Note that all algorithms

are written using our notation. They are presented differently

in their respective original papers. However, we make sure

to preserve the operations they perform. Note that, since these

techniques are prior work, our presentation is very succinct. In

Algorithm 1 COMPLETE(t): add a node’s missing children

1: V ← {π(n) ∣ n is an incomplete node in t}
2: vmax ← argmaxv∈V p(v)
3: W ← {vmax} ⋅ A /* Paths to children of vmax */
4: return t +W

Algorithm 2 TUNSTALL(M): build a PF t s.t. #t ≤M

Require: M ≥ A
1: tnew ← ROOT + {a1, . . . , aA}
2: repeat
3: told ← tnew
4: tnew ← COMPLETE(told)
5: until #tnew >M /* Ultimate tnew gets discarded */
6: return told /* M − (A − 1) <#told ≤M */

this section, we use a running example (taken from Yamamoto

and Yokoo [3]) to illustrate the various VF codes that may be

built for a source. Let Aex be {a1, a2, a3}, where p(a1) = 3/5,
p(a2) = 3/10, and p(a3) = 1/10. Let Mex = 7 be the desired

number of codewords in the VF codes.

A. Tunstall’s Dictionary

Tunstall has proposed “the” classical technique to build VF

codes [1]. The Tunstall technique is described by Algorithms 1

and 2. The Tunstall technique always builds optimal PFVF

codes. It may fail to reach a dictionary size of exactly M parse-

words, since each growth operation adds A − 1 codewords to

the tree. We chose to describe the COMPLETE procedure

separately since it is also used by the YY technique.

Figure 1(a) shows the dictionary tree of the code that is

built by TUNSTALL for Aex and Mex. We can see that TTun
only contains nodes whose degrees are either 0 or 3. The tree

features 7 nodes associated with parsewords (as requested).

The 3 other nodes are not associated with parsewords.

B. Yamamoto-Yokoo Dictionary in Single-Tree Mode

In 2001, Yamamoto and Yokoo proposed to consider a class

of VF codes that is more general than the PFVF codes: the

AIVF codes [3]. Technique YY for both single- and multiple-

tree modes is described in Algorithms 3 and 4. An M -

codeword tree is created using YY(0, M). Parameter 0 is

used to indicate that we want the tree that assumes nothing

about the very next symbol of the source string. YY works by

iteratively growing a dictionary tree using two strategies that

rival each other: Tunstall’s COMPLETE and EXTEND. The

EXTEND strategy is a purely greedy one: it builds the (or a)

single new child that has the maximal probability. If we want

to grow k children this way, we simply repeat this operation

k times (EXTENDk). Note that the initial tree consists only

of the root and its children. Trees built by YY are exhaustive

because the positioning of the codewords is made implicitly

using the rule that AIVF codes must obey.

At first sight, one might think that the first strategy cannot

be competitive with respect to the second strategy, since the

second one only grows the best children, while the first one

does not pay close attention to the individual children it grows.

Algorithm 3 EXTEND(t): add the best child

1: V ← {π(n) ∣ n is a node in t} /* Paths to all nodes */
2: W ← (V ⋅ A) − V /* Paths to potential children */
3: wmax ← argmaxw∈W p(w)
4: return t + {wmax}

Algorithm 4 YY(i, M): build an AI t of type Ti s.t. #t =M

Require: 0 ≤ i ≤ A − 2 and M ≥ A − i
1: tnew ← ROOT + {ai+1, . . . , aA}
2: repeat
3: told ← tnew
4: tI ← COMPLETE(told) /* Option I */

5: tII ← EXTEND#tI−#told(told) /* Option II */
6: tnew ← the best of tI and tII
7: until #tnew >M
8: return EXTENDM−#told(told) /* Option II only */

However, the advantage of the first strategy comes from the

fact that, by completing a node n, it relieves n from the

obligation to be assigned a codeword. So the first strategy

can grow k children at once by requiring only k − 1 extra

codewords (one codeword per new child, minus one codeword

for the now complete parent).

Figure 1(b) shows the AIVF tree T0 built by the YY

technique for Aex and Mex in single-tree mode. Note that T0
does not obey the PF property, as the property is violated

by na1a1 and na1a1a1 (and also by na2 and na2a1). The

freedom to consider up to AIVF codes is beneficial because T0
leads to a higher average parseword length than TTun: 499/250
versus 49/25, respectively.

C. Yamamoto-Yokoo Dictionaries in Multiple-Tree Mode

In multiple-tree mode, the whole family of AIVF codes is

built using the YY procedure. Trees T0, T1, . . . , TA−2 are built

by making the calls YY(0, M), YY(1, M), . . . , YY(i, M),
respectively. The root of each tree Ti is the parent of the

appropriate children thanks to the initialization phase. Note

that the trees TA−1 and TA are not considered. Tree TA, for

sure, does not make sense since it would assume that the very

next symbol of the source string is none from A. Tree TA−1
is not considered either. Assuming that the very next symbol

cannot be one of a1, . . . , aA−1 would necessarily mean that

the next symbol would have to be aA. This means that the

previous parsing step would have left symbol aA on the source

string, despite the fact that it would have known for sure that

it was aA. YY does not consider this possibility.

State 0 Options & State 1 A better tree

Opt. II (only): ✓
○

●

a

●

b

●

c

○

●

●

a

a

●

b

●

c

●

●

●

●

a

a

a

Fig. 2. Suboptimal construction due to the complete-root constraint.

State 0 Options & State 1 Options & State 2 A better tree

Option I: × Option II: ✓ Option II (only): ✓

○

●

a

●

b

●

c

●

d

●

e

○

○

●

a

●

b

●

c

●

d

●

e

a

●

b

●

c

●

d

●

e

○

●

●

a

●

b

a

●

●

a

●

b

b

●

c

●

d

●

e

○

●

●

a

●

b

●

c

a

●

●

a

●

b

b

●

c

●

d

●

e

○

○

●

a

●

b

●

c

●

d

●

e

a

●

●

a

b

●

c

●

d

●

e

Fig. 3. Suboptimal construction due to the full execution of Option II’s propositions.

Figure 1(c) shows T1 built by the YY technique for Aex

and Mex in multiple-tree mode. (Note that T0 remains the

same as in single-tree mode; i.e. the one shown in Figure 1(b).)

Tree T1 also represents a dictionary with 7 parsewords but note

that its root has no outgoing arc labelled with a1.

IV. DEFECTS IN THE YAMAMOTO-YOKOO TECHNIQUE

Despite the fact that YY is intended to build optimal AIVF

codes, it suffers from subtle defects. In this section, we show

the existence of two defects that we have found. Then, we

present two modifications to YY such that the modified version

would be more likely to build optimal AIVF codes.

A. Complete-Root Constraint in Multiple-Tree Mode

Note that YY initializes the dictionary tree with a complete

root. While a complete root is a necessity in single-tree mode,

to ensure progress during parsing, it is not in multiple-tree

mode. In multiple-tree mode, it is not fatal for a dictionary

to have an empty parseword. It would only mean that such a

tree Ti would leave to Ti+1 the care to handle certain symbols.3

In order to demonstrate the existence of this defect, we

devised a small counter-example. Let us suppose we want to

build T0 in multiple-tree mode. Let A be {a,b,c}, with p(a) =
α, p(b) = β, and p(c) = γ, and let M be 4. Also, let us suppose

that α, β, and γ are chosen this way: θ =
√
31
2
+

3
√
3

2
, ω =

3
√
θ,

ψ = ω − 1
ω

, φ = ψ/√3 ≈ 0.68233, α > φ, and β = γ = 1−α
2

.

Figure 2 shows the trace of the construction of TYY
0 using YY

and it shows another tree, TDH
0 , where DH are the authors’

initials. We leave to the reader the verification that TDH
0 indeed

has a higher average parseword length than TYY
0 .

B. Full Execution of Propositions by Option II

There is another defect in YY that is much more subtle.

It is a consequence of the “full execution” of the growth

propositions made by Option II. Indeed, even if the pseudo-

code for YY manipulates propositions under the form of

augmented trees, we can rather view the propositions under

the form of a sequence of arc creations, from a “most desirable

one” to a “least desirable one”. Under this alternate point of

view, a growth operation in YY consists in fully executing the

sequence of arc creations.

In order to demonstrate the existence of this defect, we

devised another small counter-example. Let us suppose that we

want to build T0 in single-tree mode. Let A be {a,b,c,d,e},
3The codeword associated to the root would be a kind of escape symbol.

with p(a) = 1/3, p(b) = 1/4, p(c) = 1/6, p(d) = 3/20, and

p(e) = 1/10, and let M be 10. Figure 3 shows the trace of the

construction of TYY
0 by YY and another tree TDH

0 . We leave

to the reader the verification that TDH
0 is better than TYY

0 .

C. Two Correctives to the Yamamoto-Yokoo Technique

We briefly describe two modifications on YY that would

improve its efficiency. In order to correct the first defect, when

in multiple-tree mode, the initialization phase should not force

the completion of the root; i.e. the initial tree should be a root

only. We mention that Iwata and Yamamoto have made an

analogous discovery in the somehow related work on AIFV

(i.e. fixed-to-variable) codes [6]. In order to correct the second

defect, when the proposition of Option II turns out to be the

best of the two, only the first arc of the proposed sequence of

arc creations should be grown; i.e. EXTEND(told) instead of

tII should be kept. The “better trees” shown in Figures 2 and 3

can be obtained using the two modifications, respectively.

Note that we are careful to only mention that the correctives

improve the efficiency of YY. We deliberately avoid claiming

that the correctives make YY optimal. This is because there is

a possibility that yet another subtle defect still exists, despite

both correctives. Indeed, although the operations performed

by YY are simple to understand, their consequences, in terms

of optimality, are not. Even if this section does not end with

an optimal variant of YY, we think the section’s value is in

contributing to the eventual elaboration of an optimal variant.

YY remains interesting for its speed and devising an optimal

variant is a worthwhile goal.

V. CONSTRUCTION TECHNIQUE BASED ON DYNAMIC

PROGRAMMING

We propose a new technique to build optimal AIVF codes

for both single- and multiple-tree modes. The technique is

completely different from YY. Ours is based on DP. In order

to present it, we choose to denote by TNi the various optimal

dictionary trees without constraint on the root other that the

partial information i on the source, where N indicates the

number of codewords included in the tree. Our DP technique

allows a larger range for i than YY: 0 ≤ i ≤ A − 1.

The number N has to be a strictly positive natural number.

Similarly, we denote by SNi the optimal complete-root trees.

The idea behind our technique is based on a single observa-

tion. Any optimal tree TNi of non-trivial size (i.e. N ≥ 2), with

imperfect information about the next symbol (i.e. i ≤ A − 2),

Algorithm 5 BUILD(i, N): build TNi using DP

Require: 0 ≤ i ≤ A − 1 and N ≥ 1
1: if i = A − 1 then return DEFAULT(TN

0) /* Fig. 4(a) */
2: else if N = 1 then return ROOT /* Fig. 4(b) */
3: else /* Fig. 4(c) ¿ */
4: T ← {TL

0 ⊕ TR

i+1 ∣ L +R = N, L ≥ 1, R ≥ 1} /* ¾ */

5: return argmaxt∈T len(t) /* O(N)-time case */
6: end if

Algorithm 6 FILL(M): build all TNi using DP s.t. N ≤M

Require: M ≥ 1 /* O(A ⋅M2)-time algorithm */
1: for N = 1 to M do
2: for i = 0 to A − 1 do
3: TN

i ← BUILD(i, N)
4: end for
5: end for

and free from the complete-root constraint should (or may as

well) have the shape shown in Figure 4(c). In words, there

should be at least one parseword in the dictionary that starts

with ai+1, the most probable of the symbols that may appear

next in the source string. Moreover, the subtree t′ rooted

at nai+1 must be optimal of the T0 kind. Finally, the subtree t′′

that is made with the remains of TNi if we remove t′ and the

incoming arc must be optimal of the Ti+1 kind. Figure 4 also

presents the shapes of the trees for the corner cases.

Given this idea, we may use Algorithms 5 and 6 to build

optimal AIVF trees for the multiple-tree mode. Note that the

multiple-tree mode is simpler than the single-tree mode, as

the decision making is identical at the root of the trees and

at deeper nodes. We may use Algorithms 7 and 8 to build

optimal AIVF trees for the single-tree mode. Because our DP

technique is so simple (and because of the 5-page limit), we

trust that the given pseudo-code is self-explanatory.

DP is a standard algorithmic strategy and it is used in

countless algorithms in computer science. In particular, DP

has been used to build various codes in data compression;

namely, AIFV codes [7] and 1-ended codes [8].

VI. FUTURE WORK

First, we should verify whether applying our correctives on

YY would make it optimal. Second, the AI property remains a

constraint on the considered VF codes, even if it is looser than

(a) ○

aA

TN0

(b) ● (c)

ai+1

TL0 TRi+1

(a) TNA−1 = DEFAULT(TN0)
(b) T 1

i = ROOT, where: i ≤ A − 2

(c) TNi = TL0 ⊕ T
R
i+1, where: i ≤ A − 2, 2 ≤ N = L +R

Fig. 4. Fundamental shapes of the dictionary trees used in the DP technique.

Algorithm 7 BUILDsingle(i, N): build a complete-root TNi
Require: 0 ≤ i ≤ A − 1 and N ≥ A − i

1: if i = A − 1 then return DEFAULT(TN

0)
2: else
3: S ← {TL

0 ⊕S
R

i+1 ∣ L+R = N, L ≥ 1, R ≥ 1, R ≥ A−(i+1)}
4: return argmaxt∈S len(t)
5: end if

Algorithm 8 FILLsingle(M): build all comp.-root TNi s.t. N ≤

M
Require: M ≥ 1

1: for N = 1 to M do
2: for i =max(A −N, 0) to A − 1 do /* SN

i undef. . . . */

3: SN

i ← BUILDsingle(i, N) /* . . . for N < A − i */
4: end for
5: end for

the PF property, and we should investigate on the opportunities

offered by the removal or relaxation of this constraint; e.g.,

codes with a longer delay [7]. Third, optimizing every tree of

a family individually may fail to reach the best compression

for the whole family. It is sometimes more profitable to build

a tree that is individually slightly less efficient but that is more

likely to leave the source in a context with a higher i. Iwata

and Yamamoto, in their study of AIFV codes, use a system

of compensation to account for the impact of switching to

one tree or another [7]. Our technique should integrate an

analogous system. Fourth, when the alphabet is large and the

multiple-tree mode is used, the full family of trees may occupy

considerable space, as noted by Yoshida and Kida [9]. The

latter proposed multiplexed trees, while we intend to represent

the trees using the L-versus-R sizes calculated using DP.

ACKNOWLEDGMENT

We would like to thank Prof. Yamamoto and Prof. Iwata for having

long and detailed discussions about this topic with the first author. We

would also like to thank the anonymous reviewers for their comments.

REFERENCES

[1] B. P. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disser-
tation, Georgia Institute of Technology, 1967.

[2] S. A. Savari, “Variable-to-fixed length codes and plurally parsable dictio-
naries,” in Proc. of the Data Compression Conf., Mar. 1999, pp. 453–462.

[3] H. Yamamoto and H. Yokoo, “Average-sense optimality and competitive
optimality for almost instantaneous VF codes,” IEEE Trans. on Informa-

tion Theory, vol. 47, no. 6, pp. 2174–2184, Sep. 2001.
[4] D. Dubé and F. Haddad, “Optimal single- and multiple-tree almost

instantaneous variable-to-fixed codes,” in Proc. of the Data Compression

Conf., Snowbird, Utah, USA, Mar. 2018, p. 405.
[5] M. Martinez, M. Haurilet, R. Stiefelhagen, and J. Serra-Sagristà, “Marlin:

A high throughput variable-to-fixed codec using plurally parsable dictio-
naries,” in Proc. of the Data Compression Conf., Apr. 2017, pp. 161–170.

[6] K. Iwata and H. Yamamoto, “A dynamic programming algorithm to
construct optimal code trees of AIFV codes,” in Proc. of the Int. Symp.

on Information Theory and Applications, Nov. 2016, pp. 641–645.
[7] ——, “An iterative algorithm to construct optimal binary AIFV-m codes,”

in Proc. of the IEEE Information Theory Work., Nov. 2017, pp. 519–523.
[8] S.-L. Chen and M. J. Golin, “A dynamic programming algorithm for

constructing optimal “1”-ended binary prefix-free codes,” IEEE Trans.

on Information Theory, vol. 46, no. 4, pp. 1637–1644, 2000.
[9] S. Yoshida and T. Kida, “An efficient algorithm for almost instantaneous

VF code using multiplexed parse tree,” in Proc. of the Data Compression

Conf., Mar. 2010, pp. 219–228.

