Improving a Vehicle Routing Heuristic
through Genetic Search

Jean-Yves Potvin
Danny Dubé

Centre de Recherche sur les Transports
Université de Montréal
C.P. 6128, Succ. A,
Montréal (Québec)
Canada H3C 3J7

Abstract. A genetic algorithm is applied to the search of good parameter settings
for a vehicle routing heuristic. The parameter settings identified by the genetic
search allow the insertion heuristic to generate solutions that are much better
than the solutions previously reported on a standard set of routing problems.

Section 1. Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) is currently the
focus of very intensive research, and is used to model many realistic applications.
The overall objective is to serve a set of customers at minimum cost with a fleet of
vehicles of finite capacity housed at a central depot. The route of each vehicle
starts and ends at the depot. Also, each customer has a known demand (i.e. some
guantity of goods to be picked-up), as well as a time window or time interval that
constrains the vehicle's arrival time. The time windows are defined within a
scheduling horizon, so that each route starts and ends within the bounds of this
horizon. When the horizon or the capacity is enlarged, a larger number of
customers can be served by the same vehicle (and conversely).

Since the hard time window case is considered, the arrival time at a given
customer cannot be larger than the time window's upper bound at this customer.
On the other hand, the vehicle can wait if it arrives before the lower bound.
Accordingly, the total routing and scheduling costs include not only the total
travel time, but also the waiting time.

Many interesting problem-solving methodologies for the VRPTW are
reported in the literature [Solomon 87, Desrochers et al. 92, Potvin and Rousseau
93]. In this paper, it is shown that the parallel insertion heuristic of Potvin and
Rousseau can be greatly improved by performing a careful search in the space of
parameter settings, using a genetic algorithm.

The next section will first briefly describe the parallel insertion heuristic.
Then, Section 3 will describe our genetic algorithm, and computational results will
be reported in Section 4.

Section 2. The Parallel Insertion Heuristic [Potvin and Rousseau 93]

Potvin and Rousseau's heuristic is a parallel version of heuristic |1 described
in [Solomon 87]. As opposed to Solomon's sequential approach, where routes are
built one by one, the parallel heuristic initializes and builds many routes in
parallel. First, each route is initialized with a different "seed" customer (i.e., each
initial route serves a single customer). Then, the remaining unrouted customers

are sequentially inserted into any one of the initial routes until all customers are
routed.

Let lro-lr1-lr2-...-lrn(r) be route r, &r<m, with lo and fn(r) standing for the
depot. For each unrouted customer u, the best feasible insertion place between two
consecutive customers in each route r is computed as follows:

c1r (ir(u),ujr(u)) = minp=1,...,n(nlcarr(p-1)Wlrp)l, r=L,...m.
cir (Ir(p-1),u.lrp) = a1 caar(lr(p-1).ulrp) + a2 c12r(lr(p-1).u.lrp),

a1+a2=1, a1=0, a2=0,
where

Cllr (kiual) = Q(,u + d_j'l - u. dk,l
= distance in time units between u and |I.

o
c
|

current service time at |,
new service time at |, given that u is
inserted between k and |.

Ci2r (k,u,l) = hJ,| - bl: b|

O
c
1

Next, the best customer u* is selected according to the formula:
c2(u*) = maxy c2(u)
c2(u) = Zrzp[car (ir(u),u,jr(W) - cr” (ir(u),u,jr(u)l,
where
cir” (ir(u),u,jr(w)) = min_y err (ir(u),ujr(u))

Finally, client u* is inserted in route r between'(u*) and j'(u*). This
procedure is repeated until all customers are routed. Note that the insertion cost
cir is a weighted sum of detour and delay, while the selection costis a
generalized regret measure over all routes. The regret estimates what could be lost
later if customer u is not immediately inserted in his best route.

This heuristic was applied to Solomon's test problems [Solomon 87] with three
different parameter settings, namelyaq(a2,u) = {(0.5,0.5,1), (0.75,0.25,1), (1,0,1)},
and the best solution was selected as the final result. These parameter settings
were chosen after experimenting with different values. However, a systematic
search of the parameter space was not performed. In the next section, a genetic
algorithm is used to identify better parameter settings for this heuristic.

Section 3. Parameter Tuning using a Genetic Algorithm

Genetic algorithms are randomized search techniques that are well adapted to
parameter optimization problems [Davis 91]. In this application, each chromosome
encodes different parameter settings. These parameter settings are provided to the
parallel insertion heuristic, and the average solution produced with these settings
on Solomon's test problems is used to evaluate the fithess of the chromosome.

3.1 Parameter Encoding

The domain of values to be explored for each parametenis [0,1], p= [O,1].
It is worth noting thatay is determined throughni, sinceaj+az=1. Seven bits are
used to encode each parameter value. To decode a substring as a numerical value,

the integer represented by the substring, namely a value between 0 ‘afdog
127, is mapped to the appropriate real domain. For example, if the bit string is

1010101 for parameten1 (that is, 85 in decimal notation), theq value encoded by
this string is 85/127 or approximately 0.67. In general, if the integer value
corresponding to the bit string is x, the real value ®ff is x/127. The same
transformation applies to parametaer.

With 127 values mapped to real intervals of width 1, we get a precision to the
second decimal point. Greater precision can be achieved by adding more bits to the
encoding, but the length of each chromosome increases and the search space
grows up. Two substrings of length 7 encode a parameter setting, and three
different settings are concatenated on each chromosome. A typical chromosome is
depicted below. In this case, the parameter settings arepu) = {(71/127, 27/127),
(0/127,127/127), (43/127,64/127)p {(0.56, 0.21), (0.00,1.00), (0.34,0.50)}.

1000111 | 0011011 | 0000000 | 1111111 | 0101011 | 1000000
ag u a1 u a1 u

3.2 Implementation of the Genetic Search

In the following, additional details are provided about the main components
of our genetic search.

Fitness Values. The fitness of a chromosome is related to the quality of the
solutions generated by the parallel insertion heuristic, using the parameter
settings encoded on a chromosome. Solution quality is based first on the number of
routes, and second, on total route time (including waiting time). In order to assign
a numerical fitness value to a chromosome, its rank in the population is used
[Whitley 89]. In the example below, the population is composed of three
chromosomes (encoding three different sets of parameter settings). The best
solution generated by the heuristic on a given problem with the parameter
settings encoded on chromosome igid43, is shown on the same line. In this
example, chromosome 3 gets rank 1 because its parameter settings generate the
minimum number of routes, while chromosomes 2 and 1 get ranks 2 and 3,
respectively.

Number of Routes Route Time
chromosome 1 12 1612.0
chromosome 2 12 1588.1
chromosome 3 11 1660.0

With these ranks, it is possible to determine the fitness value of a chromosome
with the formula: Max - [(Max - Min) (i-1)/(N-1)], where i is the rank of the
chromosome, and N is the number of chromosomes in the population. Hence, the
best ranked chromosome gets fithess value Max and the worst chromosome gets
fitness value Min. In the current implementation, Max and Min are set to 1.5 and
0.5, respectively.

Selection Probability. The chromosomes are selected for crossover according to the
above fitness values. The selection scheme is Stochastic Universal Sampling [Baker
87].

Crossover Operator. The crossover operator is the one-point crossover. The
crossover rate is set to 0.60. Hence, about 40% of the parent chromosomes are not
modified by this operator.

Mutation Operator. The mutation operator is applied to each new offspring at a
fixed rate of 0.01.

Generation ReplacementEach new generation replaces the old one. However,
elitism is used, and the best chromosome is preserved from one generation to the
next.

Section 4. Computational Results

For the computational tests, we used Solomon's standard set of problems,
which are all 100-customer Euclidean problems. The geographical data were either
randomly generated using a uniform distribution (problem sets R1 and R2),
clustered (problem sets Cl1 and C2) or generated from a mix of randomly distributed
and clustered customers (problem sets RC1 and RC2). Problem sets R1, C1 and RC1
have a narrow scheduling horizon, and only a few customers can be served by the
same vehicle. Conversely, problem sets R2, C2 and RC2 have a large scheduling
horizon, and many customers can be served by the same vehicle. Additional details
about these problems may be found in [Solomon 87].

The objective is first to minimize the number of routes, and second, to
minimize total route time (including waiting time). Table 1 shows the results
obtained by performing a different genetic search on each set of problems. Hence,
the best parameter settings are not necessarily the same from one problem set to
another.

In Table 1, "Solomon" corresponds to the solutions reported in [Solomon 87]
for heuristic 11, wusing four different parameter settings and two different
initialization criteria. "Paral® corresponds to the solutions reported in [Potvin and
Rousseau 93] for the parallel insertion heuristic, using the three parameter
settings suggested in their paper. Finally, "Paral-Gen" corresponds to the solutions
generated by the parallel insertion heuristic, using the three best parameter
settings identified by the genetic algorithm on each set of problems. The heading
"Comput. Time" refers to the average computation time of the genetic algorithm in
minutes and seconds on a SPARC10-41 workstation.

During the genetic search, the fitness and rank of each chromosome was
determined through the average solution obtained over a particular set of
problems, namely: "For each problem j is set X, run the parallel insertion heuristic
three times on problem |, using the three parameter settings encoded on the
chromosome, and take the best solution jbeé’[hen, compute the average of the
besj's over set X". The results were obtained after 20 generations, on a population
of size 30. In each case, the initial populations were seeded with chromosomes
encoding parameter settings taken from [Solomon 87, Potvin and Rousseau 93].
More precisely, eight chromosomes were derived from these settings, and the
remaining chromosomes were randomly generated. The three best parameter
settings are shown for each problem set in Table 1. In each case, the valuaeg for

and p are shown as integer values, and must be divided byl »r 127, in order to
get the exact real values.

Table 1 shows that the best parameter settings identified by the genetic
algorithm allow the parallel insertion heuristic to perform much better on each
set of problems. In particular, the average number of routes is reduced in each
case. Paral-Gen is now much closer to Solomon on problems of type C, while it is
much better on the remaining sets. The genetic algorithm is computationally
expensive, but once the best parameter settings are identified for a given problem
set, they can be applied to other (new) problems with similar characteristics, to
generate high quality solutions.

It is worth noting that the results on set R1, with*30=600 randomly
generated chromosomes, are provided between parentheses under the results of

Paral-Gen (for illustrative purposes). As expected, Paral-Gen performs better than
the random search, since the latter does not reduce the average number of routes
of Paral on set R1. Moreover, the random search is more computationally
expensive, because each new chromosome must be evaluated, as opposed to the
genetic search, where a fraction of the chromosomes are copied without any
modification from one generation to the next.

Section 5. Conclusion

This paper has shown that it is possible to greatly improve the results of a
parallel insertion heuristic, via a careful search in the parameter space. By
specializing the genetic search to each problem set, the original results, as
reported in [Potvin and Rousseau 93] were greatly improved.

Acknowledgments. Financial support for this work was provided by the Natural

Sciences and Engineering Research Council of Canada (NSERC) and by the Fonds
pour la Formation de Chercheurs et I'Aide a la Recherche of the Quebec

government (FCAR).

References

[Baker 87] J.E. Baker, "Reducing Bias and Inefficiency in the Selection Algorithm",
in Proceedings of the Second Int. Conf. on Genetic Algorithms, 14-21.

[Davis 91] L. Davis,Handbook of Genetic AlgorithmsVan Nostrand Reinhold.

[Desrochers et al. 92] M. Desrochers, J. Desrosiers and M.M. Solomon, "A New
Optimization Algorithm for the Vehicle Routing Problem with Time Windows",
Operations Research 40342-354.

[Potvin and Rousseau 93] J.Y. Potvin and J.M. Rousseau, "A Parallel Route Building
Algorithm for the Vehicle Routing and Scheduling Problem with Time Windows",
European Journal of Operational Research, 6831-340.

[Solomon 87] M.M. Solomon, "Algorithms for the Vehicle Routing and Scheduling
Problem with Time Window Constraints'QOperations Research 35254-265.

[Whitley 89] D. Whitley, "The Genitor Algorithm and Selection Pressure: Why
Rank-Based Allocation of Reproductive Trials is Best", in Proceedings of the Third
Int. Conf. on Genetic Algorithms, 116-121.

R1 Number off Route Timg Comput. Time (a1, w)
12 problems| Routes (min:sec)
Solomon 13.6 2695.5
Paral 13.33 2696.0
Paral-Gen 13.25 2659.6 34:02 (120,093),(117,088),(067,1171
(13.33) (2669.8) (49:01)
R2 Number off Route Timg Comput. Time (aq, W)
11 problems| Routes (min:sec)
Solomon 3.3 2578.1
Paral 3.09 2513.3
Paral-Gen 3.00 2489.0 37:50 (123,115),(119,127),(111,125
C1 Number off Route Timg Comput. Time (a1, w)
9 problems Routes (min:sec)
Solomon 10.0 10104.2
Paral 10.67 10610.3
Paral-Gen 10.11 10069.1 29:54 (122,021),(121,043),(122,117
Cc2 Number off Route Timg Comput. Time (a1, w)
8 problems Routes (min:sec)
Solomon 3.1 9921.4
Paral 3.38 10477.6
Paral-Gen 3.25 9856.5 24:32 (121,125),(127,119),(064,126
RC1 Number off Route Timg Comput. Time (a1, W)
8 problems Routes (min:sec)
Solomon 13.5 2775.0
Paral 13.38 2877.9
Paral-Gen 13.00 2799.5 23:28 (127,105),(097,095),(096,084
RC2 Number off Route Timg Comput. Time (aq, W)
8 problems Routes (min:sec)
Solomon 3.9 2955.4
Paral 3.62 2807.4
Paral-Gen 3.50 2762.5 29:31 (084,120),(111,127),(109,118
Table 1. Computational Results on Solomon's problems

~—

~—

~—

~—

~—

~—

