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Abstract. We present a compact implementation of Scheme for microcontrollers
that includes a real-time garbage collector. The compiler runs on a normal work-
station and produces byte-code from the source program. A smart linker links the
byte-code with the runtime module. We demonstrate that with this system it is
clearly possible to run realistic Scheme programs on a microcontroller with as little
as 3 to 4 KB of RAM. Programs that access the whole Scheme library require only
13 KB of ROM. As a byproduct of this research, we designed a novel space-efficient
real-time GC algorithm.
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1. Introduction

Embedded applications are often implemented by microcontrollers pro-
grammed in assembly language. Indeed, this yields a high degree of
control over the microcontrollers and fast and compact code for simple
applications. However, this approach becomes tedious and error prone
for more complex applications. For this reason, compilers for higher-
level languages such as Basic, C, Forth, and recently Java have been
designed for microcontrollers. The goal of our work is to show that
Scheme is a viable alternative for programming microcontrollers.

To illustrate the implementation difficulties and to narrow down
the contextual parameters, consider for instance the popular Motorola
68HC11 microcontroller. It typically runs at a clock speed of less than
5 MHz, it has a 64 KB address space (ROM and RAM combined),
on the order of 40 I/O pins, five 16 bit registers of which only one is
general purpose, and no floating-point instructions.
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Clearly, coping with the very tight memory constraints is one of
the main problems; it requires a compact runtime system, a compact
encoding of the Scheme program, and a compact object representation.
Since the main application of microcontrollers is to control or monitor
other devices, our system must exhibit good real-time behavior, that is
it must avoid unduly long or unpredictable pauses in the computation,
in particular during garbage collection.

The subset of Scheme that we target is R*RS [1] with the following
exclusions. We removed port-based textual 1/O operations since they
are not very useful in this context. Numbers are restricted to fixnums
because microcontrollers are not intended for numerically intensive
tasks, they do not support floating points numbers, and the complete
Scheme numerical library is quite big. Error checking is limited to
heap overflows that halt the program’s execution. We otherwise assume
that the program is error free. We make this assumption in order to
help attain the smallest size for a complete Scheme implementation.
The addition of error checking would probably increase the size of the
implementation only minimally and would extend the usefulness of the
system to certain safety-critical applications.

Our subset includes first-class continuations (which are useful for
implementing threads), garbage collection, and proper treatment of
tail recursion. Our aim is not speed; we simply wish to obtain an
implementation that has the same asymptotic complexity as that of
a speed-oriented implementation.

Many of the techniques we have considered in our design exist in
other implementations of functional languages or are part of the Scheme
and Lisp implementation folklore. One of our contributions is to study
the space usage of these techniques and select those best suited for
compact systems. We cite relevant previous work for the less well known
implementation techniques.

Section 2 presents our byte-code compiler, with emphasis on com-
pactness. Section 3 discusses the representation of objects. The real-
time garbage collector is described in Section 4. Section 5 describes the
virtual machine. An evaluation of the system is presented in Section 6.

2. The byte-code compiler

To avoid run-time overhead, our system performs a compilation phase
on a development workstation which produces an executable that is
then transferred to the microcontroller. The executable is composed of
a byte-code sequence and a kernel that can execute this byte-code. The
byte-code is generated from the source program and selected parts of
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Figure 1. Compilation process of a Scheme source program (prog.scm).

the Scheme library. The kernel provides the garbage collector and the
byte-code interpreter, which only implements the most basic Scheme
functions.

This section presents the byte-code compiler which performs the
compilation phase. We first give an overview of the compiler before fo-
cusing on the parts that contribute to the compactness of the resulting
executable, namely the Scheme library, the processing of constants and
the initial value of variables. The details of the byte-code are presented
in Section 5.

2.1. OVERVIEW

Figure 1 shows the compilation process of a Scheme source program
(prog.scm). The program can be written in normal R*RS Scheme with-
out constraints other than the restrictions to the language mentioned
previously. The file produced by the byte-code compiler contains C
code that defines three initialized arrays and their length. These arrays
correspond to the byte-code, the constant descriptor, and the global-
variable descriptor. Figure 2 shows the structure of the file generated
for the Scheme source:

(display "Hello world!")
(newline)

Note that this program uses textual I/O functions that are not
intended to be supported on microcontrollers. Simplified versions of
write, display, and newline are defined in the library to make debug-
ging easier on a workstation. These rely on the primitive write-char
function. However, programs that are ready to be installed in microcon-
trollers restrain their use of I/O functions to microcontroller-specific
ones that access the peripherals needed by the application (timers,
parallel and serial ports, etc).
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int bytecode_len = 2594;
unsigned char bytecode[] = {

4, 93, 8, 94, 51, 4, 75, 8, 95, 51, 4, 74,
8, 96, 51, 4, 55, 8, 97, 51, 4, 54, 8, 98,
26, 37, 36, 52, 92, 43, 15, 37, 36, 4, 87, 52,
92, 17};
int const_desc_len = 27;
unsigned char const_desc[] = {
0, 2, 52, 0, 1, 48, 52, o, 12, 72, 101, 108,
108, 111, 32, 119, 111, 114, 108, 100, 33, O, 2, O,
0, 0, 1};
int nb_scm_globs = 100;
int scm_globs[] = {
45, -24, 50, 57, -11, 71, 136, 150,
-36, -36, 212, 290, -16, 316, -18, -17,
-9, -8, -39, 2546, 2552, 2585, -1, -1,
-1, -1, -1, -1};

Figure 2. C file produced by the byte-code compiler for the “Hello world!” program.

Here is a brief description of the steps performed by the byte-code

compiler:

Reading of the program.

Removal of the syntactic sugar.

tree (AST).

Traversal of the AST:

Gathering of the constants.

Transformation of the program into a node-based abstract syntax

Inclusion of the required library functions.

Identification of the variable declaration for each variable

access.

Check for the mutability of the global variables.

Counting of the parameters and checking for a rest parameter.

— Assignment of the initial value of certain variables.

A second traversal of the AST:
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e Propagation of the initial values of known variables to vari-
able references.

e Optimization, when possible, of call sites.

Assignment of an index to each global variable.
Generation of the byte-code.
Generation of the constant descriptor.

Generation of the global-variable descriptor.

2.2. THE SCHEME LIBRARY

The library file 1ib.scm has a special format understood by the com-
piler that departs from the R*RS syntax and semantics. It is divided
into four sections.

The first section declares the name and index of each primitive
Scheme function that is provided by the runtime kernel. It helps
to maintain consistency between the list of functions provided by
the kernel and the one expected by the library. Each declaration
is a dotted pair containing a symbol and an integer.

The second section contains the definition of functions used inter-
nally by the library. The names introduced here are hidden to the
source program.

The last two sections both contain functions that are visible to
the source program. The difference between the two is for docu-
mentation purposes only: the third section contains non-standard
functions while the fourth contains R*RS functions. In these sec-
tions, a symbol appearing alone at the top level indicates that this
is a function defined in a previous section and that it is visible to
the source program.

In the last three sections, the syntax is restricted to function decla-

rations and alias declarations. Function declarations have the form:

(define (name) (A-expression))

and alias declarations:

(define (name) (name))

Note that the value of each global variable of the library is either a
primitive function or a closure with an empty environment. This fact
is exploited to save space, as explained in Section 2.4.
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Functions of the library are included with a source program accord-
ing to its needs. The inclusion rule is simple: every global variable that
is accessed (read or written) by the program and that is also a visible
name of the library causes the inclusion of the corresponding func-
tion. Inclusion is done transitively in the library according to function
dependencies.

Conceptually, the library has a separate name space from that of
the program. That is, references to the name cons in the library and in
the program do not resolve to the same variable. This is important to
guarantee correct execution of the library functions even in the presence
of mutations of global variables by the program. For example, the map
library function must continue to work properly even if the program
mutates the cons variable, which normally contains a library function
that map uses. When the program mutates cons, the variable in the
program name space changes but not the one in the library name space.
Nevertheless, modifications of the variables containing library functions
are rare. So if we detect that the program does not modify one of its
variables, we unify it with its library counterpart. For example, if the
program does not mutate cons, then the name cons in both name
spaces resolves to the same memory location.

Since a large portion of the library can get included with programs,
its size is important. The library is written in a style that favors concise-
ness over speed. For example, the functions memq, memv, and member,
when called, simply call the parameterized function general-member
with the same parameters plus an appropriate comparison operator.
Similarly, many n-ary functions, such as +, are implemented as a list
folding using an appropriate binary operation. A simple experiment in
which memq is rewritten in a direct style (direct calls to eq?) reveals a
28% speed improvement.

2.3. LITERAL CONSTANTS

Our implementation manipulates two categories of Scheme objects: im-
mediate and allocated. Immediate objects do not have to be allocated in
the heap and there are byte-code instructions that create them directly.
Numbers and Booleans are immediate objects. Allocated objects reside
in the heap and their creation involves calling a memory allocation
function. Pairs and vectors are allocated objects. We concentrate here
on the allocated ones.

Constants present in the program that are allocated objects have
to be made available in the executable so that the evaluation of a
constant expression at run time consists in nothing more than fetching
the corresponding pre-built object. We considered three methods to
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make the constants available at run time. We illustrate each method
by considering the compilation of a program that embeds the expression
(f x >(1 2)). The compilation of this program is illustrated symbol-
ically by the following diagram where the right hand side represents
virtual-machine instructions:

(ref to )
Gxcaa e

(invoke)

The empty box is intended to contain an instruction corresponding to
the evaluation of the literal constant ’ (1 2) and the actual instruction
depends on the chosen method.

— The first method is a source to source transformation in which
each constant expression is replaced by a reference to a fresh vari-
able. Extra Scheme definitions are added at the beginning of the
program to build the constants and store them in the appropriate
variables. The missing instruction would be [ (ref to cst33) |

; Extra definition

(define cst32 (cons 2 *()))

; Original program
& pProg — (define cst33 (cons 1 cst32))

; Original program

— The second method consists of building at compile-time an image
of the heap already containing the constants and integrating it
with the executable. No run-time setup is necessary. Constant
expressions are compiled as simple “load constant” instructions
with a reference, | (load cst 270) | in this case.

Program constants: Heap image:

269(0110110011100100

"biz" 270 [0011101101100001 | | hypothetical
12 L encoding
#(a #5) 271 0011010010001111 | f 115
272 [0100100111010111
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— The third method consists of encoding the program constants into
a byte-vector descriptor that is integrated with the executable. At
the start of the program, an interpretation function decodes the
descriptor and rebuilds the constants (essentially like read but
with a special purpose compact encoding). Simple access instruc-

tions, such as | (get cst #17) |, fetch the constants from a vector of

rebuilt constants when necessary.

Program constants: Descriptor: Rebuilt constants:
16 17 18
"biz" EETNnE
1 2) — 0,2,52,...,1 F— }
#(a #t) #(a #t)
. a1 2
llbizll

The first method has the disadvantage of making the extra con-
struction code and the constants themselves coexist. This is a waste
of space that the other methods avoid. The second method directly
uses the image of the initial heap itself as the heap. So there is no
construction code or descriptor that coexists along with the constants.
The third method has to keep the descriptor alive until the constants
have been built. But once the constants are built, the descriptor can
be discarded and the space that it occupies can be coalesced with the
heap to provide more free space to work with.

The second method implies that the compiler is aware of the object
representation in the runtime down to the individual bits. It is more
complicated to implement and maintain. The other two methods isolate
the compiler from the choices of representation in the runtime kernel.

The third method requires some machinery while the second does
not. Still, this machinery is relatively small. In fact, its size is constant.
It does not depend on the number and size of the constants like the
construction code of the first method does. This is the method that our
System uses.

The encoding process is the following. First, each constant is decom-
posed into individual objects. Note that we make a distinction between
the constants, which appear in the program as self-evaluating objects
or as quoted data, and the individual objects, which form the (possibly
more complex) constants. Then, each distinct object is given an index
(this implements sharing between identical constants and sub-parts of
constants); the objects are topologically ordered (children first); and
information is kept to remember which objects are literal constants of
the program. Finally, the descriptor is produced. It contains: the num-
ber of objects, the description of each object, the number of constants,
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Const. 0: ("biz" 2) Const. 1: (#f 2) Const. 2: "biz"

(a)

Obj. 0: 2 Obj. 3: "biz" Obj. 5: #f
Obj. 1: O Obj. 4: (8 . 2) Obj. 6: (5. 2)
Obj. 2: (0 . 1)

(b)

Const. 0: Obj. 4 Const. 1: Obj. 6 Const. 2: Obj. &
(c)

Figure 3. Steps in the encoding of a set of constants.

and the indices of the objects that are program constants. Given this
encoding, it is easy to see that the construction process done at run
time is very simple.

Figure 3 illustrates the encoding process of the set of constants
appearing in some hypothetical program. Figure 3(a) presents the pro-
gram constants. They are all allocated constants. Figure 3(b) shows
the individual objects into which the constants are decomposed. There
are only 7 individual objects instead of 11 because in Scheme sharing
is allowed for identical constants ("biz" and (2) in this case). The
contents of the pairs are denoted using object indices. Note that some
of the individual objects are immediate ones. They need to be listed
here because they appear inside of allocated objects. Then a binary
encoding of each object and the total number of objects is produced
(this is not illustrated). Finally, Figure 3(c) indicates which objects
happen to be constants in the program. A binary encoding of the indices
of these objects and the total number of constants is produced (also
not illustrated). The concatenation of the encodings produced in this
way forms the constant descriptor.

2.4. INITIAL VALUE OF VARIABLES

Our compiler tries to statically determine the initial value of some
variables. This allows various optimizations to be performed.

The compiler only tries to statically determine the value of the
global variables introduced by the library. A reason why it restricts
its efforts to these variables is because their values are especially easy
to determine. Also, determining the value of these variables provides
an important gain in space while it may not necessarily be the case
with the other variables, as we explain in the next paragraph.
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The first benefit comes from a special compilation of the library
code. Note that, because of the special syntax used in the library, it
contains only definitions, and the expressions contained in these def-
initions can only be variable references or simple lambda-expressions.
The result of evaluating the library code is simply to have a number
of variables defined. Since it is possible to statically determine what
function is contained in each variable, we can eliminate the code per-
forming the evaluation of each definition’s expression. Moreover, the
code initializing each definition’s variable can also be omitted because
we can arrange for each global variable to contain the proper initial
value. So our byte-code compiler produces byte-code only for the body
of the closures and, when it outputs the global variables as a C array, it
specifies the initial value of each variable. This is in fact a description
of the initial value: a small negative integer for a primitive function, a
positive integer which is the entry point of a closure’s body, or —1 for
#f. We arbitrarily chose #f as the default initial value of the variables.

The second benefit comes from the optimization of certain calls. If
a call, either in the library or in the program, uses a known library
function, then the operator expression no longer needs to be evaluated
and a direct call to the function is made. Certain more aggressive opti-
mizations are performed when some conditions are met. For example,
the operator in the expression (+ x y) is optimized if the variable +
is not mutated. The call becomes a direct invocation of the primitive
function that adds exactly two numbers. It speeds up the execution
and shortens the byte-code.

3. Scheme object representation

Even if it has little influence on the size of the executable, the object
representation is of great importance due to the tight RAM constraints.
A more compact representation can fit more objects in the heap and
so allows our system to run a broader range of programs.

We consider the representation of the objects and their type, that of
the symbols, that of the continuations, and that of the environments.
In each case, we present different options and conclude with our choice.

3.1. THE OBJECTS AND THEIR TYPE
There are many approaches to represent the type and value of ob-

jects [14]. We only consider four different “pure” (as opposed to hybrid)
representations.
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The uniform representation. All objects are heap-allocated. The
reference to an object is the address where it is allocated. Every
object has an extra field that indicates its type. An advantage
is that basic operations (readings, writings, type tests and GC
operations) on the objects are very simple and uniform from type
to type. Their implementation can be shared by all types and
parameterized by the type of the objects.

The tagged pointer representation. Tagging information is writ-
ten in specific bits of the pointers to the allocated objects. This is
possible when, for memory partitioning or alignment reasons, some
bits in the pointers always contain the same value. For instance,
when the whole heap lies in some part of the memory, some of
the most significant bits may be constant. Moreover, when objects
are always allocated starting at the boundary of machine words,
some of the least significant bits are constant. Instead of containing
known (and thus useless) information, these bits can be used to
encode type information. Certain bit patterns may indicate that
the object reference is in fact an immediate value. This way, not
all types need to be heap-allocated and heap space can be saved.
Sometimes, however, there are not enough available bits to tag
all the types and some allocated objects need an extra field to
encode a sub-type. Tagging strategies are often complex and basic
operations are implemented differently for most types.

Representation of types by zones. The heap is divided into zones
with one zone per object type. Individual objects do not have to
carry type information with them. The type is recovered from the
address of the object by identifying the zone in which it is located.
We estimate that this representation can be very compact: almost
all the heap space can serve as “useful” fields. Unfortunately, it
seems to be very difficult to integrate this representation with a
real-time garbage collector without a very complex management
that would cause an unacceptable slowdown.

Representation of types by pages. The heap is divided into pages
of equal size. All the objects in a given page are of the same type.
Consequently, the type needs to be indicated only once per page
(in the page header) and the type of an object is recovered by
rounding the address of the object down to a page boundary to
read the page’s type. This representation has the same advantages
and disadvantages as the representation by zones. Additionally, we
have to deal with the presence of long objects, such as strings and
vectors, that are longer than a page.
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Type Representation
Integers NNNNNNNNNNNNNNN1
Pairs OOAAAAAAAAAAAAAQ
Closures O1AAAAAAAAAAAAAQ
Other heap-allocated types 10AAAAAAAAAAAAAQ
Symbols 11NNNNNNNNNNNN10O
Characters 11XXNNNNNNNNOOOO
Kernel functions 11NNNNNNNNNNO100O
Booleans 11 XXXXXXXXXN1000
Empty list 11 XXXXXXXXXX1100
Sub-type First field
Continuations RRRRRRRRRRRRRRR1
Vectors LLLLLLLLLLLLLLOO
Strings LLLLLLLLLLLLLL10

Figure 4. Tagging scheme used in our implementation.

We consider that the tagged pointer representation is better than
the uniform representation. This is because of immediate objects. After
a few hundred objects are created, the gain in space due to immediate
objects is likely to compensate for the more complex implementation
of the operators. We did not find any satisfactory solution using one
of the last two representations. So our implementation uses a tagged
pointer representation.

Figure 4 shows the actual tagging scheme used in our implemen-
tation. A 0 or 1 bit is part of a tag. A N bit represents immediate
information, that is, a part of a number or index. An A bit represents
a part of an address (they encode the index of the object’s handle, see
Section 4). An X bit indicates that the value is not important. It is
set to 1 in our implementation. Three of the types cannot be encoded
directly in the reference. They need sub-typing information. So, some
bits of the first field of those objects are tagged. The R bits encode a
return address in the byte-code. The L bits indicate the length of a
variable-sized object.
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The domain of the integers is —16384 to 16383. This is more restric-
tive than what one would expect on a 16 bit microcontroller but it is
the best we can do without allocating the integers in the heap. Because
13 bits are used to encode the address of allocated objects, there can
exist at most 8192 of these. Given the maximum size of the heap, this
is more than enough in normal circumstances. However, in the worst
case, i.e. when the heap is almost full with small objects such as pairs,
the restriction on the number of references could be a limiting factor.
4096 symbols can be represented, which is a large limit. The other
immediate types are completely covered. The encoding of the first field
of the continuations indirectly places a limit of 32768 on the size of the
byte-code. As we show later, this limit is reasonable since the byte-code
is very compact. Vectors and strings are limited to a length of less than
16384 elements.

3.2. SYMBOLS

Symbols present some interesting possibilities. First, it is not clear
whether we should represent symbols as allocated objects having a
field for a name. Second, if we want to be able to compare symbols
efficiently, we have to maintain their uniqueness. This requires some
kind of table with the names of all the symbols. Third, symbols are
not removed from this table. Knowing that, we consider the following
representations:

— A symbol is a two-field object: one reference to its name, which is
a string, and one link to the next symbol in the table. The whole
table is a kind of list of strings but its skeleton is made of symbols
instead of pairs.

— A symbol is a variable-sized object that directly contains its name
and a link to the next symbol.

— A symbol is an index into a table of names. This way, the symbol
becomes a non-allocated object and the table of names can be
represented compactly as a vector of strings.

The second option is the least interesting because variable-sized
objects are expensive to implement. It is better to avoid creating such
a new type. The third option saves a field per symbol compared to the
first one and is as compact as the second. Also, it introduces no new
allocated type. So we adopt that representation for the symbols.

There is a small problem with the third representation as presented.
In order for it to be as compact as the second representation, the table
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of names has to be full. Otherwise, it is less compact. The problem
with a full table is that each time a new symbol is to be created, the
table has to be extended to contain the new name. Creating a longer
vector and copying its content each time a new symbol appears is quite
inefficient. So, in practice, each time the vector is full, we replace it by
a vector that is 4/3 times the current length. This strategy makes our
representation a little bit less space-efficient than the second, but the
loss can be reduced by changing the ratio.

Few Scheme programs explicitly ask for the creation of new symbols
at run time. As explained in Section 2.3, allocated constants have to
be reconstructed during the initialization of the program environment.
Consequently, a Scheme program may cause the creation of many sym-
bols “at run time” even if it does not explicitly ask for it, simply because
of the fact that it contains many symbolic constants. A sensible way of
managing the table of names consists in trimming the table just after
the constants are reconstructed. In this way, programs that do not
create symbols at run time benefit from a maximally compact table.
This optimization is not used in the current implementation of BIT.

3.3. CONTINUATIONS

We consider three representations of continuations. First, a continu-
ation can be represented using a stack. When call/cc is called, a
copy of the stack is created in the heap. Second, the source can be
CPS-converted [23]. The reification of the current continuation using
call/cc comes for free and there are no concrete continuation types
to implement. Third, a continuation can be an ad hoc structure that
saves the current state of computation.

The stack implementation does not allow the sharing of common
parts between different continuations, at least not in a simple im-
plementation, and invoking a continuation requires an arbitrary time.
Since we decided to keep continuations mostly to allow multi-threading,
the representation should be compact and invoking a continuation
should be a constant-time operation. The CPS-conversion has a ten-
dency to increase the size of programs, which is not desirable. So we
use an ad hoc structure. It is a fixed-sized object that is able to save the
registers of the virtual machine that executes the byte-code (see Sec-
tion 5). Among the registers that are saved, there is one that contains
the current continuation. So, conceptually, the continuation is a chain
of these fixed-sized ad hoc objects. Programs are left in direct style.
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3.4. ENVIRONMENTS

Due to their central role, environments need to be represented ef-
ficiently. Here we only consider environments for non-global lexical
variables because global variables are stored separately in a statically
allocated global C array. Here are the representations we consider.

Associative lists. This simple representation is not space efficient be-
cause it carries the identifiers unnecessarily. In a compiled system
like ours, identifiers can be discarded completely.

Lists. This is another simple representation. It takes one pair per vari-
able. Each access to a variable is made using a relative position in
the list.

Blocks of bindings. It is possible to have a more efficient represen-
tation and still keep it very simple. We can take advantage of
simultaneous bindings like those of a let expression to group the
bound variables together in a block. Access to variables is made
using a pair of coordinates: the number of binding levels (or blocks)
and the position in the block. Single-variable bindings can still
be represented using pairs while multi-variable bindings can be
represented using vectors. The vector-based representation is more
compact than a sequence of pairs in the case of multi-variable
bindings.

Blocks of bindings with display. Instead of having only a link to
the next block, we can use a display, and thus have a direct link to
every surrounding binding block. Access to variables can always be
done in constant time, independent of the lexical distance. Still,
this representation, compared to simple blocks of bindings, only
improves the speed. In space requirements, it can only be worse.

Flat representation of closures. Here, closures are variable-size ob-
jects that capture lexical variables. Closures themselves can be seen
as special environment blocks. An advantage of this representation
is the ability to select the variables to retain in the environment
at closure-creation time [11]. Also, accesses to the variables are
constant-time operations. On the other hand, the cost of creating
a closure increases with the number of variables to capture. Finally,
the flat representation by itself is not able to handle general envi-
ronments since it can only represent the definition environments
of closures. A representation for invoke-time bindings still has to
be chosen.
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(define make-thunk1 (define make-thunk2
(let ((a (£f1 1)) (lambda (a)
(b (£2 2)) (let* ((b (f1 a))
(c (£3 3))) (c (£2 b))
(lambda (d) (d (£3 ¢)))
(lambda () (lambda ) (g d)))))

(1ist a b c 4)))))

Figure 5. Two functions that create thunks with different environments.

B
L
O
C
K
S
. ti—~{abcd] t1—{d]
L
A : : o
T
t,—~{abcd] tp,—{d]

Figure 6. A comparison of the environment representation by blocks of bindings
and the flat representation.

Of the first four representations, the one using simple binding blocks
is clearly the best. The flat closure representation, however, is hard
to compare with the others. Figure 5 shows two functions that cre-
ate thunks. The environments produced by make-thunkl have a more
compact representation using blocks and the environments produced
by make-thunk2, using the flat representation. In the first case, it is
the sharing of the blocks between environments that is advantageous.
In the second, it is the ability to select the variables. Figure 6 sketches
the layout of the environment of multiple thunks created using both
representations for both programs.

The safe for space complexity rule introduced by Shao and Appel [22]
states that “any local variable binding must be unreachable after its last
use within its scope”. Flat closures have the advantage of being safe-
for-space but we believe that this issue has little importance in our
context because the programs are relatively small and the programmer
can avoid this problem with some testing, analysis and manual program
transformation.

We choose the representation with blocks because it is simpler,
complete and does not require a new data type.
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4. Garbage collection

Implementing a real-time garbage collector is quite a challenge and on
a microcontroller especially so. We will first discuss the requirements
on the memory manager. We then give an overview of the memory
management technique we designed.

4.1. REQUIREMENTS

The fact that the microcontroller does not have much memory means
that the heap is quite small. It is tempting to assume that a blocking
GC on such a small heap would be fast enough. However, the microcon-
trollers we target are not very fast so a complete GC cycle may cause
pauses that are too long for many control tasks. Consequently, we need
a real-time GC in order to provide a truly useful system.

Our GC must compact live data in some way. We cannot afford to
let fragmentation ruin the possibility of allocating long objects. For
example, it only takes 40 badly positioned small objects in a non-
compacted heap of 4 KB to prevent the allocation of a string of only
100 characters. Because the degree of fragmentation is hard to predict
in advance and depends on run-time conditions that vary over time,
a non-compacted heap is not suitable for microcontroller applications
that must be robust throughout their execution (that can last years).

Many real-time GC algorithms use two semi-spaces, that is, the
heap is separated in two halves. During the GC cycle, live objects are
transfered from one semi-space to the other. The transfer has the effect
of compacting the objects. This process prevents fragmentation. Still,
the use of semi-spaces represents a serious waste of space.

We did not find a real-time GC technique in the literature that
tries to minimize the waste of space. The GC technique we designed
addresses exactly this problem.

We first give our definition of a real-time memory manager (not just
of a real-time GC). It is best presented by comparing the behaviors of
three memory managers: an ordinary blocking one, an idealized one,
and a real-time one. The blocking memory manager is a conventional
one that offers no guarantees on the time required to perform any
single operation. The idealized one has an infinitely large non-initialized
memory at its disposal and takes advantage of it. That is, it does not
have to free dead objects. Still, it has to provide read and write access to
the fields of the objects and it has to allocate and initialize new objects.
Under these circumstances, we expect constant-time access to the fields
of the objects and linear-time allocation of new ones. The real-time
memory manager has to deal with a finite memory but has to provide
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operations with costs comparable to those offered by the idealized one.
By “comparable”, we mean that each operation performed by the real-
time manager can be slower than those performed by the idealized one
but by at most a constant factor.

Let us formalize this concept. Let op denote some Scheme operation
that is related to memory management. It could be a read operation,
such as car, a write operation, such as string-set!, or an object
creation operation, such as make-vector. Let T(op) denote the time
that is needed to perform op on a system using the idealized memory
manager. Let RT(op) denote the worst-case time that is needed to
perform op on some (presumably) real-time memory manager. Then
the latter is real-time if there exists a constant ¢ > 1 such that, for all
operations op, RT(op) < ¢+ T(op) holds.

Note that our definition of a real-time memory manager does not
imply that the manager should be able to execute every operation in
constant time. The idealized manager cannot execute every operation
in constant time either. Some operations have a cost that is intrin-
sically higher than constant time. For example, a reasonable Scheme
implementation based on an idealized memory manager would be ex-
pected to allow executions of (car x), (make-string n #\c), and
(list-ref 1st ¢) in O(1), O(n), and O(i), respectively. So we expect
the same complexity to hold on the execution times in a real-time
system.

This definition of real-time allows the Scheme programmer to reason
easily about the time consumption of his program: each Scheme oper-
ation has a guaranteed natural duration. In time critical parts of his
program, the programmer has to take care not to require the execution
of costly operations (at the Scheme level). The system guarantees that
it will not introduce unexpected pauses during the execution of the
operations.

There is a side condition that must be satisfied in order to ensure
that the real-time memory manager is able to meet the requirements.
The program must not try to hold on to too many live objects. This
condition is stated in most real-time garbage collectors. Indeed, the
performance of any GC degrades when the heap is too full [28].

4.2. OVERVIEW OF THE GC

Our GC technique, which is described in depth in a separate paper [9],
is basically an adaptation of a mark and compact blocking GC using
ideas from Brooks [5]. The first phase consists in incrementally marking
all the live objects of the heap. The second one compacts the marked ob-
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Figure 7. Sketch of the heap with handles.

jects by sliding them to the bottom of the heap. The program continues
to run while the GC does its work.

One of the major difficulties in garbage-collecting while the program
continues to run is to update pointers to objects that are moved by the
GC. Since an object may have an arbitrary number of references to it,
it is impossible to update them all at the moment the object is moved
without causing an important pause in the execution of the program.
A solution to this problem is to use handles.

A handle is a pointer that is unique to each object and that always
points to the current position of the object. All references to an object
go through its handle. The virtual machine and the objects themselves
do not possess the address of allocated objects, they simply have the
address of their handle. This implies that read and write operations now
require two memory accesses instead of one. On the other hand, the
handles allow the GC to move an object and instantaneously update
all the references to it simply by changing the value of its handle.

Our implementation of handles is closely related to the way the
object table is managed in Smalltalk-80 [13]. Figure 7 presents a sketch
of the heap when our GC is used. Handles are kept in a separate section.
The true content of the objects is located in the storage section. When
an object is created, sufficient space is reserved in the storage section
and a free handle is assigned to point to this space. This handle remains
the same as long as the object exists, no matter how many times the
object is moved. When an object is collected, its handle is linked back
into the chain of free handles.

The handle section has a fixed size which depends on the size of the
smallest objects. In our implementation, 1/4 of the heap is occupied
by this section. This ratio is an improvement over the ratio of 1/3 that
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would normally be used if we truly considered the smallest objects.
Indeed, the smallest objects are the empty strings and the empty vec-
tors. They have only 1 useful field: the length/sub-type field. However,
we artificially extend these with one dummy field so that they become
as long as the pairs. This is not a big waste as empty strings and
vectors are relatively rare. Pairs, on the other hand, are very frequent.
Consequently, our ratio of 1/4 is based on the fact that allocated objects
require 1 field for the handle, 1 field for the back-pointer, and at least
2 fields for the useful contents. Even though 1/4 of the heap is reserved
for handles, the space efficiency compares favorably to a two semi-space
heap.

The use of handles eliminates the need for a read barrier for short
objects because the handles always point to completely coherent data in
the storage section (in other words the moving of small objects and the
update of the handle is performed atomically by the GC). However,
a write barrier is still needed to avoid collecting a live object whose
reference is stored in an object that has been marked. This is a classic
problem with real-time garbage collectors. We solve this problem with
a Dijkstra barrier, that is when a reference to object X is stored in the
object Y, the GC will immediately proceed with the marking of X if
the GC is in the marking phase and Y has been marked.

The handling of long objects is more complicated and both read and
write barriers must be used. This is because the GC cannot move long
objects without exceeding the time allotted for a chunk of GC work.
The object is conceptually split in two parts while the GC is moving
it. During this time, access to one of its fields by the program is done
either in the new (moved) part or in the old (not yet moved) part.
Each time the GC is given control, it moves a bounded size chunk of
the object, increasing the size of the new part and decreasing the size of
the old part. This continues until the whole object is moved. To allow
the program to access the right location during the movement of the
long object, the GC maintains a pointer to the object and the size of
the new part.

The sharing of the time between the program and the GC is ruled by
a time bank. It is a counter that indicates how much work the GC can do
before it has to give control back to the program. The execution of the
GC is tightly coupled with the allocations performed by the mutator
and so each allocation adds some units to the time bank. When the time
bank is positive, the GC immediately starts to work and continues to
do so until the bank is empty or negative. All the work involved in
a complete GC cycle is divided in small work chunks, each having a
unitary cost and each executing in constant time. The allocation of an
object of length [ adds R*[ time units to the bank, R being a constant,
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which ensures that the program gets control back after a pause of O(1)
time units. This is what makes the GC real-time.

The constant R is chosen so that, by the time the rest of the free
space gets allocated, the GC completes its cycle. In the worst case,
the GC provides new free space exactly when the current free space is
exhausted. R is called the GC’s ratio of work. It is a function of the
maximal fraction («) of the heap that can be occupied by live objects.
If it is known that the fraction of the heap occupied by live objects
is never higher than «, then R will always be sufficiently large. The
actual function is R = 3£32 (see the original paper [9] for the details).
However, we did not try to compute « to perform the experiments
presented in this paper. Instead, our implementation computes a new
R at the start of each GC cycle so that it makes sure that each cycle
finishes in time. The ratio for a given cycle is R = ;’_LQPP, where p is the
fraction of the heap that is occupied at the start of the cycle.

The GC technique that is used in the BIT system is a slight varia-
tion of the original technique [9]. In order to further reduce the space
requirements of the heap-allocated objects, we improved the implemen-
tation of the mark stack. In the original technique, one extra field per
object is required for the mark stack. In the modified technique, we do
not require this extra field anymore. Instead, a mark chain is main-
tained by linking the reached objects together using their back-pointer
field (i.e. the back-pointer points to the handle of the next object in
the mark chain). When a marked object is scanned, its back-pointer is
restored to its original value (i.e. the address of the object’s handle).
This way, the back-pointer field plays a dual role: implementing a mark
chain during the mark phase and pointing at the object’s handle during
the compact phase.

4.3. REAL-TIME SYSTEMS

The integration of a hard real-time GC in the BIT system may suggest
that BIT could readily be used to implement hard real-time applica-
tions. However, our single claim is that only the memory management
technique meets hard real-time requirements. Our definition of a real-
time memory manager agrees with the usual “constant-time opera-
tions” requirements presented in the literature on GC techniques, even
if it is slightly more general.

From the point of view of hard real-time systems practitioners, the
mere presence of a hard real-time GC does not automatically qualify
BIT as an adequate tool for achieving specific hard real-time con-
straints. Our GC technique is only presented as an algorithm (and its
C code implementation) which does not specify the absolute execution
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times of operations. It is only when the specifics of a target machine, C
compiler, and memory size are known that the absolute execution time
of each Scheme operation can be determined. Moreover, hard real-time
applications require bounds on the execution times of all kinds of oper-
ations, not just the ones related to memory management. Development
environments for hard real-time systems must provide tools to assist the
programmer in the computation of these bounds. Although, in theory,
an analysis could be done manually, in practice, the desired guarantees
are too costly to obtain by hand and are often checked through testing.

In principle, the programmer who uses BIT could obtain a bound on
the time required by the execution of any part of his program, although
this would admittedly require a lot of effort. He would have to provide
a bound on the size of the objects his program maintains live at any
given time. Using this bound and a description of the speed of the
microcontroller, it would be possible to obtain the pace at which the
memory manager has to perform garbage collection and then the execu-
tion time of every memory operation, every C function in the runtime,
every virtual machine instruction, every Scheme library function, and,
ultimately, every expression of the program. Note that the cost of some
operations depends on the inputs that are provided to these operations.
In these cases, cost functions instead of simple costs could be obtained.
Moreover, provided that the C runtime contains no recursion at the C
level (which is the case with BIT), a bound on the time and space of
each operation could be computed.

5. The virtual machine

The development of our virtual machine was done in two stages. The
first machine is simple but not space efficient. The second machine is
a space-optimized variant of the first machine. We will use the first
machine for most of the explanations because it is simpler.

5.1. A SIMPLE VIRTUAL MACHINE

The first virtual machine has a few specialized registers: PC is the index
of the next instruction, VAL is the accumulator, ENV is the current
environment, ARGS is the current list of arguments, PREV_ARGS is a
list of lists of arguments, CONT is the current continuation.

Figure 8 gives a list of the virtual machine’s instructions. Some
instructions have a variable number of operands. This is because there
are variants for local/global variables, for short/long operands, and
for blocks with/without a rest parameter. Access to local variables
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0 (description) Get immediate constant.

1 (index) Get allocated constant.

2—-5 (operand;) [(operands)] Read variable.
6—9 (operand;) [(operandsy)] Write variable.
10 Make closure.

11 (address) Conditional jump.

12 (address) Unconditional jump.

13 (address) Save continuation.

14 Restore continuation.

15 Initialize argument list.

16 Push argument.

17 Apply.

18 (index) Apply kernel function.

19 Flush environment.

20—23 (size) Make binding block.

24 Stop.

25 Save argument list.

26 Restore argument list.

Figure 8. Instructions of the first virtual machine.

C*[ (set! (var) (exp)) | =

— Cl{exp) ]
— Write variable (operand;) [(operands)]
— Restore continuation

Figure 9. Compilation rule for set! in terminal position.

23

is specified by a “number of blocks to jump over” and “position in
the block” pair of operands. The second operand is omitted in certain
cases: when the designated binding block contains only one variable,

the second operand is assumed to be 0.

The compilation rules are quite straightforward. The only part that
is a little more sophisticated is the set of rules for calls which depend on
what the compiler knows about the operator: the operator is statically
unknown, it is a kernel function, it is a closure from the library, or it
is a lambda-expression. Figure 9 shows one of the compilation rules.
C* and C are the compilation functions for expressions in terminal and

non-terminal position respectively.
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0-1 (index) Get allocated constant.

2—-5 (operand;) [(operands)] Read variable.

6—9 (operand;) [(operandy)] Write variable.

10 Make closure and restore continuation.

11 (address) Conditional jump.

12-13, 19 (address) Unconditional jump.

14 Restore continuation.

15 Initialize argument list.

17 Apply.

2023 (size) Make binding block.

24 Stop.

25 Save argument list and reinitialize argument list.
26 Restore argument list.

27—-34 [(description)] Get immediate constant.

35 Drop binding block.

36—41 Read local variable (specialized).

42—-44 Make binding block (specialized).

45 Save continuation and initialize argument list.
46 Set return address and apply.

48 (address) Make closure and unconditional jump.
49-50 (operand) Pop multiple arguments.

51 Pop one argument.

52-55 (index) Read global variable and apply contents.
215-255 Apply kernel function.

Figure 10. Instructions of the second virtual machine.

5.2. THE FINAL MACHINE

While experimenting with the first virtual machine, we discovered, as
expected, several ways in which the compactness of the code could
be improved by modifying the virtual machine. These modifications
exploit common patterns of instructions that are generated by the
compiler. New instructions are added to perform the same operations
as the patterns but more compactly. Sometimes these new instructions
eliminate the need for some of the instructions of the first virtual ma-
chine. The instruction set of the final virtual machine is summarized
in Figure 10. We do not present every detail of the evolution leading
to the final virtual machine, only the main classes of modifications.
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Specialized instructions. Some instructions are almost always used
with the same operands. In these cases, we created new instruc-
tions that are specialized for those operands. For instance, we
determined with a set of sample programs that 90% of the local
variables that are read are located in one of these pairs of coordi-
nates: (0,0), (0,1), (0,2), (1,0), (1,1), and (2,0). Also, the
operand of the “Apply kernel function” instruction has been elim-
inated by creating a separate instruction for each kernel function.

Merged instructions. Some instructions always occur next to some
other instructions. For example, the instruction “Save continua-
tion” always precedes the instruction “Initialize argument list”.
So, an instruction that does both operations was created.

Automatic push. The instruction “Push argument” is so frequent
that we made it implicit. All instructions that produce a value
directly add it to the argument list. An explicit “Pop argument”
has to be done when the pushed value is not desired.

New instructions. For example, the instruction “Pop the first block
from the environment” was added.

This new virtual machine allows the byte-code to be considerably
more compact. A comparison of the two machines was done with two
programs: the first one is a program that forces the inclusion of all
of the library and the second one is a parser generator. When these
programs are compiled for the first virtual machine, about 10500 bytes
of byte-code are produced for each program. When they are compiled
for the second machine, about 5500 bytes of byte-code are produced for
each program. This demonstrates that our R*RS Scheme library fits in
5.5 KB of byte-code.

6. Evaluation

The goal of this section is to evaluate the practicality of the BIT
system for implementing space-constrained embedded real-time appli-
cations. It is difficult to characterize these applications because there
is a wide range of performance requirements and available embedded
computing platforms. Some embedded applications are based on small
single-chip microcontrollers with a slow clock, and very little RAM
and ROM (for example, the PIC12C508 8-pin 8-bit CMOS microcon-
troller has 25 bytes of RAM, 512 words of ROM, a one microsecond
instruction cycle time, and currently costs less than one dollar in bulk).
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Typical applications include controlling a car’s ignition and anti-lock
braking systems, controlling household appliances, and “intelligent”
toys. At the other extreme, where processing power is critical, there
are platforms with specialized signal processing hardware and several
megabytes of memory.

6.1. HriracHr HS

The target applications of the BIT system are those that require low to
moderate computing power and where a few kilobytes of memory are
required. A representative application is hobby robotics, as exemplified
by the LEGO MINDSTORMS robot kit. The computing element of
this kit can control up to 3 motors and read up to 3 sensors. It is based
on a 16 MHz Hitachi H8/3292 microcontroller with an external 32 KB
RAM. The firmware is stored in the microcontroller’s 16 KB ROM.
With an infrared link it is possible to upload machine code programs
into the first 28416 bytes of RAM.

For this application, the BIT system was extended with 8 primitives
for controlling the motors, sensors, LCD display and speaker. These
primitives call low-level routines in ROM that access the microcontrol-
ler’s I/O ports. Code was also added to the byte-code interpreter’s main
loop to show an activity status while the Scheme program is running
and to properly respond to the on/off pushbutton.

This system could be used by hobbyists and researchers to quickly
experiment with various high-level robot control and navigation algo-
rithms. It also is appropriate for an academic setting to teach Scheme
programming and robotics to students, whether they are beginners or
advanced. Development and debugging could be done on a workstation
using a full featured Scheme system augmented with a simple robot
simulator, and then the program would be uploaded to the robot for
testing after compiling it with BIT.

6.2. ZILOG Z8 ENCORE!

The BIT system was also ported to the Zilog Z8 Encore! family of 8-bit
microcontrollers. The target platform is powered by a 20 MHz Z8F6401
microcontroller which internally has 64 KB of FLASH memory (for
program code) and 3840 bytes of RAM. It consists only of the micro-
controller, an infrared transceiver (for uploading Scheme programs and
I/0), three light-emitting diodes, a crystal, two capacitors, one resistor,
and a 3 volt battery. The total cost of the parts is below 10 dollars
and it fits in a volume of roughly 1 cm® and weighs 1.5 grams (see
Figure 11). The current consumption while a program is running is
roughly 30 milliamperes making it possible to replace the battery by
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Figure 11. This picture of the target Z8 Encore! platform next to a penny shows its
small size.

a small solar cell. This platform could be used as the brain of a very
compact robot or remote sensor.

For this application, the BIT system was extended with a primi-
tive to control the light-emitting diodes. The infrared port is accessed
through the standard read-char and write-char functions.

6.3. PERFORMANCE

Five programs were used in evaluating performance.
empty: Empty program.

thread: Small multi-threaded program that manages three concurrent
threads with call/cc. The threads perform a tail-recursive loop
which calls on each iteration a function that forces a context switch
to another thread.

photovore: Program which controls a mobile robot to guide it towards
a source of light (using a light sensor and 2 motors). The source
code is given in Figure 14.

all: Program which references each Scheme library function once. The
implementation of the Scheme library is 894 lines of Scheme code.

earley: Earley’s parser, using an ambiguous grammar.

The photovore program is a realistic robotics program with real-
time requirements. The other programs are useful to determine the
minimal space requirements (empty), the space requirements for the
complete Scheme library (all), the space requirements for a large

bit.tex; 25/04/2005; 12:28; p.27



28 Dubé and Feeley

H8 /3292 Z8 Encore!
Lines  Byte- Read Read Read Read
Program of code code only  write only  write
empty 0 1296 8894 2196 16326 2603
photovore 38 1552 9226 3272 16808 3661
thread 44 1744 9386 2840 16820 3243
all 173 5479 13396 2404 20824 2799
earley 653 6253 13976 7244 21404 -

Figure 12. Space requirements in bytes for each platform and program.

program (earley), and to check if multi-threading implemented with
call/cc is feasible (thread).

6.3.1. Space Requirements

For each of these programs, we used the smallest Scheme heap at which
the program could execute without causing a heap overflow. Because an
incremental collector is used, this heap size is larger than the maximal
amount of space occupied by live objects during execution. But it is
so by at most a constant factor, which is related to the GC’s ratio
of work (R). Although program execution speed can be increased by
using a larger heap it is interesting to determine what is the absolute
minimum amount of memory required.

Figure 12 shows for each program the memory (in bytes) required
for read-only data (which includes the byte-code interpreter, the pro-
gram’s byte-code and constants) and for read-write data (which in-
cludes the Scheme heap and global variables). The size of the source
code and that of the byte-code also appear in this figure. The gcc
C compiler version 3.3 was used to cross-compile the system to the
H8/3292 with the following compilation options: -02 -fno-builtin
-fomit-frame-pointer. For the Z8 Encore! the ZDS II C compiler
version 4.2.0 was used with no optimization. These tests were performed
on Zilog’s Z8 Encore! development kit which uses a 18.432 MHz clock.

Note that the read-write memory requirements of earley exceed
the 3840 bytes of RAM available on the Z8 Encore!, so it could not be
executed on that platform.

The space required for the byte-code interpreter’s machine code
for the Z8 Encore! (14423 bytes) is almost twice that of the H8/3292
(7416 bytes). This can be explained by the difference in C compilers,
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processor architectures and machine instruction encoding. The size
of the program’s byte-code, even for large programs, is considerably
smaller. The total read-only data required is the sum of the interpreter’s
size, the size of the program’s byte-code, and a few hundred bytes for
various tables used to initialize Scheme constants and global variables.
Note that the minimal byte-code size is 1296 bytes. This accounts for
the part of the Scheme library that initializes the table of Scheme
constants (even though the linker could remove this part of the library
when it is useless, it does not do so because only atypical programs do
not use Scheme constants).

The amount of read-write memory required is proportional to the
peak amount of data held by the Scheme program and the number of
global variables. It is noteworthy that some of the Scheme programs,
in particular photovore, fit in less than 4 KB of RAM.

We experimented with thread to measure how much heap space is
required per thread. The smallest heap is 39 KB when the number of
threads is increased to 200, which corresponds to about 190 bytes per
thread. Of course, more space would be required per thread when the
context switches are performed at moments when the thread’s continu-
ations is larger (e.g. during a deep recursion). By using continuations, a
better usage of memory is possible than the prevalent implementation
of threads which allocates a fixed-size block of memory to hold the
stack of each thread.

6.3.2. Ezecution Speed

As might be expected the speed of execution on these platforms is
rather low in absolute terms. The number of byte-code instructions
executed per second for a simple tail-recursive loop is roughly 8000 on
both platforms. This low speed is due to the low computing power of
these 8-bit processors, the use of a real-time collector and little RAM,
and the space-conscious coding style of the byte-code interpreter and
library. Nevertheless, we get adequate performance for the photovore
application which requires a certain degree of promptness to properly
control the motors as a result of the light sensor readings.

6.4. RELATED WORK

Other implementations of Scheme have been designed to be compact
but none to our knowledge share the specially tight constraints imposed
by microcontroller applications. Most implementations, but not BIT,
implement a read-eval-print loop and eval.

Some implementations are small but principally because they leave
out important features of R*RS, such as call/cc, proper tail-recursion,
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and in some cases even recursion. For example, the LEGO/Scheme
system [27], which compiles programs into the byte-codes understood
by the LEGO MINDSTORMS robot’s built-in interpreter, is limited
by that interpreter’s capabilities: it cannot allocate memory (e.g. pairs,
closures), handle more than 31 variables, and perform procedure calls
except tail-calls and calls to a very limited set of predefined procedures.
LEGO/Scheme is so crippled that programming is as tedious as when
using assembler with none of the benefits. XS [31] is another system for
the LEGO MINDSTORMS. By reprogramming the robot’s firmware it
is able to support a more complete subset of Scheme which nevertheless
does not include call/cc. By means of an infrared communication link
with a user-interface program running on a workstation, the Scheme
program can execute load, textual console I/O (read, write, etc) and
provide the user with a traditional read-eval-print loop. The system
uses a mark and sweep blocking collector and only 3 KB of the 32 KB
RAM memory are left for the heap. The small heap imposes a severe
limit on the size of programs because the heap contains both the data
and the program represented as a S-expression.

Yet other implementations target specific applications and conse-
quently provide extensions to R*RS. A fair comparison would have to
take into account the complete set of features of each implementation.
The goal of this section is less lofty. It only aims to give a rough
feel of the size of the implementations by measuring the size of the
executables.

We obtained the source code of several Scheme implementations
which appeared to be compact and compiled them on an Athlon-based
GNU /Linux workstation. The makefiles of the systems were used when
available. Dynamic linking was used when possible and the executa-
bles were then stripped to remove debugging information. In the case
of BIT, we compiled it using gcc without any options and then we
stripped the executable.

Figure 13 shows the results. The only implementation whose size
comes close to BIT is Mini-Scheme. This implementation is far from
being R*RS compliant and part of the Scheme library is in an initial-
ization file loaded at startup which is not accounted for in our size
measure.

When it comes to time efficiency our implementation is comparable
to other systems, but somewhat on the slow side. We measured the
execution time of photovore modified so that it exits after 200 sweeps
and with dummy function definitions for the robot specific primitives.
The execution when using BIT and a large heap is 2.0 times slower
than when using the Gambit interpreter [10] and 8.6 times slower than
when using the SCM interpreter which is one of the fastest Scheme
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Implementation Size of interpreter
QScheme 0.5.1 8] 198 KB
SCM 5.7 [15] 168 KB
SIOD 3.2 [6] 160 KB
LispMe 3.11 [4] 151 KB!
Pocket Scheme 1.1.0 [12] 124 KB?
fools 1.3.2 [20] 75 KB
Vx-Scheme 0.3 [25] 66 KB
TinyScheme 1.33 [26] 45 KB
Mini-Scheme 0.85 [21] 32 KB

BIT (byte-code interpreter 22 KB
with full library)

Figure 13. Size of different small Scheme implementations.

interpreters available. While we took great care with space-efficiency,
we essentially ignored execution speed as long as it stayed reasonably
(asymptotically) efficient.

The main sources of inefficiency come from the memory management
and the virtual machine. First, even in the best conditions, our GC is
not the fastest incremental GC (see the work of Larose and Feeley [16]
for a comparison). Second, we do not try to reduce the GC overhead
by grouping the collection phases into coarser, less frequent phases.
So the GC is called during most of the allocations. Third, since our
virtual machine does not use a stack, it keeps the arguments of each
call in a list. It means that a pair must be allocated for each argument.
Given that memory management is slow, this process is rather heavy.
Finally, the concise style in which the library is written adds to the
time inefficiency. Higher-order functions are extensively used, even in
many apparently basic operations such as + and <.

Although there is extensive literature on real-time garbage collec-
tion, we did not find another GC technique that tries to minimize the
heap space that is occupied by administrative structures. Ours provides
hard real-time guarantees, eliminates fragmentation, and allows objects

! LispMe is intended to run on a Palm Pilot. We did not have a version that ran
on our workstation. The size that is given is that of the image file (LispMe.prc) that
goes directly on the Palm.

2 The size of the Pocket Scheme interpreter is that of the Windows executable
along with its companion DLL.
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of arbitrary length [9, 16]. Other techniques either use two semi-spaces
or some heap organization that is costly in space [5], do not eliminate
fragmentation [29, 30], do not provide hard real-time guarantees [2],
cannot accommodate large objects [3, 24], or a combination of these
and so we do not consider them to fit our needs. Interestingly, the
technique presented by Bacon et al. [2] regulates garbage collection
effort on a time basis, while most other techniques work on an allocation
basis. The pace of the execution of the program is very steady as the
program is not directly accountable for its allocations. However, it is
the responsibility of the programmer to guarantee that his program
does not allocate too much data during any period of time. Unless the
program allocates very little, this is a condition that is quite hard to
verify.

Microcontroller implementations of high-level languages such as Ba-
sic, C, and Forth have existed for some time now. More recently, ef-
forts have been invested to adapt Java to this task too. In particular,
JavaCards with an 8-bit processor and a few KB RAM can be pro-
grammed to perform a variety of tasks. However, the subset of Java
supported does not include some important features such as garbage
collection, multidimensional arrays, strings and threads [7] which lowers
the expressive power of the language.

6.5. FUTURE WORK

We can think of many ways to extend our work.

— The unnecessary machinery that rebuilds the allocated constants
could be dropped. If no constant of a certain type has to be rebuilt,
the construction code specific to this type is useless.

— The symbol names should be dropped, when possible. Often, only
the identities of the symbols are required, not their names.

— The runtime could be given the ability to drop the parts of the
byte-code that become useless and turn them into additional heap
space. Indeed, it is quite common to have parts of Scheme programs
intended only for the initialization.

— The compiler should provide the user with flags to control the
inclusion of features and declare properties about the program.

— The time efficiency could be improved.

— We should consider the execution of compressed byte-code. La-
tendresse et al. [18, 17, 19] have demonstrated that byte-code
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compressed using Huffman encoding could be executed directly
with a negligible loss of speed. A Huffman encoding of the byte-
code and a customized virtual machine can be generated on a per-
program basis, leading to very compact representations of Scheme
programs. However, the decoding virtual machine, which is not
compressed, can become relatively large if good execution speed is
desired.

— A better implementation of environments could be provided. En-
vironment representations that are tailored to the local needs of
the Scheme expressions would be preferable (see Figures 5 and 6).

— Various analyses that are well known in the speed optimization ar-
eas could be put to use in space optimization areas too. Such anal-
yses include flow analyses [23], dead code detection, representation
analyses, useless-variable detection, and storage use analyses.

7. Conclusion

Our goal was to determine whether it is possible to program micro-
controllers in Scheme. The two major constraints concern space and
real-time-ness of the implementation. In order to obtain a small imple-
mentation, we took advantage of the static nature of microcontroller
applications and separated the implementation in a byte-code compiler
and a runtime kernel. The compiler is designed to run on a normal
workstation. It produces byte-code which, added to the runtime kernel,
provides a small executable code to transfer to the microcontroller.

We took great care in our design to favor space efficiency. The princi-
pal choices concern: run-time representation of Scheme objects such as
type information and environments; memory management, which has
to be real-time; the virtual machine embedded in the runtime kernel
and its associated byte-code. In general, we selected the most compact
approaches as long as they stayed reasonably simple and that they did
not compromise the asymptotic complexity of Scheme programs.

Our results clearly demonstrate that it is feasible to program micro-
controllers in Scheme. Scheme sources, once compiled, become byte-
codes several times smaller. Interesting programs can be executed with
as little as 9 KB ROM and between 3 KB and 4 KB RAM. The main
weakness of our system is the low speed of execution, which is about
10 times slower than the fastest Scheme interpreters. However, the sys-
tem delivers adequate performance for realistic applications including
hobby robotics.
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This program controls a LEGO MINDSTORMS robot so that it will find a
; source of light on the floor (flashlight, candle, white paper, etc).
The robot is made of 2 motors (A and C) and a light detector (at

; position 2). Each motor controls one of the wheels. Only one motor
is active at any moment, so the robot zigzags towards its target.

; It sweeps on one side, and then the other, and so on. O0On each sweep
it determines at which heading the reading of the light sensor was
greatest and this heading becomes the nominal heading of the next

; sweep. Once in a while a wide sweep is performed.

(define narrow-sweep 20) ; width of a narrow "sweep"
(define full-sweep 70) ; width of a full "sweep"
(define light-sensor 1) ; light sensor is at position 2
(define motorl 0) ; motor 1 is at position A

(define motor2 2) ; motor 2 is at position C

(define (start-sweep sweeps limit heading turn)
(if (> turn 0) ; start to turn right or left
(begin (motor-stop motorl) (motor-fwd motor2))
(begin (motor-stop motor2) (motor-fwd motorl)))
(sweep sweeps limit heading turn (get-reading) heading))

(define (sweep sweeps limit heading turn best-r best-h)
(write-to-lcd heading) ; show where we are going
(if (= heading 0) (beep)) ; mark the nominal heading
(if (= heading limit)

(let ((new-turn (- turn))
(new-heading (- heading best-h) ))
(if (< sweeps 20)

(start-sweep (+ sweeps 1)
(* new-turn narrow-sweep)
new-heading
new-turn)

(start-sweep 0
(* new-turn full-sweep)
new-heading
new-turn)))

(let ((reading (get-reading)))
(if (> reading best-r) ; high value means lots of light
(sweep sweeps limit (+ heading turn) turn reading heading)

(sweep sweeps limit (+ heading turn) turn best-r best-h)))))

(define (get-reading)
(- (read-active-sensor light-sensor))) ; read light sensor

(start-sweep O full-sweep O 1)

Figure 14. The source code of the photovore program.
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