
Entropy Coders Based on the
Splitting of Lexicographic Intervals

Danny Dubé
Danny.Dube@ift.ulaval.ca

/ Université Laval
Canada

DCC

Presented at the 2020 IEEE
Data Compression Conference

Snowbird, Utah, USA — March 24–27

Abstract

We propose a technique that performs entropy coding by
splitting lexicographic intervals. We mention the main
characteristics of our technique, where most of the char-
acteristics definitely apply, by design, and the others are
expected to apply, after empirical or theoretical demonstra-
tions are provided. Our technique is (or, at least, should
be):

• based on automata quite similar to Mealy machines;

• fast in encoding and decoding;

• able to achieve arbitrarily low redundancy;

• designed to require a small number of states;

• able to decode forwards (making it suitable for strea-
ming);

• able to handle skewed probability distributions;

• intended for stationary memoryless sources;

• a kind of variable-to-fixed coding; and

• able to handle finite source alphabets of arbitrary
sizes.

Analogy to a Word-Guessing Game

Inspiration for the coding technique:

“Is the secret word lexicographically smaller
than w?”

Translation into string-processing terms:

“Is the (infinite) input string lexicographically
smaller than w?”

. . .

<? turn

<? table

. . .

<

<? think

. . .

<

. . .

>

>

<

<? use

. . .

<

. . .

>

>

Technical Tools

Input alphabet:

Σ , {a, b, . . . , z}
Output alphabet:

2 , {0, 1}
Lexicographic bounds:

B , {ǫ} ∪ Σ∗ · (Σ− {a}) ∪ {∞}
Plain and split lexicographic intervals:

I , {[r, t] | r, t ∈ B and r < t}

Î , {[r 〈s〉 t] | r, s, t ∈ B and r < s < t}
Contents of intervals, by extension:

X([r, t]) = X([r 〈s〉 t]) , {ω ∈ Σ∞ | r < ω < t}
Conversion to plain intervals:

U([r 〈s〉 t]) , [r, t]
Conversion to split intervals:

SF̂ ([r, t]) ,

{
[r 〈s〉 t] ∈ F̂

}

Trimming of lexicographic intervals:
T([ǫ, a · w]) = T([ǫ, w])
T([ǫ, b]) = [ǫ, ∞]
T([ǫ, d · w]) = [ǫ, d · w], if (d = b and w 6= ǫ) or d > b

T([ǫ, ∞]) = [ǫ, ∞]
T([c · v, c · w]) = T([v, w])
T([c · v, d]) = T([v, ∞]), if succ(c) = d
T([c · v, d · w]) = [c · v, d · w], if (succ(c) = d and w 6= ǫ) or succ(c) < d
T([c · v, ∞]) = [c · v, ∞], if c < z

T([z · v, ∞]) = T([v, ∞])
Effect of the trimming operation:

X([r, t]) = {w} ·X(T([r, t])), where w is the LCP of X([r, t])
Coding rate of an automaton, in source symbols per output bit:

R(Q̂) =
∑

[r 〈s〉 t]∈Q̂

(
|LCP(X([r, s]))| · Pr (r < Ω < s | r < Ω < t)

+|LCP(X([s, t]))| · Pr (s < Ω < t | r < Ω < t)

)
·p̂([r 〈s〉 t])

Example of an Automaton

[ǫ 〈ab〉∞] [ab 〈b〉∞]

<, aa, 0

>, ǫ, 1

<, ab, 0

>, b, 1

Automaton: Q̂ = {[ǫ 〈ab〉∞], [ab 〈b〉∞]}
Probs.: p(a) = 0.7 and p(b) = 0.3

Coding rate: R(Q̂) = 1.126 sym./bit

Definition of Automaton

An automaton is defined as a set of split intervals Q̂ ⊂ Î
with the following properties. Let Q = {U(I) | I ∈ Q̂}.

Finiteness Set Q̂ is finite.
Existence of a start state There exists a start state;

i.e. [ǫ, ∞] ∈ Q.

Closure Transitions always lead to other states in Q̂;
i.e. for any [r 〈s〉 t] ∈ Q̂, we have both T([r, s]) ∈ Q
and T([s, t]) ∈ Q.

Determinism Given a specific knowledge about the input
string, the automaton systematically decides to apply
the same test on the input string; i.e. for any [r, t] ∈
Q, there exists s ∈ B such that SQ̂([r, t]) = {[r 〈s〉 t]}.

References

[1] Jarek Duda. Asymmetric numeral systems: entropy
coding combining speed of Huffman coding with com-
pression rate of arithmetic coding, 2014.
arXiv:1311.2540v2.

[2] Ryusei Fujita, Ken-ichi Iwata, and Hirosuke Yamamoto.
An iterative algorithm to optimize the average perfor-
mance of Markov chains with finite states. In Proceed-
ings of the IEEE International Symposium on Informa-
tion Theory, pages 1902–1906, Paris, France, July 2019.

[3] Michael Holcombe. Algebraic Automata Theory. Cam-
bridge Studies in Advanced Mathematics. Cambridge
University Press, 1982.

[4] D. A. Huffman. A method for the construction of
minimum-redundancy codes. In Proceedings of the In-
stitute of Radio Engineers, volume 40, pages 1098–1101,
sep 1952.

[5] B. P. Tunstall. Synthesis of Noiseless Compression
Codes. PhD thesis, Georgia Institute of Technology,
1967.

[6] J. S. Vitter. Design and analysis of dynamic Huffman
codes. Journal of the ACM, 34(4):825–845, October
1987.

[7] Ian H. Witten, Radford M. Neal, and John G. Cleary.
Arithmetic coding for data compression. Communica-
tions of the ACM, 30(6):520–540, 1987.

