Entropy Coders Based on the Splitting of Lexicographic Intervals

Danny Dubé (Danny.Dube@ift.ulaval.ca)

Université Laval, Quebec City, Canada

We propose a technique that performs entropy coding by splitting lexicographic intervals. We call it SLICE (for "Splitting of Lexicographic Intervals for the Coding of Entropy"). The coding proceeds as in a word-guessing game in which all the questions must be of the form "Is the secret word lexicographically smaller than w?" Syntactically, an automaton is completely defined by a set of split intervals $\widehat{\mathcal{Q}} \subset \widehat{\mathcal{I}}$. Let us first define \mathcal{Q} as $\{\mathrm{U}(I) \mid I \in \widehat{\mathcal{Q}}\}$. The automaton must has the following properties. Finiteness $\widehat{\mathcal{Q}}$ is finite. Existence of a start state $[\epsilon, \infty] \in \mathcal{Q}$. Closure For any $[r \langle s \rangle t] \in \widehat{\mathcal{Q}}$, we have both $\mathrm{T}([r,s]) \in \mathcal{Q}$ and $\mathrm{T}([s,t]) \in \mathcal{Q}$. Determinism For any $[r,t] \in \mathcal{Q}$, there exists $s \in \mathcal{B}$ such that $\mathrm{S}_{\widehat{\mathcal{Q}}}([r,t]) = \{[r \langle s \rangle t]\}$. The coding rate $R(\widehat{\mathcal{Q}})$ is measured in source symbols per output bit.

Example of a coding automaton
$$\widehat{\mathcal{Q}}$$
: $(aa, 0)$ (ab, ∞) $(ab$