
Using Bit Recycling to Reduce the Redundancy in

Plurally Parsable Dictionaries

Ahmad Al-Rababa’a

Université Laval, Canada

Ahmad.Al-Rababaa.1@ulaval.ca

Danny Dubé

Université Laval, Canada

Danny.Dube@ift.ulaval.ca

Abstract—Tunstall proposed an efficient algorithm for con-
structing the optimal dictionary of any particular size to obtain a
variable-to-fixed code. More accurately, the algorithm constructs
the optimal uniquely parsable dictionary. In fact, Savari showed
that, if one allows herself to consider plurally parsable dictionaries,
better codes may be constructed. Savari found a class of plurally
parsable dictionaries that outperform the Tunstall code for
memoryless, highly skewed, binary sources. This work addresses
the redundancy in plurally parsable dictionaries and proposes
the use of bit recycling as the means to reduce this redundancy,
extending the range of random binary sources that may benefit

from a plurally parsable dictionary at the same time. We present
a theoretical analysis that evaluates the performance of variable-
to-fixed codes based on the Tunstall dictionary and ones based
on plurally parsable dictionaries, using Savari’s coding on the
one hand and coding with bit recycling on the other hand.

I. INTRODUCTION

Many techniques used for lossless data compression, such
as LZ77 [1], LZ78 [2], and Tunstall codes [3], are dictionary
based and process the input string of symbols by first parsing
it. The input string s, which is drawn from some alphabet A,
is turned into the concatenation of a number n of dictionary
entries, s = s1s2 . . . sn. The entries may have variable lengths.
Each entry is selected from the dictionary that is available
at the corresponding step. In the case of Tunstall coding,
the dictionary DT remains constant for the whole process.
It has size M and all entries get mapped to codewords of
the same length. Tunstall coding is said to be variable-to-fixed
(VF). The dictionary used in any dictionary-based compression
technique has to be exhaustive (or complete). This means
that, for any infinite string σ drawn from A, it is possible
to find a prefix of σ that is an entry of the dictionary. Tunstall
devised a simple and efficient algorithm to construct an optimal
uniquely parsable dictionary of size M for strings generated
by identically and independent random variables [3]. The fact
that DT is uniquely parsable means that s can only be parsed
in a unique way. A dictionary is uniquely parsable if, for any
infinite string σ drawn from A, there exists one and only one
entry of the dictionary that is a prefix of σ. Said differently, no
entry of the dictionary may be a prefix of another one. Note
that we ignore the issue of handling the end of s, which might
involve partial matching with a dictionary entry.

Many techniques, such as LZ77 and LZ78, use a plurally
parsable dictionary; i.e. there usually exists a dictionary entry
that is a prefix of another entry. This implies that there exists
some string s that can be parsed in two or more ways. As
a consequence, s may be encoded in more than one way;
i.e. different sequences of codewords may be transmitted to

the decoder and any one of these sequences can be decoded
back into s. We call this property the multiplicity of encodings
(ME). Necessarily, ME adds redundancy to a coding technique.
Still, Savari [4] showed that it was possible to design a plurally
parsable dictionary that outperforms the Tunstall dictionary
when facing a very skewed memoryless binary source.

The bit recycling technique [5], [6] has been introduced
to reduce the redundancy caused by ME. The idea behind the
expression “bit recycling” is that bits that would have been
wasted due to ME get turned into useful information. Variants
of bit recycling have been applied on the LZ77 algorithm.
Experimental results showed that bit recycling achieves a
reduction of about 9% in the size of files compressed by Gzip
by exploiting ME in LZ77 [7].

This works aims to show and calculate the redundancy
caused by ME in plurally parsable dictionaries designed by
Savari, and to show how this redundancy is an opportunity for
bit recycling to outperform the Tunstall and Savari encodings
for highly skewed, memoryless, binary sources. At the same
time, bit recycling extends the range of random binary sources
that may benefit from a plurally parsable dictionary.

The rest of the paper is organized as follows. The Tunstall
code and a plurally parsable dictionary are briefly reviewed in
Section II. The principle of bit recycling and how it can be used
to lessen the redundancy in the plurally parsable dictionaries
are presented in Section III. Section IV contains a theoretical
analysis and the results obtained by applying bit recycling on
the plurally parsable dictionaries. Finally, the conclusion is
given in Section V.

II. TUNSTALL’S AND SAVARI’S DICTIONARIES

In this work, we consider a random binary source X with
alphabet A = {0, 1}. A string s = b1b2 . . . bn produced by the
source has each bit bi generated identically and independently
by Xi. Variable Xi generates 0 with probability p0 and 1 with
probability p1. Let M be the desired size of the dictionaries.
Let N = M − 2 be the number of entries that will be
identical in both the uniquely parsable dictionary and the
plurally parsable one. We are interested in sources that are
skewed and, in particular, we assume that the source obeys
pN0 ≥ p1.

Tunstall’s algorithm for constructing an optimal uniquely
parsable dictionary of M entries for a source like X is well
known [3]. We merely state that, since the source is skewed,
the dictionary DT constructed by Tunstall’s algorithm has to



Entry DT DS Codeword

1 1 1 000

2 01 01 001

3 001 001 010

4 0001 0001 011

5 00001 00001 100

6 000001 000001 101

7 0000001 000000 110

8 0000000 000000000000 111

TABLE I. THE TUNSTALL AND SAVARI DICTIONARIES FOR A SKEWED

BINARY SOURCE

be as follows.

DT = {0l1 | 0 ≤ l ≤ N} ∪ {0N+1} (1)

It is easy to verify that DT is uniquely parsable.

Savari considered a family of dictionaries, for i ≥ 2 [4]:

{0l1 | 0 ≤ l < N} ∪ {0N , 0iN}. (2)

It is clear that these dictionaries are plurally parsable. In this
work, we consider the simplest of these dictionaries: the one
(DS) for which i = 2.

DS = {0l1 | 0 ≤ l < N} ∪ {0N , 02N} (3)

For example, suppose that we want to construct DT and DS

for a binary source with the probabilities p0 = 0.9 and
p1 = 0.1. Suppose the desired dictionary size is M = 8
(so N = 6). Note that the source obeys the aforementioned
assumption: pN0 ≥ p1. Table I presents DT and DS . One may
observe that, in DS , entry 7 is a prefix of entry 8, which
definitely makes DS a plurally parsable dictionary. Despite the
fact that this introduces ME and, consequently, incurs some
redundancy, Savari has shown that DS outperforms DT for
the skewed source. To illustrate the presence of ME, let us
see that an encoder using DS may parse the example string
s = 0211 in three ways: (i) 000000-000000-000000-0001;
(ii) 000000000000-000000-0001; (iii) 000000-000000000000-
0001. We say that the encoder is offered three choices. These
three choices result in the following codewords, respectively:
(i) 110-110-110-011; (ii) 111-110-011; (iii) 110-111-011. The
source and the two dictionaries presented in this very para-
graph are used as a running example in the remainder of the
paper.

From the dictionaries defined by both Tunstall and Savari,
we can derive the corresponding codes. Let us start with the
one for Tunstall. First, let us define dT as the (partial) function
that merely maps entries of DT to their respective codewords.
Next, let us recursively define cT as the function that parses
and encodes an input string according to DT .

cT (u · v) = dT (u) · cT (v), where u ∈ DT (4)

We observe that cT is deterministic in the way it parses
its argument since there is always a unique entry in DT

that matches a prefix of the argument. In a strict sense, this
definition of cT is incomplete because we do not describe how
to handle arguments that are too short for a match of occur.
However, as stated above, we choose to ignore the issue of
encoding the end of the input string.

Now, we define the code that derives from DS . First, we
analogously define dS as a mere mapping of entries of DS

to codewords. Next, we turn to defining cS . Notice that it is
possible to define cS in many different ways as DS is plurally
parsable. Savari forces cS to be deterministic by adopting a
greedy rule: whenever the argument starts with enough ’0’s,
entry M is used.1 The definition is the following.

cS(0
l1 · w) =







dS(0
2N ) · cS(0

l−2N1 · w), if l ≥ 2N
dS(u) · cS(v), otherwise,

where u · v = 0l1 · w and u ∈ DS

(5)

This rule is sufficient to make cS deterministic since DS −
{02N} forms a uniquely parsable dictionary. Once again, we
have ignored the issue of the end of the input string.

III. BIT RECYCLING AND THE REDUNDANCY DUE TO ME

In the running example, we saw an instance of ME in that
s = 0211 can be parsed in three ways using DS . Although
Savari deliberately forbids alternative parses by imposing a
greedy parse rule, she does acknowledge that there is ME.
However, ME adds redundancy and merely forbidding the use
of all but one desired parse does not remove that redundancy.
So Savari’s technique is still able to feature an improvement
due to the fact that the advantage brought by removing the
unique-parsability constraint more than compensates for the
disadvantage caused by introducing ME.

Bit recycling adopts a more opportunistic approach. Instead
of ignoring ME or trying to avoid the generation of ME in
the first place, which might be a computationally daunting
task, bit recycling uses ME to carry information implicitly
from the coder to the decoder. Let us illustrate this using the
running example. The encoder is offered three choices for the
encoding of s = 0211. Let us denote these choices by Q1, Q2,
and Q3, respectively. Encoding s according to these choices
would cost 12, 9, and 9 bits, respectively. Let us suppose that
the encoder rejects Q1 due to its higher cost. The encoder is
left with Q2 and Q3, both having the same cost. While cS
would systematically select Q2, there is no economical reason
to prefer Q2 over Q3 and vice versa. However, by adding a
few extra operations in the programming of both the coder and
the decoder, it would be possible to use this situation as an
opportunity to transmit one bit of information for free. If we
let b be a bit we want to transmit for free, then the coder ought
to choose Qb+2. The decoder, after receiving this particular
encoding of s, would be able to acknowledge that the selection
of Qb+2 among Q2 and Q3 was intentional and it would then
be able to recover the free bit b. Thanks to the free bit, our two
choices Q2 and Q3, taken together, can be viewed as costing
8 bits since after encoding one of them using 9 bits, we obtain
the transmission of 1 bit for free, resulting in a “net cost” of
8 bits. Why should the coder/decoder pair take the trouble of
transmitting free bits, like this? Because, by doing so each time
opportunities arise, a valuable amount of information may get
transmitted. This information may describe, say, the end of s
and, this way, allow the very transmission of s to terminate
“ahead of time” due to the opportunistic transmission of the
rest via free bits.

The example of bit recycling above illustrates the essence
of Huffman bit recycling (HuBR). HuBR is the first form of bit

1Yamamoto and Yokoo also adopt a greedy-parsing rule to make their
plurally parsable VF codes deterministic [8].



recycling which, in the presence of multiple choices offered
to the encoder, allows to recycle one or many bits. HuBR is
sub-optimal in recovering a compensation for the redundancy
incurred by ME. Fundamentally, this is due to the fact that only
(one or many) whole bits may get recycled. This fact constrains
the recycling to be performed on an integer number of bits at
a time. So, in HuBR, either 1 or 2 bits may get recycled in a
situation where, “ideally”, it is somehow 1.5 bits that should
have been recycled. The wholeness of the recycled bits forces
the encoder/decoder pair to manipulate all the choices as a
set. It also leads to the dropping of choices, when they are too
costly, and to other inefficiencies. We keep the presentation
of HuBR to this superficial description. The construction of
optimal whole-bit recycling codes was presented in 2009 [9].

Later, the authors have proposed a more efficient bit
recycling technique, arithmetic code bit recycling (ACBR) [10],
which has the ability to achieve perfect recycling2 and to
exploit even the costly choices (like Q1), since it is built on
arithmetic code. ACBR features the ability to assign fractional
numbers of recycled bits to options. Moreover, it is always
possible to handle multiple choices two at a time. Thus, to
any two choices Q1 and Q2, of respective costs c1 and c2,
we may assign recycled codewords of length r1 and r2, with
no need for special care for the respective magnitudes of the
costs. In ACBR, instead of assigning a specific recycled bit
sequence to a choice as in HuBR, a sub-interval Ii = [L, H)
contained within the unit interval [0.0, 1.0) gets assigned. The
amount of information that gets recycled from the selection of
a choice Qi is the self-information specified by the associated
sub-interval Ii. ACBR cumulatively divides the unit interval
into sub-intervals proportionally according to the selection
probabilities of the choices as follows. The average cost of two
choices Q1 and Q2, of respective costs c1 and c2, is given by:

c1 ⊗ c2 = minr1, r2(c1 − r1)
1

2r1 + (c2 − r2)
1

2r2

subject to 1
2r1 + 1

2r2 ≥ 1 .

(6)

Accordingly, the unit interval (or the current recycling interval,
with all proportions kept, if the unit interval has already been
subdivided) is divided into two sub-intervals: I1, of length 1

2r1 ,

and I2, of length 1
2r2 . Since ACBR is not forced to constrain r1

and r2 to be integers, then it has the ability to achieve the
minimum (optimal) value of c1 ⊗ c2. We have found that the
minimum value for c1 ⊗ c2 is reached at:

r1 = λ− c2 and r2 = λ− c1 (7)

where λ = log2(2
c1 + 2c2). In conclusion, Q1 has the

probability p1 = 1
2r1 (which is the length of I1) to recycle

r1 bits, and Q2 has the probability p2 = 1
2r2 (which is the

length of I2) to recycle r2 bits.

For the sake of illustration, let us consider the choices (i),
(ii), and (iii) of the running example again. ACBR will exploit
the three of them, even if choice (i) is much more expensive
than the others. The three choices are joined in two steps,
two choices being joined at each step. In the first step, let
us consider choices (ii) and (iii) to be Q1 and Q2 and their
costs are c1 = c2 = 9. The value of c1 ⊗ c2 = 8 bits is

2That is, ACBR is able to recycle as many bits as there are redundant bits
caused by ME, provided the list of the available choices can be established
efficiently, computationally speaking.

obtained by assigning equal numbers of recycled bits to the
choices; i.e. r1 = r2 = 1. The interpretation of ACBR for
this assignment is that the encoder and decoder will divide
the unit interval [0, 1) into two sub-intervals proportionally
according to the choices probabilities. Therefore, each of Q1

and Q2 have the same probability, 1
2 , to be selected and each

of them would cause log2
1

1/2 = 1 bit to be recycled. We

may now consider that choices (ii) and (iii) have been joined
into a new choice (ii*) that costs 8 bits. In the second step,
let Q1 be the new choice (ii*) and Q2 be choice (i). We have
c1 = 8 and c2 = 12. Now, the value of c1 ⊗ c2 = 7.91 bits
is achieved by assigning r1 to 0.09 and r2 to 4.09. Then the
new division of the unit interval [0.0, 1.0) will be as follows:
choice (i) is assigned a sub-interval of length 1

2r2 = 0.06
and a sub-interval of length (1 − 0.06 = 0.94) is divided
equally between choices (ii) and (iii), so we can say that the
following intervals: [0.0, 0.47), [0.47, 0.94), and [0.94, 1.0)
are assigned to choices (ii), (iii), and (i), respectively. The
appropriate sub-interval will be selected by the coder according
to the information that needs to be transmitted “for free”. For
more details about ACBR we refer the reader to [7] and [10].

IV. THEORETICAL ANALYSIS AND RESULTS

In this section, and based on the aforementioned assump-
tions, we aim to evaluate the performance of constructing VF
codes for a string, s, taken from a binary source, A = {0, 1},
using the Tunstall code and plurally parsable dictionaries
without and with ACBR. For convenience, we view s as a
concatenation of regular chunks, r, of the form 0∗1, followed
by an irregular chunk of the form 0∗. For the sake of simplicity,
we assume that a ’1’ bit gets added to the end of s at coding
time and gets stripped at decoding time. Therefore, s can be
viewed as a sequence of only regular chunks. Then only regular
chunks need be taken into consideration in the analysis, below.
Asymptotically, the single irregular chunk has a negligible
impact on the coding efficiency.

In order to be able to evaluate the performance of each
technique, we need to calculate the average number A⊡ of
bits (the expected length of the codeword) produced per regular
chunk. These calculations are based on the number C⊡(0

l1) of
bits produced for the chunk 0l1, for l ≥ 0. Let us start with the
Tunstall code. The probability of 0l1 to be the next chunk to
encode is pl0 ·p1. Chunk 0l1 needs CT (0

l1) bits to be encoded.
If we let Z be the length of the fixed-length codeword of a
dictionary with M entries (i.e. Z = log2 M bits), we have:

CT (0
l1) = |cT (0

l1)| = Z ·

(⌊

l

M − 1

⌋

+ 1

)

. (8)

Accordingly, AT is the expectation of CT . We were able to
reduce the infinite sum and obtain a closed formula for AT .

AT =

∞
∑

l=0

CT (0
l1) · pl0 · p1 = Z ·

(

1 +
pM−1
0

1− pM−1
0

)

(9)

In the same way, let us consider the Savari code. Each
chunk 0l1 needs CS(0

l1) bits to be encoded.

CS(0
l1) = |cS(0

l1)| = Z ·

(⌊

l

2 · (M − 2)
+

1

2

⌋

+ 1

)

(10)
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Fig. 1. A comparison of AT , AS , and AR for M = 4

Accordingly, AS is the expectation of CS and we were once
again able to derive a closed formula.

AS =

∞
∑

l=0

CS(0
l1) · pl0 · p1 = Z ·

(

1 +
pM−2
0

1− p
2(M−2)
0

)

(11)

Now, let us calculate AR by using ACBR on DS as follows.
The cost of encoding chunk 0l1 is calculated with the help of
Equation (6) and according to the following recurrence:

CR(0
l1) =











Z, if l < N
2Z, if N ≤ l < 2N
(

Z + CR(0
l−N1) ⊗

Z + CR(0
l−2N1)

)

, otherwise.

(12)
The idea is that, when the chunk starts with at least 2N ’0’s,
we may as well extract entry 0N or entry 02N as a prefix of
the chunk and then continue with the coding of the remainder.
Now AR can be calculated as follows.

AR =

∞
∑

l=0

CR(0
l1) · pl0 · p1 (13)

In order to be able to compare AT , AS , and AR for
dictionaries of different sizes and for different binary sources,
we have computed the averages for 4 ≤ M ≤ 8 and for p0 high
enough to obey the condition pN0 ≥ p1 (which is p0 ≥ 0.62,
for M = 4, and p0 ≥ 0.78, for M = 8). Unfortunately,
since we could not derive a closed formula for AR, as we
did for AT and AS , we have computed AR numerically
using the aforementioned recurrence. We computed AR with
a precision of 10−8 by considering the summation from l = 0
to large-enough l’s for all values of M and p0. The computed
values for M = 4 is plotted in Figure 1. It is clear that a
significant improvement (less redundancy), represented by the
gap between the curves, is achieved by ACBR. Notice that
ACBR extends the range of the binary sources that may benefit
from plurally parsable dictionaries from p0 ∈ [0.8, 0.99] to
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Fig. 2. A comparison of AT , AS , and AR for M = 8

p0 ∈ [0.72, 0.99]. We found that, as M increases, the gap
between the curves decreases and the value of p0 at which
ACBR starts to outperform the Tunstall and Savari codes
increases. Therefore a smaller improvement has been achieved
for M = 8, as shown in Figure 2.

V. CONCLUSION

We have proposed the principle of ACBR as a solution for
the redundancy caused by ME in plurally parsable dictionar-
ies. The theoretical analysis showed that applying ACBR on
plurally parsable dictionaries, for memoryless, highly skewed,
binary sources, achieves a significant improvement (less re-
dundancy), especially for small dictionaries. Moreover, it has
been shown that ACBR widens the class of binary sources that
may benefit from a plurally parsable dictionary.
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