2013 13th Canadian Workshop on Information Theory

Using Bit Recycling to Reduce Knuth’s Balanced
Codes Redundancy

Ahmad Al-rababa’a
Laval University, Canada
Ahmad.Al-rababaa.l@Qulaval.ca

Abstract—Donald Knuth published an efficient algorithm
for constructing a code with balanced codewords. A balanced
codeword is a codeword that contains an equal number of zero’s
and one’s. The redundancy of the codes built using Knuth’s
algorithm is about twice the lower bound on redundancy. In
this paper we propose a new scheme based on the bit recycling
compression technique to reduce Knuth’s algorithm redundancy.
The proposed scheme does not affect the simplicity of Knuth’s
algorithm and achieves less redundancy. Theoretical results and
an analysis of our scheme are presented as well.

I. INTRODUCTION

A binary balanced codeword is a codeword that contains
an equal number of ones and zeroes. The balanced codes
have found many applications, such as the digital recording
on magnetic and optical storage devices like magnetic tapes,
Compact Disks (CDs), Blue-ray disks (BD) and DVDs, and the
applications in both the optical networks and error correcting
and detecting codes.

In 1986, Donald Knuth published an efficient algorithm for
constructing balanced codes [1]. Knuth’s algorithm is efficient
due to its simplicity and the fact that it does not need look-
up tables. The main idea of Knuth’s algorithm is that any
unbalanced user data word w of length m, m even, can
be encoded to construct a new balanced codeword, say w,
by complementing the first k£ bits of w. A balanced prefix
codeword v of even length p, which represents the index k,
is appended in front of w. Thus the whole new constructed
balanced codeword is composed of v followed by w (vw).
The decoder decodes vw as follows. It reads the first p bits
which are the prefix codeword for k; then it knows the number
of bits of the start of w that need to be complemented in order
to retrieve the original word w. The prefix codeword itself will
be discarded once the original word is retrieved.

Restricting codewords to balanced ones necessarily in-
troduces redundancy. However, the redundancy of Knuth’s
balanced codes is about twice the lower bound (theoretical
bound) on redundancy, as it has been shown by Weber and
Immink [2]. Later in the same work [2], the authors presented
their first attempt to close the gap between Knuth’s redundancy
and the lower bound redundancy. The first improvement at-
tempt achieved only little profit, but later on they achieved a
significant improvement [3].

In this paper, we propose a new scheme to address the same
problem. Our scheme to reduce Knuth’s algorithm redundancy
is based on the bit recycling compression technique, presented
by Dubé and Beaudoin [4], [5], [6], [7], [8]. The bit recycling

978-1-4799-0634-5/13/$31.00 ©2013 |IEEE

Danny Dubé
Laval University, Canada

Danny.Dube@ift.ulaval.ca

Jean-Yves Chouinard
Laval University, Canada

Jean-Yves.Chouinard@gel.ulaval.ca

has been introduced to minimize the redundancy caused by
the multiplicity of encodings. The multiplicity of encodings
means that the source data may be encoded in more than
one way. In its simplest form, it occurs when a technique has
the opportunity, at certain steps, to encode the same symbol
differently, i.e. different codewords for the same symbol can
be sent to the decoder. Any one of theses codewords can be de-
coded correctly. Knuth’s algorithm does have the multiplicity
of encoding property as we show later on in this paper. Hence,
the objective of this work is to apply bit recycling on Knuth’s
algorithm to reduce the redundancy gap mentioned above.

The outline of the next sections is as follows. In Section II
we present the notion of generating balanced codes and the
minimum redundancy needed to produce the full sets of
balanced codewords. We also review Knuth’s algorithm and
its redundancy. Section III contains the description of the
proposed scheme. A theoretical analysis and results are given
in Section IV. Section V concludes this paper.

II. BACKGROUND
A. Balanced codes redundancy

A binary codeword that has an equal number of zeros and
ones is called a balanced codeword, i.e. if m is the length of
the balanced codeword then it should contain exactly m /2 ones
and m/2 zeros. Generating balanced codeword necessarily
incurs redundancy, since among the m-bit words, there are
fewer than 2™ balanced codewords. To show how many bits
we need to do that, we have first to know how many balanced
codewords exist among all the possible m-bit words.

Theoretically, the number of m-bit balanced codewords is

m 2
~— 2", 1
(m/2) V2mm %
The approximation is due to Stirling. Since
2

V2mm

then extra bits are needed as a redundancy to produce a full
sets of balanced codewords (i.e. 2™ codewords). The number
of extra bits (parity bits), p, that are needed to form the full
sets of 2™ balanced codewords can be calculated as follows

p=m—10g2(m”}2), 3)
which has been approximated by Knuth [1] to

< 1; for m > 1; 2

1
p 3 logy, m 4 0.326, for m > 1. @

2013 13th Canadian Workshop on Information Theory

Therefore, the redundancy R equals

_ 3 logym +0.326
m

1
R ~—1 . 5

(m) “logm. ()
R represents the minimum redundancy (the lower bound) to
generate the full sets of balanced codewords by any technique

or algorithm.

B. Knuth’s algorithm

Before we delve into the details, let’s explain the main
principle of Knuth’s algorithm using the following concrete
example. Let w of length 8 bits be *10101101’, it is clear that
this word is unbalanced, since it contains 5 one’s and 3 zero’s.
By complementing the first bit (k = 1), the new constructed
balanced codeword, w, will be ’00101101°. Let v, the balanced
prefix codeword for k, be ’000111°, *001011°, *001101°,
’001110°, °010011°, *010101°,7010110°, and 011001” for k&
=1, 2,..., and 8 respectively. Then the whole new constructed
balanced codeword is *00011100101101° of length p+m = 14
bits. The decoder reads the first 6 bits ’000111°. knowing that
000111 is the prefix codeword for £ = 1, then the decoder
complements the first bit of 00101101 to reconstruct the
original word *10101101°. The prefix codeword 000111 is
discarded after reconstructing the original word.

Notice that the encoder does not have to choose k = 1.
It could also choose k& = 3, 5, or 7. So it has the freedom
to construct any of the following four balanced codewords
’00101101°,°01001101°,°01010101’, and *01010011° by com-
plementing the first £k = 1, 3, 5, and 7 bits respectively. This
selection freedom means that Knuth’s algorithms does have
the multiplicity of encoding property, since the encoder can
encode the original word 10101101 in multiple ways. It has
been proved by Knuth [1] that there is at least one balance
point (k) within the word w of length m, m even. Weber and
Immink also showed that the number of k’s (balance points)
is at most m /2. Thus the number, ¢, of the available k’s to
balance any arbitrary m-bit word is

1<e<m/2. (6)

According to Knuth’s basic algorithm, we need p extra bits
to encode k. Knuth showed that, in his best construction, p
equals

1
p ~ logym + 3 log, log, m. @)
Therefore, Knuth’s algorithm redundancy, KR, equals

log, m + 1 log, log, m
KR(m) = g2 3 1085 108>

& l1og2m7 m > 1. (8)
m m
As it has been concluded in [2], KR is about twice R which
is given in (5). L.e. Knuth’s redundancy KR is about twice
the minimum redundancy R. Weber and Immink [2] have
computed the average information, AV,, that can be conveyed
by the selection freedom described above. AV, has been
approximated for large m to

1
AVe(m) = 3 logy m — 0.196. 9)

They commented on the value of AV, explaining that it
compensates for the loss in code rate between codes based on
Knuth’s algorithm and codes based on full balanced codeword

w of m=8 bits
[1

Block#1 (1/0/1/0(1(1|0/1

~1>

kef1,3,5,7)

0

R RL|O|O

Fork= 1 3 5 7

(Blockin 11700 [1[1]1]0]

\\0\0\1\1\0\1 IO\l\O\O\l\l\O\l}\

|
Balanced codeword of block #1
to be forwarded to the decoder

Fig. 1. The main steps of bit recycling for Knuth’s algorithm.

sets. Obviously, this is an opportunity for bit recycling to mini-
mize this gap in redundancy, since the aim of bit recycling is to
exploit such a selection freedom (the multiplicity of encodings)
to minimize the redundancy as we show in Section III.

III. APPLYING BIT RECYCLING ON KNUTH’S ALGORITHM

We have shown the presence of multiplicity of encoding
in Knuth’s algorithm and the significant average amount of
information that can be saved by this property to compensate
for the loss in code rate due to Knuth’s redundancy. For the
sake of space, we explain the principle of bit recycling [4]
implicitly by applying it directly on Knuth’s algorithm.

We start explaining our scheme, Bit Recycling for Knuth’s
Algorithm (BRKA), using Fig. 1, which contains a practical
example to illustrate the main steps of the BRKA encoder. To
keep consistency, the first block to be encoded in Fig. 1 is
the same word, ’10101101°, that we considered in Section II.
For simplicity, we consider the whole unbalanced stream, o,
which consists of n blocks to be the input stream of BRKA. The
BRKA encoder constructs for each block BL of length m = §,
the corresponding balanced block BL'. BL' is composed of the
prefix balanced codeword v, of fixed-length p = 6, followed
by w of length m = 8. We assume that all 2" original blocks
are equiprobable and independent. We first explain the BRKA
encoder.

A. The BRKA encoder

The encoder encodes o step by step as follows:

1) Read the next block, BL, and inspect it for the full set
of balance point, i.e. the £’s that can make it balanced.
In the example depicted in Fig. 1, we can observe that
BL can be balanced by using any % in {1,3,5,7}.

2) Generate the prefix code for the choices (the k’s)
identified in step (1).
The prefix codes for the available k’s are constructed

2013 13th Canadian Workshop on Information Theory

as shown in Fig. 1. The Huffman tree TR for £’s is
constructed assuming that the k’s are equiprobable.
We call the constructed prefix codewords, *00°, *01°,
’10°, and "11”° for k =1, 3, 5, and 7 respectively, the
recycled codewords. Notice that the table besides TR
lists in reversed order the recycled codeword bits.

3) Compare each recycled codeword constructed in

step (2) with the last bits of ¢. This matching should
be done backward starting from the end of o. There
should exist one and only one match. Delete from
the end of the stream the bits that match one of the
recycled codewords.
In our example, the constructed codeword "01°, the
recycled codeword for k=3, matches the last two bits
of o from right to left. So the last two bits *10°
are deleted from o. Next, we explain the reasoning
behind this step.

4) The processed block is balanced by complementing
the first & bits, where £ is the choice whose recycled
codeword matches the last bits of o in step (3),
and the balanced prefix codeword, v, of the selected
k is appended in front of it. Thus the whole new
constructed balanced codeword BL' (vib) will be the
block to be sent to the decoder.

According to this step, w =’01001101" is constructed
by complementing the first 3 bits (kK = 3) of BL, and
BL' (vw) will be *00110101001101°.

5) If there remains unprocessed blocks in the stream
then go to step (1), otherwise, make the necessary
termination and stop.

In step (3) the encoder provides a complete solution by
constructing a new prefix recycled codewords, *00°, ’01°, *10’,
and ’11’ according to the available k’s that can balance the
original word w, since the last two bits of any arbitrary binary
stream should be either *00’, °01°, °10’, or *11°. In case of three
choices, the generated recycled codewords would be *0’, "10°,
’11°, (or ’17,°00’, °01”) and so on. Notice that it is step (3) that
performs the operations that reap the benefits of bit recycling.

Step (3) is necessary for the decoder since the received
block, 00110101001101°, contains the value of k=3 as a sig-
nal, on which the decoder depends to restore the corresponding
recycled codeword that has been deleted by the encoder at the
end of 0. The decoder decodes the block *00110101001101°,
realizing that the k& value of the received block is 3 and the
original word w is *10101101°. Also, it can infer that w can be
balanced by using any k in {1, 3, 5, 7}. Therefore, the set of
k values that can balance the original word can be established
by both the encoder and the decoder identically and implicitly.
Accordingly, the decoder can rebuild 7R, which is identical to
the one that has been built by the encoder, and it can infer
the recycled codeword 01’ that corresponds to the received
k. This means that one of the recycled codewords of the
available k’s has been transmitted implicitly from the encoder
to the decoder. The selection of the received k& among {1,3,5,7}
constitutes an eye wink from the encoder to the decoder. The
bits that have been matched with the end of o (deleted) at
the encoder side and restored at the decoder side are called
the recycled bits and the technique itself, bit recycling. The
recycled bits at each step are one of the recycled codewords
created at that step. If there is only one k to make the
block BL, balanced then the encoder does not delete anything

r
v lm
) P
BL#1 BL#2)‘ | _| BL#n

BL#/ BL#i+1

N

End of encoding

m = 8 bits

i

Fig. 2. The termination process.

from o. The idea of recycling comes from the fact that bits that
would have been wasted due to the multiplicity are turned into
useful information. Based on this arrangement, the decoder can
restore the bits that have been deleted by the encoder at the
same location as we show below in the BRKA decoder section.

Before moving on to the decoder, let’s briefly explain the
termination process mentioned in step (5). The termination
process keeps the whole stream balanced as follows. The
encoding process ends when the encoding pointer, prq, which
goes forward and the recycling pointer, prs, which goes
backward, meet or have crossed each other as depicted in
Fig. 2. The encoding pointer, pr;, moves forward block by
block, and pro moves backward a few bits a time. Thus,
at any time during the encoding process, o can be viewed
as follows. The part of o to the left of pr; represents the
already encoded data, the part to the left of pro represents
the already recycled data, and the part between pr; and pro
represents the unprocessed data. When pry and prs have met
then the whole stream is balanced, but if they have crossed
over, then the encoding process ends at a point where a part
of the last block is transmitted; thus we can not confirm that
this part is balanced. Accordingly, the termination process
sends an integer number of blocks to guarantee that the whole
transmitted stream is balanced. This is the main purpose of
the termination process (the details are not described here to
save space for more important issues). The termination process
causes the encoder to describe at most 7' bits twice; once by
encoding and a second time by recycling. The maximum value
of T is

[logo(m/2)] — 1+ p+m. (10)

Therefore, given that 7' does not depend on n, the termination
process does not affect the performance of our scheme.

B. The BRKA decoder

To this point, we saw how the encoder works, and how
the new constructed balanced codewords contain an implicit
message (the eye wink) within each block that indicates the
selected choice. The decoder at the other side undoes what
the encoder did according to the implicit message in each
block to recover the recycled bits. The decoder decodes the
whole stream received from the encoder, ¢’, block by block,
as follows:

1) Read the next block, vw, and retrieve the original
word w according to the first p bits (v).
In Fig. 1, the first 6 bits of the first encoded block,

2013 13th Canadian Workshop on Information Theory

Recycled codewords

ranareon] 10

10

The stream transmitted
by the encoder (¢”)

Fig. 3. The decoding process of BRKA

BL', were *001101°. Realizing that 001101” is the
prefix codeword for k = 3, then the original word
w =10101101" can be retrieved by complementing
the first 3 bits of w ="01001101".

2) Inspect w for the full set of k’s (balance points).

3) Generate the prefix code for the available
choices (k’s) by building the corresponding TR.

4) Insert the recycled codeword for the received k£ from
right to left as shown in Fig. 3. If there is only one
k then the decoder inserts nothing.
Notice that by receiving a particular choice of &,
the decoder deduces what are the bits that should be
recycled.

5) If there remains unprocessed blocks in the stream
then go to step (1), otherwise, make the necessary
termination and stop.

The BRKA scheme described above uses the bit recycling
based on Huffman coding (HuBR). Another variant of bit
recycling based on arithmetic coding (ACBR) [9] can also
be applied. ACBR can achieve better recycling than HuBR.
We found that the improvement in the code rate efficiency
by applying ACBR instead of HuBR on Knuth’s redundancy
is very small in the equiprobable case, which is the case
of Knuth’s algorithm. Therefore and for sake of space, the
principle of ACBR [9] is not further considered here. Next, in
the theoretical analysis, we briefly show the difference in the
performance of ACBR and HuBR.

The main factors of the per-block computational com-
plexity for Knuth’s algorithm are reading m-bit block and
finding a balance point in it. Our scheme introduces additional
overhead due to the following operations: Determining all the
available balance points in the block instead of determining
only one balance point, building the Huffman tree for the set of
balance points, and the recycling procedure. The computation
complexity of reading m-bit block is the same for Knuth’s
algorithm and the BRKA scheme, which is ©(m). The com-
plexity of determining the balance point(s) is ©(1) for Knuth’s
algorithm and ©(m) for BRKA. Let ¢ denote the number of
available balance points in m-bit block, then the complexity
of constructing the Huffman tree of ¢ leafs is ©(c), and that of
the recycling procedure is ©(log, ¢). Given that 1 < ¢ < m/2,
then the overall computation complexity of Knuth’s algorithm
and the BRKA scheme is ©(m). Only the hidden constant
changes.

IV. THEORETICAL ANALYSIS AND RESULTS

In order to evaluate the performance of BRKA scheme, we
first have to calculate the average number of bits that can be

TABLE L CALCULATED H(m), L, AND N FOR DIFFERENT VALUES OF

m.

m H(m) L N
8 0.95 0.113 0.837
16 1.37 0.117 1.253
32 1.80 0.101 1.699
64 2.25 0.079 2.171

128 2.70 0.057 2.643
256 3.16 0.039 3.121
512 3.68 0.026 3.654

1024 4.10 0.016 4.084

2048 4.60 0.010 4.590

4096 5.10 0.006 5.094

recycled per m-bit block. Let the original word, w, has ¢ as
a balance point. Let ¢ denotes the number of the available
balance points, then the BRKA encoder has the opportunity
to recycle if ¢ > 2. Accordingly, the BRKA encoder builds a
Huffman tree of c¢ leafs. A Huffman tree of ¢ equiprobable
leafs contains two codeword lengths, k1 = |log, ¢| and ko =
[log, ¢]. Then there will be ¢ — 2d codewords of length k;
and 2d codewords of length k5, where d is given by:

d=c—2llog=¢ an

The probability p; = (1/2%7) is the probability of selecting the
balance point 4, i.e. it is the probability that o ends with these
exact k; bits. Since there are two different lengths (two j’s),
then the average number of recycled bits, AV, for ¢ number
of choices equals

1
Therefore,
A 1 L L 1
14 (C) = (C_Qd) I_ 082 CJ ’ 9log;] +2d- 2[log, c] ’ |— 082 flis)

We have already mentioned that the value of ¢ for any random
unbalanced m-bit word, m even, is 1 < ¢ < m/2. Therefore,
the average amount of information, H, that can be recycled
per block by applying BRKA is

m/2

H(m)=>_P(c)- AV (c), (14)

where P(c) denote the probability that w offers exactly ¢
balance points. P(c) has been computed by Weber and Immink
in [2] as follows

P(c) = 2¢t1—m (%721:;) , 1<e<m/2. (15
Now we can compute H(m) for different values of m to
evaluate the performance of BRKA. Accordingly, the value of
H (m) has been calculated for different values of m as shown
in Table I in order to be able to evaluate the improvement
added by BRKA with respect to Knuth’s original algorithm
and the minimum redundancy. One issue we have to take into
account is the loss, L(m), in H(m) due to the deleted blocks,
since the average amount of information that can be conveyed

2013 13th Canadian Workshop on Information Theory

by the available choices in the recycled blocks could not be
exploited by the BRKA scheme. Therefore, we have to calculate
L(m) as follows. On average, BRKA recycles H(m) bits per
m-bit unbalanced block. The full stream o contains n blocks,
then the integer average number of recycled blocks, AVjg,
in o equals |A-H(m)/m], where A is the actual number
of the blocks that can be exploited (encoded) including the
termination block. The relation between n and A is:
A-H (m)J

16)
m

n—A—f—{

The total number of bits that can be recycled in o is A - H
bits. Accordingly, the loss, L(m), in H(m) per block due to
the recycled (deleted) blocks equals

L(m) = (A-(H(m))2> < <(H(nT))2>' (17)

n-m

The corresponding value of L(m) for each m are also indicated
in Table I. It is clear that the average lost bits per block can
be neglected, especially for large m, since is does not affect
the code efficiency of BRK A. However, we will consider
the average net number of recycled bits per block, [V, in the
remaining part of this section.

The ideal average amount of information, I(m), that can
be conveyed per block via the selection freedom in Knuth’s
algorithm has been computed and approximated for large m
by Weber and Immink in [2] to

m/2
1
I(m) = P(c)-logym ~ 5 logzm — 0916 (18)
c=1

The difference between (14) and (18) represents the difference
between the performance of HuBR and ACBR, which can be
observed by comparing the value of H(m) achieved by BRKA
and the value of I(m) for various values of m. Now to put it
all together, we calculated the absolute minimum number of
redundant bits per m-bit block (lower bound), the number of
redundant bits per m-bit block in Knuth’s algorithm and in the
BRKA scheme, and I(m) for different values of m as shown
in Table II. Finally, the numerical values of Table II are plotted
in one graph for clear observations, in Fig. 4.

By looking at Fig. 4 we can come up with the following
conclusions. First, the BRKA scheme achieves a significant
reduction in Knuth’s algorithm redundancy, i.e. we minimized
the redundancy gap between Knuth’s algorithm and the lower
bound. Second, the performance of BRKA is very close to I(m)
value, which means that BRKA achieves a utilization, for the
information that can be conveyed via the selection freedom per
m-bit word, that is very close to the ideal case, as it has been
computed in [2]. It is clear from Fig. 4 that the performance of
BRKA is almost the same as the I(m) value. The I(m) value
is depicted in Fig. 4 by the thin dashed line and the reader
may observe how small the difference is. Notice that, BRKA
achieved better performance than the I(m) value for m < 32,
because the value of I(m) is approximated in (18) for large m,
thus the I(m) value for m < 32 does not represent the exact
value. Third, it is clear that there is still some gap that needs
to be closed. Using variable-length prefix codes might further
reduce the remaining gap as it has been computed in [2].
Fourth, the results of the straightforward solution proposed

10

TABLE II. THE COMPUTED VALUES OF THE MINIMUM REDUNDANCY,
KNUTH’S REDUNDANCY WITH AND WITHOUT BIT RECYCLING, AND [
VALUE.

m | Log | Minimum Knuth’s (BRKA) |I (m)

m | redundancy | redundancy | redundancy |
- - * | Value
8 3 1.826 3.48 2.60 2.77
16 | 4 2.326 4.60 3.32 3.39
32 | 5 2.826 5.70 3.98 3.99
64 | 6 3.326 6.78 4.60 457
128 | 7 3.826 7.85 5.20 5.14
256 | 8 4.326 8.90 5.78 5.69
512 | 9 4.826 9.95 6.30 6.24
1024 | 10 5.326 11.00 6.92 6.79
2048 | 11 5.826 12.04 7.45 7.33
4096 | 12 6.326 13.08 7.99 7.87
12.00
—=—Knuth's algorithm
11.00 —s— Immink & Weber Tech

— BRKA
—=-1(m)=0.5log m - 0.916
—— Lower bound

Number of redundant bits per block

3 4 5 6

7
Log m

Fig. 4. Comparison between the performance of Knuth’s algorithm with and
without bit recycling, the Immink & Weber technique, and the I value.

by Weber and Immink in [3] are also depicted in Fig. 4. It is
clear that our scheme is less redundant than that of Immink
and Weber [3]. In the scheme by Immink and Weber, for
m < 64 the redundancy is almost like Knuth’s redundancy,
therefore they recommended to switch to another solution for
m < 64. Hence, our scheme achieved a significant reduction
in the redundancy gap, and is less redundant than the scheme
proposed by Immink and Weber [3] for all values of m.

V. CONCLUSION

A new simple scheme named Bit Recycling for Knuth’s
Algorithm (BRKA) has been proposed to minimize the re-
dundancy caused by the multiplicity of encoding in Knuth’s
algorithm. BRKA scheme has achieved a significant reduction
in the gap between Knuth’s algorithm redundancy and the
lower bound redundancy for all values of m (word length).

More work is needed to find a solution to the remaining
small gap between the lower bound redundancy and BRKA’s
redundancy. We believe that the remaining gap could be closed,
since BRKA currently exploits the multiplicity of encodings
only in m-bit word and not on the whole length of the
generated (m + p)-bits balanced words.

2013 13th Canadian Workshop on Information Theory

VI. ACKNOWLEDGEMENT

The authors would like to thank the anonymous referees

whose comments helped to improve this paper. This work has
been funded by NSERC of Canada.

(1]

(2]

[3]

REFERENCES

D. E. Knuth, ’Efficient balanced codes’, IEEE Trans. Inf. Theory, vol.
IT-32, pp. 51-53, 1986.

Weber, J.H and Immink, K.A.S., *’Knuth’s balancing of codewords revis-
ited’, IEEE International Symposium on Information Theory (ISIT2008).
Immink, K.A.S. and Weber, J.H, *Very Efficient Balanced Codes’, IEEE

Journal on Selected Areas in Communications, vol. 28, no. 2, February
2010.

11

[4]

[3]

[6]

(71

(8]

[9]

D. Dubé and V. Beaudoin, ’Recycling bits in LZ77-based compression’,
In Proceedings of the (SETIT 2005), Sousse, Tunisia, March 2005.

D. Dubé and V. Beaudoin, 'Improving LZ77 data compression using bit
recycling’, In Proc. of ISITA, Seoul, South Korea, October 2006.

D. Dubé and V. Beaudoin, ’Bit recycling with prefix codes’, In Proc. Of
DCC, page 379, Snowbird, Utah, USA, March 2007.

D. Dubé and V. Beaudoin, ’Improving LZ77 bit recycling using all
matches’, In Proc. of ISIT, Toronto, Canada, July 2008.

D. Dubé and V. Beaudoin, ’Constructing Optimal Whole-Bit Recycling
Codes’, In Proc. of IEEE Information Theory Workshop, Greece, 2009.
A. Al-Rababa’a and D. Dubé, * Adaptation of Bit Recycling to Arithmetic
Coding’, has been accepted to be published in 'The 9th International
Workshop on Systems, Signal Processing, and their Application’s’,
Algeria, May 2013.

