
Fast Construction of
Disposable Prefix-Free Codes
Danny Dub́e

Universit́e Laval, Canada
Email: Danny.Dube@ift.ulaval.ca

Vincent Beaudoin
Universit́e Laval, Canada

Email: Vincent.Beaudoin.1@ulaval.ca

Abstract— Some data compression techniques use large num-
bers of prefix-free codes. The following two techniques do so:
adaptive Huffman encoding and bit recycling. Adaptive Huffman
encoding allows successive symbols to be encoded where each one
is encoded according to the statistics of the symbols seen so far.
Bit recycling, on the other hand, is a technique that is designed
to improve the efficiency of a certain class of compression
techniques (that is, the ones that allow for the existence of
multiple encodings of the same data) and that repetitively has to
build prefix-free codes that are used to encode or decode only one
symbol. In the case of adaptive Huffman encoding, the simple
but inefficient solution consists in building a prefix-free code from
scratch according to the current statistics (using, say, Huffman’s
algorithm) before encoding each symbol. However, there exist
efficient algorithms for adaptive encoding that take advantage of
the fact that the statistics evolve only progressively (e.g., Vitter’s
algorithm). Bit recycling, on the other hand, is unlikely to reuse
the same, or even a similar, prefix-free code. Consequently, a lot
of prefix-free codes need to be constructed from scratch. What
we propose is to use a fast technique to construct prefix-free
codes. The technique trades speed in exchange of the optimality
of the prefix-free codes it builds. We measured that the technique
is 3 to 4 times faster than Huffman’s algorithm, while the
encodings of the symbols are only 4% or 1.4% longer on average,
depending on whether the technique is used in a general context
or in a bit-recycling one, respectively.

I. I NTRODUCTION

It is very common for data compression techniques to
construct one or a few prefix-free codes that are then used
to encode and decode symbols. But less common are the
data compression techniques that construct a large number of
prefix-free codes and that use most of them only to encode
or decode a single symbol. We will refer to prefix-free codes
that are built and then used to encode or decode a single (or
a few) symbol asdisposable.

The main reason behind the need for disposable prefix-
free codes in a data compression application is the situation
where the statistics of the symbols change constantly. An
application that requires symbols to be encoded and decoded
in an optimal or close-to-optimal manner forces the prefix-free
codes to be modified accordingly. A different, but somehow
related, reason is when the alphabet from which the symbols
are drawn changes constantly. Note that we can choose to
view this second reason as a special case of the first if we
define a universal alphabet which is the set of all the symbols
that could ever be manipulated by the application and adapt
the statistics (or the probabilities) of the symbols in order

to control the possibility of occurrence of each symbol. In
other words, if we denote byU the universal alphabet and
by Σ the alphabet of currently possible symbols, then it is
sufficient to declare eachimpossiblesymbol as being perfectly
improbable, i.e. if a ∈ U − Σ, thenP (a) = 0. In Section II,
we present applications in which the statistics of the symbols
change constantly.

In this work, we present a technique that is well-suited
for data compression applications that work with disposable
prefix-free codes. The technique offers the means to build a
new code and to encode and decode a symbol using such a
code. Note that a code built using our technique isnot limited
to the processing of a single symbol. The particularity of the
technique is that of being fast when disposable codes are used.
The technique features especially fast construction of codes at
the cost of building sub-optimal codes, in general. Thus, ina
context where a code would be used to encode and decode a
lot of symbols, our technique wouldnot be appropriate, due
to its sub-optimality. Still, it would provide correct encoding
and decoding operations. In Section IV, we show that the
technique is very fast when it comes to the construction of
codes and that the loss in coding efficiency is relatively limited.
Moreover, all the operations that it provides have an optimal
time complexity.

In the rest of the paper, we use the following vocabulary.
We usually refer to prefix-free codes simply ascodes. We
call symbolsthe events, numbers, flags, or whatever pieces of
information that the compressor needs to communicate to the
decompressor. The symbols are encoded be the compressor
and then decoded by the decompressor using some code. The
set of symbols that may be transmitted at any given point or
in general is called thealphabet. A codewordis a sequence
of bits and it is the encoded version of a symbol. Thus, a
code is a mapping between all the symbols of an alphabet and
sequences of bits. The set of bit sequences associated to the
alphabet by a code obeys the usual restrictions that make the
code prefix-free.

The paper is organized as follows. Section II describes the
problem that we attack in details. Section III describes the
technique that we propose. Section IV presents the exper-
iments that were conducted and the measurements that we
obtained. Sections V and VI discuss about related and future
work. Section VII is the conclusion.



II. D ESCRIPTION OF THEPROBLEM

A. Contexts in which Codes are Used

We distinguish three contexts in which codes are used. They
are characterized by the way the statistics according to which
they are built evolve. The first context is the one in which the
statistics of the symbols do not change or they do but very
rarely. The other contexts are the ones in which the statistics
of the symbols change all the time or, at least, frequently. The
second context is the one in which the statistics change but
only progressively. The third context is the one in which the
statistics of the symbols are constantly changing and so in an
irregular way.

The first context occurs when, for instance, the compres-
sor works first by gathering the statistics of the symbols,
by constructing a code, by communicating the code to the
decompressor, and finally by sending all the symbols encoded
using the code. The Deflate compression technique [1], which
is a variant of LZ77 [13] that is used in thegzip tool [6],
proceeds in this way. Deflate processes one large block of data
at a time. Itparsesthe bytes in the block in order to determine
how it decomposes into matches and literals. It does not emit
any compressed data at this step. Based on the statistics of
the matches and the literals, it builds two codes. Then, the
sequence of matches and literals of the block is encoded using
these two codes. In such a context, the statistics remain static
for relatively long periods. Consequently, it is worthwhile to
take the time to build optimal codes. It is worthwhile both for
the coding efficiency and for the fact that fast encoding and
fast decoding may be obtained by taking the time to set up
helpful data structures. Huffman’s algorithm [7] is usefulin
this context, since it is able to build optimal codes.

The second context occurs, for instance, inadaptiveHuff-
man encoding. Adaptive Huffman encoding consists in updat-
ing the statistics of the symbols while they are transmitted.
Provided that optimal encoding is mandatory, the fact that
the statistics change constantly implies that the code has to
be changed constantly, too. Note that some changes in the
statistics do not necessarily force the code to change but, to the
very least, some verification has to be performed to ascertain
that the code is still optimal. If the conventional Huffman
algorithm were used, it would force a reconstruction of the
code each time the statistics are updated (i.e. possibly each
time a symbol is encoded). Since the construction of a code
is much more costly than the encoding (or decoding) of a
symbol, the overall cost of using Huffman’s algorithm would
be prohibitive. Fortunately, it is not necessary to rebuilda
code from scratch each time the statistics are updated. This
is because the updates normally involve the increment of one
or a few counters. This means that a code that is optimal for
the old statistics could be “minimally modified” in order to
become optimal for the new statistics. Vitter’s algorithm [10]
performs optimal adaptive Huffman encoding by efficiently
updating the code each time a symbol is encoded.

The third context occurs, for instance, in a technique called
bit recycling [2], [3], [4], [12]. Bit recycling is explained

below. Bit recycling routinely has to build a new code from
new statistics. Moreover, the code has to be built from scratch
since the statistics are (almost) always totally different.

B. Overview of Bit Recycling

Bit recycling is a technique that is intended to be added
on top of data compression techniques that suffer from the
problem of being prone to allow original data to be compressed
in many different ways or, in other words, that suffer from the
multiplicity of encodings. Multiple encodings for the same
data causes redundancy and tends to make the compressed
files longer than necessary. LZ77, for instance, suffers from
the multiplicity of encodings [13]. LZ77 works by looking for
matches between the very next bytes to describe and those
that have already been described. A match has a lengthl (the
number of bytes it describes) and a distanced (the number of
bytes to the left of the current position where the matching
bytes can be found) and is denoted by〈l, d〉. In order to max-
imize compression, an LZ77 compressor looks for matches
that are as long as possible, i.e. those that describe as many
(clear-text) bytes as possible. For example, let us supposethat
the very next bytes to describe are “definition” and that
it is not possible to find a match longer than 10 bytes. Thus, a
longest match has the form〈10, d〉. Note that there may exist
more than one longest match.

A key observation is that, if the compressor has found
n possible longest matches,〈10, d1〉, . . . , 〈10, dn〉, it may
choose any one of these and still describe “definition”.
The possibility for the compressor to choose (as it wishes)
any of the matches allows it to make something like aneye
wink to the decompressor. That is, provided the decompressor
is programmed to notice the eye winks. In particular, if there
exist two longest matches (n = 2), selecting one over the other
carries one bit of information. Similarly, ifn = 4, the selection
carries two bits of information. In general, ifn = 2k, the
selection carriesk bits of information. The idea of bit recycling
is to send bits of compressed data using eye winksinstead
of doing so through the compressed file. Sending bits using
eye winks contributes to reduce the size of the compressed
files. That being said, the compressor is limited to send only
as many bits using eye winks as the longest matches permit
since the compressor does not have control overn.

The presentation of bit recycling above is a bit naı̈ve. First,
it is not necessary forn to be a power of two. Second, it is
important to notice that an important issue has been neglected
in the presentation: the cost of using some match〈l, di〉 over
another. The encoding of〈l, di〉 might require more bits than
that of 〈l, dj〉, for i 6= j. This issue is important since the
benefit of using eye winks might get ruined by the occa-
sional selection of costly matches. However, nothing forces
bit recycling to associate a fixed number of eye-wink bits to
each longest match. In fact, Dubé and Beaudoin [3] found
experimentally that a very good way to associate eye-wink bits
to matches is to build a prefix-free code using statistics derived
from the costs of the encodings of the matches. This way to
associate eye-wink bits is calledproportional bit recycling. In



proportional bit recycling, a match〈l, di〉, which is encoded
in, say,ci bits, is assigned a “frequency” of2−ci . A prefix-free
code is then built, based on these frequencies. The codeword
that is associated to each match constitutes its sequence of
eye-wink bits. The net effect is that, the more costly a match
is, the more numerous the eye-wink bits tend to be.

The operations on codes that bit recycling uses are: the
construction of a new code based on a set of longest matches,
the conversion of a match to its associated sequence of
eye-wink bits, and the inverse conversion. Note that these
operations on codes are those that take care of the bits involved
in the bit recycling proper. The codes used to encode and
decode the matches and the literals need not have any relation
with them. For instance, the codes for the matches and the
literals may continue to be rebuilt on a per-block basis if this
is the case in the original technique (i.e. the technique without
bit recycling). So, let us focus on the operations related to
bit recycling. On the compressor side, each time there exist
multiple longest matches, a code has to be built to associate
them to eye-wink bit sequences and the code is used once
for the decoding of a match. Note that the compressor has
to perform adecodingoperation because the chosen match
gets selected with the intent of transmitting certain eye-wink
bits to the decompressor. On the decompressor side, when a
longest match is received and when it is established that other
matches could have been used instead, a code is built (the
same code as that on the compressor side) and it is used once
to encode the match in order to recover the eye wink made
by the compressor.

Given the way the codes related to bit recycling are used, it
is clear that each code is built with the intent of using it only
once and it is rather infrequent for a code to be required again.
Consequently, it is reasonable to abandon each of the codes
after its use instead of trying to store, index, and possiblyreuse
them.

C. Cost of the Proposed Operations

Our technique is intended to work for prefix-free codes
and symbols in general, i.e. not only for a bit recycling
technique. As said above, three operations have to be provided:
the construction of a code from a set of symbols and their
associated frequencies, the encoding of a symbol, and the
decoding of a symbol. Essentially, we would like to have the
construction of a code in time proportional to the number of
symbols and the encoding and the decoding of a symbol in
time proportional to the length of the codeword associated to
the symbol. However, we will see that there is an additional
value ∆ that must be taken into account. The asymptotic
complexity of the three operations grows linearly with∆
too. ∆ is the logarithm of the quotient between the highest
frequency and the lowest non-zero one, i.e.

∆ = log
2
fmax − log

2
fmin

In the context of bit recycling,∆ has an intuitive meaning:
it is the difference between the cost of the most costly match
and that of the least costly one.

III. D ESCRIPTION OF THETECHNIQUE

A. From Frequency Counts to Costs

Unlike Huffman’s algorithm, our technique does not ma-
nipulate probabilities nor frequencies. Instead, it manipulates
costs. A cost is an estimate of the number of bits that would
be required to encode each symbol of an alphabet. A cost
is a logarithmic measure in the sense that a symbol that is
twice as improbable ought to be one bit higher. Our technique
is insensitive to the absolute costs of the symbols; only
their relative costs matter. It means that uniformly adding
or subtracting the same constant to all the costs does not
change the resulting code. This is similar to the insensitivity
of Huffman’s algorithm where multiplying or dividing all the
frequencies by the same constant does not change the resulting
code.

When an application intends to use our technique by provid-
ing the frequencies of the symbols, then the frequencies first
have to be translated into costs. LetΣ be the alphabet that
contains all the provided symbols. Without loss of generality,
we make the simplifying assumption that all the frequencies
are strictly positive. IfΣ were to contain improbable symbols
then we could redefineΣ by ejecting these and keeping only
the symbols with strictly positive frequencies. For each symbol
s of frequencyfs, we compute its costcs as⌈− log

2
fs⌉.

Let us recall that our technique sacrifices the optimality of
the built codes in order to make the construction faster. It
should be clear that this very first conversion alone, when it
must be performed, is sufficient to lead to sub-optimal codes.
For example, suppose that there are three symbols of frequen-
cies1/5, 1/6, and1/7. Clearly, the optimal code consists in
assigning a 1-bit codeword to the most frequent symbol and
two 2-bit codewords to the other symbols. However, once the
frequencies are converted into costs (costs of 3, here), then
the single 1-bit codeword might be assigned to any one of the
three symbols.

B. Building a Code

Our technique builds a code for an alphabetΣ = {s1, . . . ,
sn} whose symbols are assigned costs. The cost ofsi is ci.
The construction proceeds in a few steps. The code that is
built by our technique is represented in an implicit form. This
form contains enough information for a subsequent encoding
or decoding operation to proceed smoothly.

The first step consists in counting the number of symbols of
each cost. Letcount[c] be the number of symbols of costc.
During this step, the technique takes note of the values of
cmin , the minimum cost, andcmax , the maximum cost. Note
that ∆, presented above, is simplycmax − cmin . This step
can be performed in timeO(n), provided that the arraycount
contains only zeros, initially. Clearly, at the end of this step,
count[c] = 0 for c < cmin and forc > cmax .

The second step consists in computing the shape of the
binary tree that implicitly represents the code built by the
technique. Before we describe the computations precisely,we
intuitively explain the way the tree is built. We need to talk



about thelevels of the tree. The level in which the deepest
leaves are placed is numberedcmax . Each time we go up a
level, the number of the level decreases. Ideally, the tree that
is built would havecount[c] leaves on levelc. Each leaf on
level c would correspond to a symbol of costc. On level c,
there would be exactly half as manyinternal nodesas there
would benodeson levelc+1. On the highest level (one with
a cost no more thancmin ), there would be the root of the tree.
We say “ideally” because, in reality, the number of nodes on a
level might not be even. In order to compute the (real) shape of
the tree, the array ‘carry’ is used. The first entry is computed
like this:

carry[cmax ] = 0.

Then, the entries of progressively lower cost are computed like
this:

carry[c] =

⌈

count[c + 1] + carry[c + 1]

2

⌉

.

Since count[c] = 0 for c < cmin , then there is a costcroot
(croot ≤ cmin ) such thatcarry[c] = 1 for c <= croot .
Since we do not want to manipulate an infinite array, what
we do in practice is to progressively compute the entries
of array ‘carry’ until we reach a costc ≤ cmin such that
count[c] + carry[c] = 1. This cost is calledcroot . Intuitively,
carry[c] is roughly the number of internal nodes at levelc.
The second step is performed in timeO(cmax − croot). Since
croot is not an input of the code construction algorithm, but
only an indirect consequence, we prefer to replace it by a lower
bound. The minimal value thatcroot can take iscmin−⌈log

2
n⌉

and it happens when (almost) all the symbols have costcmin .
Consequently,O(cmax−croot) ⊆ O(∆+log

2
n) and the worst

case happens when a single symbol has costcmax and all the
others have costcmin .

The third step consists in establishing a relation between
the symbols and their positions in the tree. The array ‘base’
is indexed by cost and it gives the first position in the tree
where symbols of at least a certain cost can be found. The
entries of ‘base’ are computed for costscroot to cmax this
way:

base[croot ] = 0,

base[c] = base[c − 1] + count[c − 1].

Roughly speaking,base[c] counts the number of symbols that
appear in the levels numbered less thanc, in an ideal tree.
The array ‘position’ gives the position of each symbol in the
tree. Entryposition[si] is defined asbase[c] if si is the first
symbol of costc in Σ or as position[sj ] + 1 if sj is the
closest predecessor of costc in Σ. Finally, array ‘element’ is
the inverse of array ‘position’, that is:

element[p] = si if and only if position[si] = p.

Filling array ‘base’ takes O(∆ + log
2
n) in time and filling

arrays ‘position’ and ‘element’ takesO(n) in time.
If we sum up the time required to perform all three steps,

we obtainO(n + ∆). Recall that the first step requires that

the array ‘count’ is filled with zeros. In order to obey this
condition for the next construction of a code, the array can be
cleaned to nullify all the entries that might have been changed,
i.e. entriescount[cmin ] to count[cmax ]. This cleaning can be
performed in timeO(∆), which does not change the overall
complexity. Note that, in practice,∆ is likely to be a pretty
small constant; especially if the costs come from the lengths
of the codewords, as in bit recycling, and the compression
technique imposes a bound on the lengths of the codewords.

C. Encoding and Decoding Using the Code

The encoding and decoding operations are relatively similar.
Both proceed by going up or down in the tree, level by level,
and by behaving according to the nodes they reach. There are
three different situations. The first one is when a terminal node
is reached: either the root or a leaf. The two other situations
involve internal nodes. Let us consider the internal nodes on
level c and all the nodes on levelc + 1. If there is an even
number of nodes on levelc + 1, then each internal node on
level c is the parent of two children. With a node that is the
parent of two children comes the need to distinguish between
the children. A bit (either encoded or decoded) needs to be
involved in the process of distinguishing the children. On the
other hand, when there is an odd number of nodes on levelc+
1, there is an internal node on levelc that is the parent of
a single child. In the case of this internal node, there is no
ambiguity in the identity of its child and no bit needs to be
involved. If we come back to the three situations, then the
second one applies when an internal node has a single child
and the third one, when an internal node has two children.
Note that we arbitrarily choose to let the first internal nodeof
level c be the parent of a single child when levelc+1 contains
an odd number of nodes.

We begin with the description of the decoding process
because it manipulates bits in the usual order. The decoding
process starts by pointing on the root (on levelcroot ). We let
pointer p be 0 since we start the numbering of the nodes on
a level at0. Then, the routine is the same on each level. Let
c be the current level. If0 ≤ p < count[c], then the node
pointed byp is a leaf, i.e. it represents a symbol. The position
of the symbol isbase[c] + p and, using array ‘element’, the
corresponding symbol can be recovered. Otherwise, the node
pointed byp is internal. If there is an even number of nodes on
level c+1, then a bitb has to be read, and the new value of the
pointer on levelc+1 is 2∗(p−count[c])+b. Otherwise, there
is an odd number of nodes on levelc+1. If p = count[c], then
the new value of the pointer on levelc+1 is 0. Otherwise, we
have thatp > count[c] and a bitb has to be read and the new
value of the pointer on levelc+1 is 1+2∗(p−count[c]−1)+b.

The encoding process is more complicated only because it
generates the bits in the reverse order. Letsi be the symbol
to encode. The encoding process starts at levelc = ci (si’s
cost) and by initializingp to position[si] − base[ci]. Then,
the routine is the same on each level. Ifc = croot , then the
encoding process is finished. Otherwise, the pointed node has
a parent. If there is an even number of nodes on levelc, then



Cost . . . 1 2 3 4 5 6 . . .

count . . . 0 0 0 1 3 0 . . .
carry . . . — 1 2 2 0 — . . .
base . . . — 0 0 0 1 — . . .

s1 s2 s3 s4

ci 5 5 4 5
position 1 2 0 3

Position 0 1 2 3

element s3 s1 s2 s4

Fig. 1. Arrays that form the implicit representation of a code.

the bitb = p mod 2 is emitted and the new value of the pointer
on level c − 1 is count[c − 1] + (p − b)/2. Otherwise, there
is an odd number of nodes on levelc. If p = 0, then the new
value of the pointer on levelc− 1 is count[c− 1]. Otherwise,
the bit b = (p− 1) mod 2 is emitted and the new value of the
pointer on levelc − 1 is count[c − 1] + 1 + (p − 1 − b)/2.

Both the encoding operation and the decoding operation
involve traversing the full height of the tree, in the worst case.
The operations that need to be performed on each level can
be done in constant time. Consequently, encoding or decoding
a symbol can be done in timeO(∆ + log

2
n).

D. An Example

Let us illustrate the technique with a small example. Let
Σ = {s1, s2, s3, s4} where the symbols have costs 5, 5, 4, and
5, respectively. Figure 1 presents the various arrays that get
filled by the construction of a code forΣ. Note thatcmin = 4,
cmax = 5, andcroot = 2.

Suppose that we want to encodes1. We have to start by
converting s1 into its position, which is1. The cost ofs1

is 5. We let p = position[s1] − base[5] = 1 − 1 = 0. Since
there is an odd number of nodes on level5 and p points on
the first one, then this node is the only child of its parent.
Consequently, no bit gets emitted and the newp on level 4
is count[4] = 1. Since there is an odd number of nodes on
level 4 but p does not point on the first node, then the parity
of p − 1 (0) has to be emitted and the newp on level 3 is
count[3]+1+(1−1−0)/2 = 1. Since there is an even number
of nodes on level3, then the parity ofp (1) has to be emitted
and the newp on level2 is count[2]+ (1− 1)/2 = 0. Finally,
level 2 has been reached and the encoding is finished. The bits
that have been emitted have been so in the inverse order, so
the codeword generated fors1 is 10. Note that decoding the
codeword would involve similar decision making.

Figure 2 illustrates the shape of the tree that is implicitly
represented by the arrays filled by the code construction
algorithm. Each symbol appears at the level that corresponds
to its cost. Except for the root, every node has a parent. When
a level contains an odd number of nodes, the first internal
node of the upper level has only one child. A bit needs to be

n

n n n

s3

s1 s2 s4

u w
@

@@

u w
@

@
@

w
@

@
@

0 1

0 1

0 1

Fig. 2. Picture of the tree that is implicitly represented by the arrays.

emitted (received) when one of the arms of a parent with two
children is traversed.

IV. EXPERIMENTAL RESULTS

In the experiments, we compared two techniques for the
construction of prefix-free codes: Huffman’s algorithm and
our technique. The implementation of Huffman’s algorithm
that we used comes fromgzip [6]. More precisely, it is
the one in the implementation of the Deflate technique [1].
This implementation is coded for speed. However, it performs
additional operations like trimming the codewords to make
sure they fit in 15 bits and converting the code to make it
canonical. We removed these unnecessary operations and kept
only the heap-based implementation of Huffman’s algorithm.
We added child fields in the nodes of the tree that it builds
so that the tree could be traversed downwards as much as
upwards and so, as soon as it is built.

We used two kinds of benchmarks: some where the symbols
are associated with frequencies and the others where the
symbols are associated with costs. Both kinds of benchmarks
originate from the processing of a file using a prototype by
Dubé and Beaudoin, which is a version ofgzip augmented
with bit recycling. The frequencies (of the benchmarks with
frequencies) are taken from instances of codes thatgzip has
to generate in order to send matches, literals, and canonical
codes to the decompressor. The costs (of the benchmarks
with costs) are taken from instances of codes that are used
by the bit recycling proper. These costs are the lengths of
the encodings of the set of longest matches when there are
many of these. The file whose processing generated all the
benchmarks isbook1, from the Calgary Corpus [11]. There
were 18 benchmarks with frequencies and 59 046 benchmarks
with costs that were generated by the processing ofbook1.
These numbers demonstrate how frequent the construction of
codes becomes when bit recycling is used. Fast construction
of codes is truly needed in such an application.

We had two techniques for code construction and two sets of
benchmarks. We tried the four combinations. Both techniques
were very quick. So, in any combination, we had to run the
technique on the set of benchmarks many times. When the
benchmarks with frequencies were used, we had codes built for
the whole set 100 000 times. When the benchmarks with costs
were used, we had codes built for the whole set 1000 times.
The times that we measured for the four combinations are



Kind of bench. # of instances # of iterations Time w/ Huffman Time w/ ours

With freq. 18 100 000 11.337 s 3.676 s
With costs 59 046 1000 42.747 s 11.881 s

Fig. 3. Execution times for the repetitive construction of codes for all benchmarks of each kind.

presented in Figure 3. We can see the our technique is 3 to 4
times faster than Huffman’s algorithm. Note that there is a
conversion between frequencies and costs when our technique
is used on the benchmarks with frequencies and the same when
Huffman’s algorithm is used on the benchmarks with costs.
We also measured the increase in the expected length of the
codewords caused by the sub-optimality of our technique. On
the benchmarks with frequencies, we observed an increase of
about 4% while on the benchmarks with costs, we observed an
increase of about 1.4%. The latter measurements is particularly
satisfying given that our technique performs the best (fromthe
coding efficiency point of view) when its speed is most needed,
i.e. in the context of bit recycling.

V. RELATED WORK

We compared our technique to the best-known code con-
struction technique: Huffman’s algorithm [7]. However, there
exist other techniques that are likely to be fast or even thathave
been designed with that intent. Namely, there is the encoding
of Shannon-Fano [9] and the Fyffe codes [5]. In order to have
a more complete comparison, the speed and, if applicable,
the loss in coding efficiency of these techniques ought to be
measured.

The particular case in which the statistics change constantly
but in a progressive has been studied on many occasions [8],
[10].

VI. FUTURE WORK

It would be interesting to try to develop a variant of our
technique that could accommodate finer variations in the costs
of the symbols than whole bits. Arguably, the conversion
process from frequencies to costs in the current work may
be responsible for a significant part of the loss in coding
efficiency that we observed.

We did not take the time to explain bit recycling in more
details in this paper but it has an important effect on the
way matches get selected and how the coding efficiency
must be evaluated. We refer the reader to the papers on bit
recycling [2], [3], [4], [12]. It would be interesting to look for
a technique that optimizes the coding efficiency in the context
of bit recycling, while remaining very fast.

VII. C ONCLUSION

We have presented a fast technique for the construction of
disposable codes. In order to achieve its goal, it tries to make
the construction of the codes as lightweight a process as possi-
ble, even if encoding and decoding symbols becomes heavier.
We measured the performances of our technique compared
to a very fast implementation of Huffman’s algorithm. Our
technique is 3 to 4 times faster than Huffman’s algorithm.
However, it does not necessarily generate optimal codes. In
a general context, we measured that the average length of
the codewords gets increased by about 4%. However, in the
context of bit recycling, the increase reduces to about 1.4%,
which is rather satisfying since it is precisely the bit recycling
techniques that need to build numerous disposable codes.

REFERENCES

[1] P. Deutsch. Request for comments: 1051, 1996.
http://www.ietf.org/rfc/rfc1051.txt.

[2] D. Dubé and V. Beaudoin. Recycling bits in LZ77-based compression.In
Proceedings of the Conférence des SciencesÉlectroniques, Technologies
de l’Information et des T́elécommunications (SETIT 2005), Sousse,
Tunisia, mar 2005.

[3] D. Dubé and V. Beaudoin. Improving LZ77 data compression using
bit recycling. In Proceedings of the International Symposium on
Information Theory and Applications (ISITA), Seoul, South Korea, oct
2006.

[4] D. Dubé and V. Beaudoin. Bit recycling with prefix codes. InProc. of
DCC, page 379, Snowbird, Utah, USA, mar 2007. Poster.

[5] Graham Fyffe. Fyffe codes for fast codelength approximation, 1999.
http://www.geocities.com/g fyffe/fastselect.htm.

[6] J. L. Gailly and M. Adler. The GZIP compressor.
http://www.gzip.org.

[7] D. A. Huffman. A method for the construction of minimum-redundancy
codes. InProceedings of the Institute of Radio Engineers, volume 40,
pages 1098–1101, sep 1952.

[8] D. E. Knuth. Dynamic Huffman coding.Journal of Algorithms, 6:163–
180, 1985.

[9] C. E. Shannon. A mathematical theory of communication.Bell System
Technical Journal, 27, 1948.

[10] J. S. Vitter. Design and analysis of dynamic huffman codes. Journal of
the ACM, 34(4):825–845, oct 1987.

[11] I. Witten, T. Bell, and J. Cleary. The Calgary corpus, 1987.
ftp://ftp.cpsc.ucalgary.ca/pub/projects/
text.compression.corpus.

[12] H. Yokoo. Lossless data compression and lossless data embedding. In
Proceedings of the Asia-Europe Workshop on Concepts in Information
Theory, Jeju, South Korea, oct 2006.

[13] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–
342, 1977.


