Fast Construction of
Disposable Prefix-Free Codes

Danny Dulé Vincent Beaudoin
Universié Laval, Canada Universié Laval, Canada
Email: Danny. Dube@ft. ul aval . ca Email: Vi ncent . Beaudoi n. 1@l aval . ca

Abstract— Some data compression techniques use large num-to control the possibility of occurrence of each symbol. In
bers of prefix-free codes. The following two techniques do so: other words, if we denote by/ the universal alphabet and
adaptive Huffman encoding and bit recycling. Adaptive Huffman %y 3. the alphabet of currently possible symbols, then it is

n

encoding allows successive symbols to be encoded where each o fficient to decl im bl bol bei fectl
is encoded according to the statistics of the symbols seen so far>UNCIENT IO declare eadmpossibiesymbol as being periectly

Bit recycling, on the other hand, is a technique that is designed Improbable i.e. if a € U — ¥, then P(a) = 0. In Section I,

to improve the efficiency of a certain class of compression we present applications in which the statistics of the symbo
techniques (that is, the ones that allow for the existence of change constantly.

multiple encodings of the same data) and that repetitively has to
build prefix-free codes that are used to encode or decode only one In this work, we present a technique that is well-suited
symbol. In the case of adaptive Huffman encoding, the simple for data compression applications that work with dispasabl

but inefficient solution consists in building a prefix-free code from prefix-free codes. The technique offers the means to build a
scratch according to the current statistics (using, say, Huffma’s new code and to encode and decode a symbol using such a

algorithm) before encoding each symbol. However, there exist
efficient algorithms for adaptive encoding that take advantage b code. Note that a code built using our techniquedslimited

the fact that the statistics evolve only progressively (e.g., Vigr's 0 the processing of a single symbol. The particularity & th
algorithm). Bit recycling, on the other hand, is unlikely to reuse technique is that of being fast when disposable codes atk use

the same, or even a similar, prefix-free code. Consequently, a lot The technique features especially fast construction oésad
of prefix-free codes need to be constructed from scratch. Wha the cost of building sub-optimal codes, in general. Thus in

we propose is to use a fast technique to construct prefix-free
codes. The technique trades speed in exchange of the optimalityCOnteXt where a code would be used to encode and decode a

of the prefix-free codes it builds. We measured that the technique 0t of symbols, our technique wouldot be appropriate, due
is 3 to 4 times faster than Huffman’s algorithm, while the to its sub-optimality. Still, it would provide correct erdiag
encodings of the symbols are only 4% or 1.4% longer on average, and decoding operations. In Section 1V, we show that the
gfﬁfr;d'b”i?rce’g v(\:/lki\r?ther the techntl_un is used in a general context yochpjique is very fast when it comes to the construction of
-fecycling one, Tespeciively. codes and that the loss in coding efficiency is relativelytiich
|. INTRODUCTION Moreover, all the operations that it provides have an ogdtima

. , , time complexity.
It is very common for data compression techniques to

construct one or a few prefix-free codes that are then used” the rest of the paper, we use the following vocabulary.
to encode and decode symbols. But less common are M{g usually refer to prefix-free codes simply esdes We

data compression techniques that construct a large nunfibefd! Symbolsthe events, numbers, flags, or whatever pieces of
prefix-free codes and that use most of them only to encotpformation that the compressor needs to communicate to the
or decode a single symbol. We will refer to prefix-free codedécompressor. The symbols are encoded be the compressor

that are built and then used to encode or decode a single 3f! then decoded by the decompressor using some code. The
a few) symbol aglisposable set of symbols that may be transmitted at any given point or

The main reason behind the need for disposable preflf-9eneral is called thalphabet A codewordis a sequence
free codes in a data compression application is the situat@’ Pits and it is the encoded version of a symbol. Thus, a
where the statistics of the symbols change constantly. ARJ€ iS @ mapping between all the symbols of an alphabet and
application that requires symbols to be encoded and decodgguences of bits. The set of bit sequences associated to the
in an optimal or close-to-optimal manner forces the prefeef alphabet py a code obeys the usual restrictions that make the
codes to be modified accordingly. A different, but somehofiPde prefix-free.
related, reason is when the alphabet from which the symbolsThe paper is organized as follows. Section Il describes the
are drawn changes constantly. Note that we can chooseptoblem that we attack in details. Section Il describes the
view this second reason as a special case of the first if wveehnique that we propose. Section IV presents the exper-
define a universal alphabet which is the set of all the symbadieents that were conducted and the measurements that we
that could ever be manipulated by the application and adagtitained. Sections V and VI discuss about related and future
the statistics (or the probabilities) of the symbols in erdevork. Section VIl is the conclusion.

II. DESCRIPTION OF THEPROBLEM below. Bit recycling routinely has to build a new code from
new statistics. Moreover, the code has to be built from shrat

since the statistics are (almost) always totally different
We distinguish three contexts in which codes are used. They

are characterized by the way the statistics according tetwhiB. Overview of Bit Recycling
they are built evolve. The first context is the one in which the Bit recycling is a technique that is intended to be added
statistics of the symbols do not change or they do but vesy top of data compression techniques that suffer from the
rarely. The other contexts are the ones in which the stistproblem of being prone to allow original data to be comprésse
of the symbols change all the time or, at least, frequenttg Tin many different ways or, in other words, that suffer frore th
second context is the one in which the statistics change butiltiplicity of encodings. Multiple encodings for the same
only progressively. The third context is the one in which th@ata causes redundancy and tends to make the compressed
statistics of the symbols are constantly changing and smin fles longer than necessary. LZ77, for instance, suffermfro
irregular way. the multiplicity of encodings [13]. LZ77 works by lookingfo
The first context occurs when, for instance, the compresiatches between the very next bytes to describe and those
sor works first by gathering the statistics of the symbolghat have already been described. A match has a ldnghe
by constructing a code, by communicating the code to tlmeimber of bytes it describes) and a distarigghe number of
decompressor, and finally by sending all the symbols encodegtes to the left of the current position where the matching
using the code. The Deflate compression technique [1], whiblptes can be found) and is denoted (dyd). In order to max-
is a variant of LZ77 [13] that is used in thgzi p tool [6], imize compression, an LZ77 compressor looks for matches
proceeds in this way. Deflate processes one large block af difat are as long as possible, i.e. those that describe as many
at a time. Itparsesthe bytes in the block in order to determingclear-text) bytes as possible. For example, let us supihase
how it decomposes into matches and literals. It does not entie very next bytes to describe aré€fi ni ti on” and that
any compressed data at this step. Based on the statisticst & not possible to find a match longer than 10 bytes. Thus, a
the matches and the literals, it builds two codes. Then, tlengest match has the forii0, d). Note that there may exist
sequence of matches and literals of the block is encoded usinore than one longest match.
these two codes. In such a context, the statistics rematiis sta A key observation is that, if the compressor has found
for relatively long periods. Consequently, it is worthvenlo 7 possible longest matche$]0,d;), ..., (10,d,), it may
take the time to build optimal codes. It is worthwhile both fochoose any one of these and still descrilbef‘i ni ti on”.
the coding efficiency and for the fact that fast encoding arthe possibility for the compressor to choose (as it wishes)
fast decoding may be obtained by taking the time to set @py of the matches allows it to make something likeege
helpful data structures. Huffman’s algorithm [7] is usefinl wink to the decompressor. That is, provided the decompressor
this context, since it is able to build optimal codes. is programmed to notice the eye winks. In particular, if éher
The second context occurs, for instanceadaptiveHuff- exist two longest matches (= 2), selecting one over the other
man encoding. Adaptive Huffman encoding consists in updatarries one bit of information. Similarly, if = 4, the selection
ing the statistics of the symbols while they are transmittedarries two bits of information. In general, if = 2%, the
Provided that optimal encoding is mandatory, the fact thaélection carrieg bits of information. The idea of bit recycling
the statistics change constantly implies that the code dasid to send bits of compressed data using eye winkssead
be changed constantly, too. Note that some changes in tedoing so through the compressed file. Sending bits using
statistics do not necessarily force the code to changedtliet eye winks contributes to reduce the size of the compressed
very least, some verification has to be performed to ascertéiles. That being said, the compressor is limited to send only
that the code is still optimal. If the conventional Huffmaras many bits using eye winks as the longest matches permit
algorithm were used, it would force a reconstruction of th&ince the compressor does not have control exer
code each time the statistics are updated (i.e. possibly eacThe presentation of bit recycling above is a bitvea First,
time a symbol is encoded). Since the construction of a coilds not necessary fon to be a power of two. Second, it is
is much more costly than the encoding (or decoding) of important to notice that an important issue has been neglect
symbol, the overall cost of using Huffman’s algorithm wouldn the presentation: the cost of using some maich;) over
be prohibitive. Fortunately, it is not necessary to rebuld another. The encoding dt, d;) might require more bits than
code from scratch each time the statistics are updated. Tthiat of (I,d;), for ¢ % j. This issue is important since the
is because the updates normally involve the increment of obenefit of using eye winks might get ruined by the occa-
or a few counters. This means that a code that is optimal fsibnal selection of costly matches. However, nothing ferce
the old statistics could be “minimally modified” in order tobit recycling to associate a fixed number of eye-wink bits to
become optimal for the new statistics. Vitter's algoritht®] each longest match. In fact, Deband Beaudoin [3] found
performs optimal adaptive Huffman encoding by efficientlgxperimentally that a very good way to associate eye-witk bi
updating the code each time a symbol is encoded. to matches is to build a prefix-free code using statisticiveer
The third context occurs, for instance, in a technique dallérom the costs of the encodings of the matches. This way to
bit recycling [2], [3], [4], [12]. Bit recycling is explained associate eye-wink bits is callguloportional bit recycling In

A. Contexts in which Codes are Used

proportional bit recycling, a matcll, d;), which is encoded I11. DESCRIPTION OF THETECHNIQUE
in, say,c; bits, is assigned a “frequency” af <. A prefix-free
code is then built, based on these frequencies. The codeword
that is associated to each match constitutes its sequence d#nlike Huffman’s algorithm, our technique does not ma-
eye-wink bits. The net effect is that, the more costly a matéhpulate probabilities nor frequencies. Instead, it makifes
is, the more numerous the eye-wink bits tend to be. costs. A cost is an estimate of the number of bits that would
The operations on codes that bit recycling uses are: tA@ required to encode each symbol of an alphabet. A cost
construction of a new code based on a set of longest matcHgsa logarithmic measure in the sense that a symbol that is
the conversion of a match to its associated sequence tjce as improbable ought to be one bit higher. Our technique
eye-wink bits, and the inverse conversion. Note that thele insensitive to the absolute costs of the symbols; only
operations on codes are those that take care of the bitwewoltheir relative costs matter. It means that uniformly adding
in the bit recycling proper. The codes used to encode aff subtracting the same constant to all the costs does not
decode the matches and the literals need not have any relafiBange the resulting code. This is similar to the insensitiv
with them. For instance, the codes for the matches and leHuffman’s algorithm where multiplying or dividing all &
literals may continue to be rebuilt on a per-block basis i§ thfrequencies by the same constant does not change themgsulti
is the case in the original technique (i.e. the techniquaait Ccode.
bit recycling). So, let us focus on the operations related toWhen an application intends to use our technique by provid-
bit recycling. On the compressor side, each time there exidg the frequencies of the symbols, then the frequencies firs
multiple longest matches, a code has to be built to associf@ve to be translated into costs. Letbe the alphabet that
them to eye-wink bit sequences and the code is used of€dtains all the provided symbols. Without loss of gengyali
for the decoding of a match. Note that the compressor h4§ make the simplifying assumption that all the frequencies
to perform adecodingoperation because the chosen matce strictly positive. If> were to contain improbable symbols
gets selected with the intent of transmitting certain eyekw then we could redefin& by ejecting these and keeping only
bits to the decompressor. On the decompressor side, wheti&symbols with strictly positive frequencies. For eaciisl
longest match is received and when it is established that otk of frequencyf;, we compute its cost, as[—log; fs].
matches could have been used instead, a code is built (thé&et us recall that our technique sacrifices the optimality of
same code as that on the compressor side) and it is used dh€ebuilt codes in order to make the construction faster. It
to encode the match in order to recover the eye wink maggould be clear that this very first conversion alone, when it
by the compressor. must be performed, is sufficient to lead to sub-optimal codes
Given the way the codes related to bit recycling are used fier example, suppose that there are three symbols of frequen
is clear that each code is built with the intent of using ityoniCies 1/5, 1/6, and1/7. Clearly, the optimal code consists in
once and it is rather infrequent for a code to be requirechaga@ssigning a 1-bit codeword to the most frequent symbol and
Consequently, it is reasonable to abandon each of the cot@ 2-bit codewords to the other symbols. However, once the

after its use instead of trying to store, index, and possitlge frequencies are converted into costs (costs of 3, heref, the
them. the single 1-bit codeword might be assigned to any one of the

three symbols.

From Frequency Counts to Costs

C. Cost of the Proposed Operations

Our technique is intended to work for prefix-free code8: Building a Code
and symbols in general, i.e. not only for a bit recycling Our technique builds a code for an alphabet {s1,...,
technique. As said above, three operations have to be @abvids,,} whose symbols are assigned costs. The cost; of c;.
the construction of a code from a set of symbols and théfhe construction proceeds in a few steps. The code that is
associated frequencies, the encoding of a symbol, and et by our technique is represented in an implicit formisTh
decoding of a symbol. Essentially, we would like to have therm contains enough information for a subsequent encoding
construction of a code in time proportional to the number @ decoding operation to proceed smoothly.
symbols and the encoding and the decoding of a symbol inThe first step consists in counting the number of symbols of
time proportional to the length of the codeword associated éach cost. Letount[c] be the number of symbols of coat
the symbol. However, we will see that there is an additionguring this step, the technique takes note of the values of
value A that must be taken into account. The asymptotig . , the minimum cost, and,,.., the maximum cost. Note
complexity of the three operations grows linearly with that A, presented above, iS SIMPW,az — Cmin. ThiS Step
too. A is the logarithm of the quotient between the highesfan be performed in timé(n), provided that the arragount
frequency and the lowest non-zero one, i.e. contains only zeros, initially. Clearly, at the end of thiegs
count[c] = 0 for ¢ < ¢ @and fore > ¢ppa-

The second step consists in computing the shape of the
In the context of bit recyclingA has an intuitive meaning: binary tree that implicitly represents the code built by the
it is the difference between the cost of the most costly mattdchnique. Before we describe the computations precigaly,
and that of the least costly one. intuitively explain the way the tree is built. We need to talk

A= 10g2 fmaz — 10g2 Fmin

about thelevels of the tree. The level in which the deepesthe array ¢ount’ is filled with zeros. In order to obey this
leaves are placed is numbereg,,. Each time we go up a condition for the next construction of a code, the array can b
level, the number of the level decreases. Ideally, the tiag tcleaned to nullify all the entries that might have been cledng

is built would havecount|c] leaves on levek. Each leaf on i.e. entriescount|c,,;,] t0 count|c,,q.]. This cleaning can be
level ¢ would correspond to a symbol of cost On levele, performed in timeO(A), which does not change the overall
there would be exactly half as maimternal nodesas there complexity. Note that, in practice) is likely to be a pretty
would benodeson levelc+ 1. On the highest level (one with small constant; especially if the costs come from the length
a cost no more than,,;,,), there would be the root of the tree.of the codewords, as in bit recycling, and the compression
We say “ideally” because, in reality, the number of nodes ontachnique imposes a bound on the lengths of the codewords.
level might not be even. In order to compute the (real) shépe o) . .

the tree, the arraychrry’ is used. The first entry is computedC: Encoding and Decoding Using the Code

like this:
CarrY[Cmaz} =0.

Then, the entries of progressively lower cost are comptiited |
countc + 1] 4 carry[c + 1]

this:
carry|[c] = { 5 l :

Since count[c] = 0 for ¢ < ¢, then there is a cost o
(Croot < emin) such thatcarry|[c] 1 for ¢ <= ¢root-

Since we do not want to manipulate an infinite array, wh

we do in practice is to progressively compute the entri
of array ‘carry’ until we reach a cost < ¢,,;, such that
count[c] 4 carry[c] = 1. This cost is called:,,,;. Intuitively,
carry|c] is roughly the number of internal nodes at level
The second step is performed in tiEc, .. — Croot). Since
Croot 1S NOt @n input of the code construction algorithm, b

only an indirect consequence, we prefer to replace it by alow

bound. The minimal value that,,; can take is:,;, —[log, n]
and it happens when (almost) all the symbols have egst.
ConsequentlyD (cimaz — Croot) € O(A+log, n) and the worst
case happens when a single symbol has ¢gst and all the
others have cost,,;,,.

The third step consists in establishing a relation between

the symbols and their positions in the tree. The artagé’
is indexed by cost and it gives the first position in the tr

where symbols of at least a certain cost can be found. H

entries of base’ are computed for costs,,,; t0 ¢y this
way:

0,

base[c — 1] 4 count[c — 1].

base[Croot)

base|c]

The encoding and decoding operations are relatively simila
Both proceed by going up or down in the tree, level by level,
and by behaving according to the nodes they reach. There are
three different situations. The first one is when a termiaen
is reached: either the root or a leaf. The two other situation
involve internal nodes. Let us consider the internal nodes o
level ¢ and all the nodes on level+ 1. If there is an even
number of nodes on level+ 1, then each internal node on
level ¢ is the parent of two children. With a node that is the

f’;\rent of two children comes the need to distinguish between

é e children. A bit (either encoded or decoded) needs to be

involved in the process of distinguishing the children. @a t
other hand, when there is an odd number of nodes on tevel
1, there is an internal node on levelthat is the parent of
a single child. In the case of this internal node, there is no

lRmbiguity in the identity of its child and no bit needs to be

nvolved. If we come back to the three situations, then the

second one applies when an internal node has a single child

and the third one, when an internal node has two children.

Note that we arbitrarily choose to let the first internal nadle

level ¢ be the parent of a single child when leve} 1 contains

an odd number of nodes.

\We begin with the description of the decoding process
ecause it manipulates bits in the usual order. The decoding
rocess starts by pointing on the root (on lewgl,;). We let

inter p be 0 since we start the numbering of the nodes on
a%evel at0. Then, the routine is the same on each level. Let
¢ be the current level. If) < p < count|c], then the node
pointed byp is a leaf, i.e. it represents a symbol. The position
of the symbol isbase[c] + p and, using arrayelement’, the
corresponding symbol can be recovered. Otherwise, the node
pointed byp is internal. If there is an even number of nodes on

Roughly speakingbase[c] counts the number of symbols thafevel ¢+ 1, then a bith has to be read, and the new value of the

appear in the levels numbered less tharin an ideal tree.

pointer on levek+1 is 2k (p — count|c]) + b. Otherwise, there

The array position’ gives the position of each symbol in thejs an odd number of nodes on levef 1. If p = count|c], then

tree. Entryposition[s;] is defined asase[c] if s; is the first
symbol of costc in ¥ or as position[s;] + 1 if s; is the
closest predecessor of casin X. Finally, array element’ is
the inverse of arrayposition’, that is:

element[p] = s; if and only if position[s;] = p.

Filling array ‘base’ takes O(A + log, n) in time and filling
arrays bosition’ and ‘element’ takesO(n) in time.

the new value of the pointer on levek-1 is 0. Otherwise, we
have thatp > count[c] and a bitb has to be read and the new
value of the pointer on leveH-1 is 1+2x(p—count[c] —1)+b.
The encoding process is more complicated only because it

generates the bits in the reverse order. kebe the symbol

to encode. The encoding process starts at level ¢; (s;’s
cost) and by initializingp to position[s;] — base[c;]. Then,

the routine is the same on each levelcl& ¢, then the

If we sum up the time required to perform all three stepgncoding process is finished. Otherwise, the pointed noge ha
we obtainO(n + A). Recall that the first step requires that parent. If there is an even number of nodes on levéien

[Cost [[...] 1 [2]3[4[5[6[...]

count 0]0[0|1]3]0 (U

carry —|1(2|2|0|—

base —10]0|0|1|— o\1
— Y © \.,

¢ 5|5 415

position || 1 | 2 | O | 3 @ @ @
’POSitiOH H 0 ‘ 1 ‘ 2 ‘ 3 ‘ Fig. 2. Picture of the tree that is implicitly represented bg arrays.

’ element H S3 \ S1 \ So \ S4 ‘

Fig. 1. Arrays that form the implicit representation of a code emitted (received) when one of the arms of a parent with two
children is traversed.

: . : . IV. EXPERIMENTAL RESULTS
the bitb = p mod 2 is emitted and the new value of the pointer

on levelc — 1 is count[c — 1] + (p — b)/2. Otherwise, there In the experiments, we compared two techniques for the
is an odd number of nodes on levellf p = 0, then the new construction of prefix-free codes: Huffman’s algorithm and

value of the pointer on level — 1 is count[c — 1]. Otherwise, OUr technique. The implementation of Huffman’s algorithm

the bitb = (p — 1) mod 2 is emitted and the new value of thelNat we used comes frorgzi p [6]. More precisely, it is

pointer on levele — 1 is countfc — 1] + 1+ (p — 1 — b)/2. the one in the implementation of the Deflate technique [1].

Both the encoding operation and the decoding operatia—ﬁis_ ?mplementat_ion iS,COdeq for. speed. However, it pereorm
involve traversing the full height of the tree, in the worase. & d|t|ohnal fc.)pcleratlonsl like gnmmmg the chodewgrds to "llak?
The operations that need to be performed on each level Sffe they fit in 15 bits and converting the code to make it

be done in constant time. Consequently, encoding or degodﬁ‘i"monical' We removed these unnecessary operations ahd kep
a symbol can be done in tiM@(A + log, n). only the heap-based implementation of Huffman’s algorithm

We added child fields in the nodes of the tree that it builds
so that the tree could be traversed downwards as much as
upwards and so, as soon as it is built.

Let us illustrate the technique with a small example. Let We used two kinds of benchmarks: some where the symbols
¥ = {s1, 52, 53,54} Where the symbols have costs 5, 5, 4, angre associated with frequencies and the others where the
5, respectively. Figure 1 presents the various arrays tbat gymbols are associated with costs. Both kinds of benchmarks
filled by the construction of a code far. Note thatc,.;, = 4, originate from the processing of a file using a prototype by
Cmaz = 5, AN Croor = 2. Dubé and Beaudoin, which is a version gfi p augmented

Suppose that we want to encode. We have to start by with bit recycling. The frequencies (of the benchmarks with
converting s; into its position, which isl. The cost ofs; frequencies) are taken from instances of codesdhatp has
is 5. We letp = position[s;] — base[5] = 1 —1 = 0. Since to generate in order to send matches, literals, and carlonica
there is an odd number of nodes on leehnd p points on codes to the decompressor. The costs (of the benchmarks
the first one, then this node is the only child of its parenivith costs) are taken from instances of codes that are used
Consequently, no bit gets emitted and the newn level4 by the bit recycling proper. These costs are the lengths of
is count[4] = 1. Since there is an odd number of nodes othe encodings of the set of longest matches when there are
level 4 but p does not point on the first node, then the paritshany of these. The file whose processing generated all the
of p — 1 (0) has to be emitted and the newon level3 is benchmarks i®ook1, from the Calgary Corpus [11]. There
count[3]+1+(1—-1-0)/2 = 1. Since there is an even numbefvere 18 benchmarks with frequencies and 59 046 benchmarks
of nodes on leve, then the parity op (1) has to be emitted with costs that were generated by the processingarfk 1.
and the newp on level2 is count[2] 4 (1 —1)/2 = 0. Finally, These numbers demonstrate how frequent the construction of
level 2 has been reached and the encoding is finished. The hitgles becomes when bit recycling is used. Fast construction
that have been emitted have been so in the inverse ordero$@odes is truly needed in such an application.
the codeword generated fof is 10. Note that decoding the We had two techniques for code construction and two sets of
codeword would involve similar decision making. benchmarks. We tried the four combinations. Both techrique

Figure 2 illustrates the shape of the tree that is implicitlwere very quick. So, in any combination, we had to run the
represented by the arrays filled by the code constructitechnique on the set of benchmarks many times. When the
algorithm. Each symbol appears at the level that corresporiienchmarks with frequencies were used, we had codes huilt fo
to its cost. Except for the root, every node has a parent. Whidre whole set 100 000 times. When the benchmarks with costs
a level contains an odd number of nodes, the first internakre used, we had codes built for the whole set 1000 times.
node of the upper level has only one child. A bit needs to Beéne times that we measured for the four combinations are

D. An Example

| Kind of bench. | # of instances| # of iterations| Time w/ Huffman | Time w/ ours|

With freq. 18 100 000 11.337 s 3.676 s
With costs 59 046 1000 42.747 s 11.881 s

Fig. 3. Execution times for the repetitive construction ofles for all benchmarks of each kind.

presented in Figure 3. We can see the our technique is 3 to 4 VII. CONCLUSION

times faster than Huffman’s algorithm. Note that there is a\\e have presented a fast technique for the construction of
conversion between frequencies and costs when our tecehnigpsposame codes. In order to achieve its goal, it tries tkema
is used on the be_nchmarks with frequencies and the same WHeconstruction of the codes as lightweight a process asi-pos
Huffman’s algorithm is used on the benchmarks with costgie, even if encoding and decoding symbols becomes heavier.
We also measured the increase in the expected length of {08 measured the performances of our technique compared
codewords caused by the sub-optimality of our technique. @f 5 very fast implementation of Huffman’s algorithm. Our
the benchmarks with frequencies, we observed an increasqé@‘hnique is 3 to 4 times faster than Huffman’s algorithm.
about 4% while on the benchmarks with costs, we observedggwever, it does not necessarily generate optimal codes. In
increase of about 1.4%. The latter measurements is patigul 5 general context, we measured that the average length of
satisfying given that our technique performs the best (ftben the codewords gets increased by about 4%. However, in the
coding efficiency point of view) when its speed is most needeghntext of bit recycling, the increase reduces to about 1.4%
i.e. in the context of bit recycling. which is rather satisfying since it is precisely the bit reliyg

V. RELATED WORK techniqgues that need to build numerous disposable codes.

We compared our technique to the best-known code con- REFERENCES
struction technique: Huffman’s algorithm [7]. Howevereth (1] p, peutsch. Request for comments: 1051, 1996.
exist other techniques that are likely to be fast or evenhhat http://ww ietf.org/rfc/rfcl051.txt.

been designed with that intent. Namely, there is the engodir{Z] D. Dubé and V. Beaudoin. Recycling bits in LZ77-based compression.

Proceedings of the Co@aifence des Scienc&ectroniques, Technologies
of Shannon-Fano [9] and the Fyffe codes [5]. In order to have e finformation et des @ecommunications (SETIT 2005%ousse,

a more complete comparison, the speed and, if applicable, Tunisia, mar 2005.
the loss in coding efficiency of these techniques ought to big] D. Dubé and V. Beaudoin. Improving LZ77 data compression using
d bit recycling. In Proceedings of the International Symposium on
measure .)) o Information Theory and Applications (ISITA$eoul, South Korea, oct
The particular case in which the statistics change corigtant 2006.
but in a proaressive has been studied on many occasions | D. Dubé and V. Beaudoin. Bit recycling with prefix codes. Pmoc. of
prog y [8]] DCC, page 379, Snowbird, Utah, USA, mar 2007. Poster.
[10]' [5] Graham Fyffe. Fyffe codes for fast codelength approxiomt1999.
http://ww. geocities.com gfyffe/fastselect.htm
VI. FUTURE WORK [6] J. L. Gailly and M. Adler. The GZIP compressor.

; ; ; http://ww. gzi p. org.
It would be interesting to try to deveIOp a variant of Our[7] D. A. Huffman. A method for the construction of minimum-redandy

technique that could accommoqate finer variations in thGSC_OS codes. InProceedings of the Institute of Radio Enginearslume 40,
of the symbols than whole bits. Arguably, the conversion pages 1098-1101, sep 1952.

process from frequencies to costs in the current work makj! D: E- Knuth. Dynamic Huffman codinglournal of Algorithms6:163—

. - . . 180, 1985.
be responsible for a significant part of the loss in codingg) c. E. shannon. A mathematical theory of communicatiBell System
efficiency that we observed. Technical Journal27, 1948.

; ; ; ; ; ; 10] J. S. Vitter. Design and analysis of dynamic huffman codesirnal of
We did not take the time to explain bit recycling in moré the ACM 34(4):825-845, oct 1987.

details in this paper but it has an important effect on thei} |. witten, T. Bell, and J. Cleary. The Calgary corpus819
way matches get selected and how the coding efficiency ftp://ftp.cpsc.ucal gary.cal pub/ projects/

i+ text.conpression. corpus.
must be evaluated. We refer the reader to the papers on [B} H. Yokoo. Lossless data compression and lossless datedsimy. In

recycling [2], [3], [4], [12]. It would be interesting to Idofor Proceedings of the Asia-Europe Workshop on Concepts inmaftion
a technique that optimizes the coding efficiency in the cdnte Theory Jeju, South Korea, oct 2006.
of bit reCyC“ng while remaining very fast [13] J. Ziv and A. Lempel. A universal algorithm for sequehtiata

compression. IEEE Transactions on Information Theor23(3):337—
342, 1977.

