
1

A Hybrid Approach to Vehicle Routing
 using Neural Networks and Genetic Algorithms

Jean-Yves Potvin
Danny Dubé

Christian Robillard

Centre de recherche sur les transports
Université de Montréal

C.P. 6128, Succ. Centre-Ville,
Montréal (Québec),

Canada  H3C 3J7

Abstract.  A competitive neural network model and a genetic algorithm
are used to improve the initialization and construction phase of a
parallel insertion heuristic for the vehicle routing problem with time
windows. The neural network identifies seed customers that are
suitably distributed over the entire geographic area during the
initialization phase, and the genetic algorithm finds good parameter
settings in the route construction phase that follows. Computational
results from a standard set of problems are also reported.
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Section 1.  Introduction

This paper discusses a competitive neural network model and
genetic algorithm aimed at improving a route construction heuristic for
the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW
is currently the focus of very intensive research, and is used to model
many realistic applications such as retail distribution, school bus routing,
and mail delivery [1].
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The overall objective is to service a set of customers at minimum
cost with a fleet of vehicles of finite capacity operating out of a central
depot (i.e., each route starts and ends at the depot). In this application,
the objective is to minimize the number of routes and, for the same
number of routes, to minimize the total route time. To be feasible, the
routes must also satisfy three different types of constraints. First, each
customer has a certain demand, like a quantity of goods to be delivered.
Since the capacity of each vehicle is finite, the total quantity of goods to
be delivered on a route cannot exceed the capacity of the vehicle
assigned to this route. Second, there is a time window or time interval
associated with each customer. No vehicle is allowed to arrive too late at
a customer location (i.e., after the end of the time window). However, a
vehicle can wait if it arrives too early. Finally, a time window is also
included at the depot or garage. Each route must start and end within its
bounds. This window acts similarly as a capacity constraint: by
expanding either the vehicle capacity or the time window at the depot,
more customers can be serviced by the same vehicle.

Figure 1 depicts a typical solution to this problem. In this figure, the
central square represents the depot and the circles are customers to be
serviced. There are eight customers, each identified by a letter from a to
h . In this example, the quantity of goods to be delivered to each
customer is set at 10 units, and the capacity of each vehicle is set at 30
units. Since the total quantity of goods to be delivered is equal to 8x10 =
80 units, it is clear that at least three vehicles must be used. The time
window constraints, however, must also be satisfied. In Figure 1, the
time window at each customer location and at the depot is a time
interval [ti , t j ], where ti  and tj  are the lower and upper bounds,
respectively. The travel time between two customers is also shown on
each link.

This solution is clearly feasible. First, there are at most three
customers on each route. Consequently, the capacity constraints are
satisfied. Second, the time constraints are satisfied at each customer
location and at the depot. For example, one vehicle leaves the depot at
time 0 and arrives at customer a at time 3. This arrival time falls within
the time window of customer a. Similarly, the arrival time of the vehicle
at customers b and c is equal to 5 and 6, respectively. In both cases, the
arrival time falls within the time window. Finally, the vehicle returns to
the depot at time 7, before the upper bound, which is 8. The routes for
the two other vehicles are feasible as well.
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Figure 1.  The vehicle routing problem with time windows

Many different heuristics for solving the VRPTW are described in
the literature. Most of them are route improvement heuristics, or
composite heuristics with a mix of route construction and route
improvement procedures [2-5]. Only two "pure" route construction
heuristics are described in the literature [6,7]. They are pure in the
sense that they involve neither backtracking mechanisms to undo
previous commitments nor reordering procedures to improve the final
routes. Customers are simply inserted one by one into the routes, until
all customers are serviced. These route construction heuristics are useful
because they produce good feasible solutions with little computation.
These solutions can then be used as starting points for more complex
route improvement or composite heuristics.

In this paper, a competitive neural network model and a genetic
algorithm are used to improve the parallel route construction heuristic
described by Potvin and Rousseau [7]. Section 2 first introduces
Solomon's classical insertion heuristic for the VRPTW [6]. Then, the
parallel route construction heuristic of Potvin and Rousseau, which is
derived from Solomon's work, is presented in Section 3. Sections 4 and 5
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describe the neural network model and the genetic algorithm. Finally,
computational results using Solomon's set of problems are reported.

Section 2.  Solomon's I1 insertion heuristic [6]

Solomon's I1 insertion heuristic is a classical heuristic that
constructs routes one by one. A seed customer is first selected to create
an initial route servicing only this customer (i.e., the vehicle leaves the
depot, services the customer, and comes back to the depot). The
remaining customers are then inserted one by one into the route until
no more customer with feasible insertions can be found. At this point, a
seed customer is selected to create a second route, and this route is in
turn filled using the remaining unrouted customers. The procedure is
repeated until all customers are routed.

At each step, the next customer to be inserted, and the place for
inserting this customer on the route, must be selected. This is done as
follows:

Step 1. Compute the minimum feasible insertion cost c1*(u) for each
unrouted customer u, where the insertion cost c1 of customer u between
two consecutive customers i and j on the route is computed as follows:

c1(i,u,j) = α1 x c11(i,u,j)  +  α2 x c12(i,u,j),  α1+α2=1, α1≥0, α2≥0,

whe re

c11(i,u,j) = diu + duj -  µ x dij , d i j = distance (in time units)
between i and j.

c12(i,u,j) = buj - bj , b j = current service time at j.
bu j = new service time at j,

given that u is inserted
between i and j.

Since c11 is the detour (in time units) and c12 is the service delay at
customer j due to the insertion of customer u, the insertion cost c1 is a
weighted sum of detour and delay. The objective is to determine a
feasible insertion point such that this cost is minimized (see Figure 2).
Note that the parameters α 1  and α 2  are used to weight the two
components of the sum. An additional parameter µ  modifies the detour
formula, by placing more or less emphasis on the distance between
customers i and j.
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Step 2. Select the next unrouted customer among the customers that
can be feasibly inserted into the route. The selected customer maximizes
the generalized savings measure c2, where:

c2(u) =  λ x ddepot,u - c1* (u),  λ≥0.

The classical savings [8] are obtained from c2 by setting α1=1, α2=0,
µ=1, and λ=2. Assuming that each unrouted customer u is serviced by an
individual route (depot,u,depot), the classical saving is the distance
saved by inserting u at its best feasible insertion place in the current
route, and by eliminating its individual route. In this case, the saving is
twice the distance between u and the depot, minus the detour caused by
inserting u into the current route.

Step 3.  Insert the selected customer at its best feasible insertion
point (as computed in Step 1).

In [6], solutions were obtained by running this route construction
heuristic eight times for each problem, using different parameter
settings. The best solution was then selected.

Section 3.  The parallel insertion heuristic [7]

Our parallel insertion heuristic is largely inspired by the work of
Solomon. The main difference is that routes are built in parallel rather
than one by one. Accordingly, many different seed customers must be
selected to create the initial set of routes (with each route servicing a
single customer). In Figure 3, for example, customers 1, 2 and 3 are
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selected to create three initial routes. Then, the remaining unrouted
customers are inserted one by one into these routes until all customers
are routed. Starting from the three initial routes of Figure 3, Figures 4a,
4b, 4c and 4d show how the solution develops when customers are
inserted into these routes. Note that the next customer to be routed
optimizes a selection cost measure (to be defined later), and is identified
with an arrow. Figure 4 depicts the three first iterations of the route
construction phase.

Obviously, it is not possible to know a priori the minimum number
of routes required to service all customers. In Figure 3, for example,
four routes may be required to service all customers. Similarly, a
feasible solution may possibly be found with only two routes. Such a
difficulty does not arise with Solomon's I1 heuristic, because routes are
created and filled one by one, as needed, until all customers are routed.

To get an estimate of the initial number of routes, Solomon's I1
heuristic is applied to each problem, using a single parameter setting.
Hence, only one run is performed on each problem (rather than eight
different runs). The number of routes in the solution is then used to
initiate the parallel insertion heuristic.
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The parallel insertion heuristic can now be introduced more
formally.

Step 1. Estimate the initial number of routes m by running Solomon's
I1 heuristic once.

Step 2. Create m routes by selecting m seed customers (one customer
for each route). In [7], the farthest customer from the depot in each
route produced by Solomon's I1 heuristic in Step 1 was selected as a
seed customer. In this paper, a more sophisticated selection scheme
based on a neural network model is proposed (see Section 4).

Step 3. Compute the minimum feasible insertion costs c1*(u,r) for
each unrouted customer u in each route r. This is done in the same
way as in Solomon's I1 heuristic, using the parameters α 1, α 2 and µ
(see Section 2).

Step 4.  Select the unrouted customer that maximizes the generalized
regret measure c2, where:

c2(u) = Σ r=1,...,m, r≠r'  (c1* (u,r) - c1* (u,r')) ,

where c1* (u,r') corresponds to the best feasible
insertion point of customer u over all routes.

Step 5.  Insert the selected customer at its best feasible insertion
point in route r'.

Step 6.  Repeat Steps 3 to 5 until all customers are routed (feasible
solution) or until one or more unrouted customers have no feasible
insertion point (no feasible solution).

Once the best feasible insertion point for each unrouted customer u
in each route is known, the next customer to be inserted is the one that
maximizes c2, the generalized regret measure. Basically, this measure is
a kind of look-ahead that indicates what can be lost later, if a given
customer is not immediately inserted within its best route. Here, a large
regret measure means that there is a large gap between the best
insertion point for a given customer and the best insertion points in the
other routes. Hence, unrouted customers with large regrets must be
considered first, since the number of good alternative routes for
inserting them is small. On the other hand, customers with a small
regret can easily be inserted into alternative routes without losing
much, and are considered later for insertion. Broadly speaking, this new
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generalized measure improves upon the classical regret measure by
extending the look-ahead to all available routes, whereas the classical
regret is rather short sighted, and merely looks at the best and second
best routes [9,10].

In [7], this parallel insertion heuristic was applied to each problem
with three different parameter settings, namely (α1, α2, µ) = (0.5,0.5,1.0),
(0.75,0.25,1.0), (1.0,0.0,1.0), and the best solution was selected at the
end. These parameter settings were determined empirically by
experimenting with different parameter settings on Solomon's test
problems.

Typically, the parallel insertion heuristic is applied more than three
times to each problem, because feasible solutions with fewer routes than
the initial estimate of Solomon are also considered. Basically, the
procedure terminates as soon as a feasible solution is produced for a
given number of routes m . The entire procedure is then repeated for
m - 1 routes. The number of routes is reduced in this way until no
feasible solution is found with the three parameter settings.

The neural network model for selecting the seed customers in Step
2 is introduced in the next section. A genetic algorithm aimed at finding
better parameter settings for α1, α2 and µ  is then described in Section 5.

Section 4.  The neural network initialization

Competitive neural networks are now widely used to cluster data. A
large body of neural network training algorithms are described in the
literature [11-15] and can be adapted to our initialization problem. In
particular, these models can be applied to identify geographical clusters
of customers. This is a nice feature, since customers that are members of
the same cluster naturally fit into the same route. Therefore, it would be
desirable to select a seed customer in each cluster to create a different
route for each. If no specific pattern in the geographical distribution of
the customers is found, then good practice would be to select the seed
customers widely apart so as to cover the whole geographic area, and
create routes to serve different regions. The competitive neural network
model exhibits such behavior.

Figure 5 is an example of a competitive network with two input
units I1 and I2, encoding the (x,y) coordinates of each customer location,
and three output units O1, O2, O3 associated to three different clusters
(or routes). Connections between the two input units and any given
output unit j is weighted by the weight vector of cluster j. For example,



1 0

w 1=(w11, w21) is the weight vector associated with output unit O1 and
cluster 1.

The activation of each output unit is related to the distance between
its weight vector and the current input vector. In particular, the
activation level is higher when the distance is smaller. If output unit Oj
is the most highly activated unit when the coordinates of customer i are
presented to the network (i.e., its weight vector is the closest to
customer i), then this unit "wins" the competition over the other output
units, and customer i is associated with cluster j. Of course, cluster
membership is a function of the weights on the connections, and the
network must adjust these weights through a "learning algorithm" so as
to minimize some objective function. This function is typically based on
the sum of the distances between the weight vector of each output unit
and the coordinate vectors of their associated customers.

The initial weight vectors are arbitrarily chosen, but as the learning
algorithm proceeds, these weights are adjusted so as to move towards
the clusters of customers (if such clusters exist). In Figure 6, for
example, the circles are customers to be serviced and the three w's are
weight vectors (assuming three output units). The figure illustrates how
the three weight vectors evolve in the plane, so as to place themselves
approximately at the center of the three clusters of customers. Figure 6d
depicts the three clusters identified by the neural network. In
particular, the weight vector wi  of output unit i is the closest weight
vector to each customer within its box. Note also that the three black
circles in Figure 6d are the closest customers to the final weight vectors,
and can be used as seed customers in Step 2 of the parallel insertion
heuristic.
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The training algorithm for the competitive neural network can be
summarized as follows. We consider two input units and m output units.
Each output unit j has an initial weight vector wj (0) = (w1j(0) ,w2j(0)) ,
where wi j (0) is the weight on the connection between input unit i and
output unit j. Starting with these initial weight vectors, the training
algorithm goes through the set of coordinates many times (referred to as
"passes" through the data), and slightly modifies the weights on the
connections after the presentation of each input.

Weight vectors are updated as follows for a given input vector I =
(x,y). Each output unit j first computes the Euclidean distance between
its weight vector wj  and the input vector. The output unit j* closest to
the input vector is selected as the winner. Hence, output unit j* claims
that the current customer is member of cluster j*. Its weight vector wj *
is then adjusted to move even closer to the current customer, while the
other weight vectors stay at their current location. The update of the
weight vector of unit j* is based on the following formula:

w j* (t+1) = wj* (t) + η (I - wj* (t))  .

The parameter η  in this formula is the learning rate. Its initial value is
smaller than 1 and is progressively reduced as learning proceeds. Hence,
the magnitude of the moves is progressively reduced, to allow the
weight vectors to stabilize in their respective regions of Euclidean space.

Note that the closest weight vector to a given customer can change
from one pass to another through the set of customers, because each
unit can win many times during a single pass and the weight vector is
moved each time. Cluster membership, however, stabilizes after a few
passes through the data.

Customer coordinates are presented to the network until a stopping
condition is satisfied. Typically, the following objective function is used
to evaluate the neural network performance at a given iteration t (for n
customers and m output units):

E(t) = 1/n  Σ i=1,...,n Σ j=1,...,m Mij  d(Ii,wj(t))2  ,

where d(Ii ,w j (t)) is the Euclidean distance between the input vector Ii
and the current weight vector wj , and M is the (n x m) cluster
membership matrix, that is, Mi j  is set to 1 if customer i is a current
member of cluster j and 0 otherwise. Hence, this function computes the
average squared Euclidean distance between the weight vectors and the
coordinate vectors of their current customers. This value decreases from
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one pass to another through the set of coordinates, and training stops
when the improvement falls below a given threshold.

One problem with the above learning algorithm is its sensitivity to
the initial location of the weight vectors. Quite often, some weight
vectors remain idle at their initial location, because they never win a
competition. To alleviate this problem, the Euclidean distance between
the weight vector of output unit j and the input vector Ii  is biased
according to the formula [16]:

d'(Ii ,w j(t)) = d(Ii ,w j(t)) x  uj(t)  ,

where uj(t) is the number of times unit j has won in the past (i.e., before
iteration t). Consequently, if unit j was a frequent winner, the distance d'
will increase and the likelihood of being a winner in the near future will
be reduced. Conversely, a unit is more likely to win in the near future if
it did not win very often in the past. This modification allows the
network to be fully active.

As mentioned before, the weight vectors tend to settle
approximately at the centroids of clusters of customers, when such
clusters are present. Otherwise, they distribute themselves in the space
of coordinates, to get an equal share of customers. At the end, the seed
customers for the parallel insertion heuristic are identified by selecting
the closest customer to each weight vector (as depicted in Figure 6d).

  The next section will now describe the application of the genetic
algorithm during the following insertion phase.

Section 5.  Parameter optimization using a genetic algorithm

This section briefly introduces the reader to the basic principles of
genetic search and describes the parameter optimization problem.

5.1  Overview of genetic algorithms

Evolutionary algorithms began as randomized search techniques
designed to simulate the natural evolution of populations of asexual
species [17]. Holland [18] extended this model by allowing the
recombination of pieces of information taken from two parents to create
new offspring. These algorithms were called "genetic algorithms", and
the recombination phase proved to be a fundamental ingredient in the
success of this search technique.
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To apply a genetic algorithm to a given problem, solutions to the
problem must first be encoded as chromosomes (typically, bit strings).
Then, an evaluation function that returns the fitness or quality of each
chromosome must be defined. Using these two components, a simple
genetic algorithm can be summarized as follows.

Step 1 (Initialization). Create an initial random population of
chromosomes and evaluate each chromosome. Set the current
population to this initial population.

Step 2 (Reproduction). Select two parent chromosomes from the
current population. The selection process is stochastic, and a
chromosome with high fitness is more likely to be selected.

Step 3 (Recombination). Generate two offspring from the two parent
chromosomes by exchanging bits (crossover).

Step 4 (Mutation). Apply a random mutation to each offspring with a
small probability.

Step 5.Repeat Steps 2, 3 and 4, until the number of offspring in the
new population is the same as the number of chromosomes in
the old population. Evaluate each new chromosome. Then, set
the current population to the new population.

This procedure is repeated for a fixed number of generations, or
until convergence to a population of similar chromosomes is obtained.
The best chromosome generated during the search is the final result of
the genetic search. Through this process, it is expected that an initial
population of randomly generated chromosomes with low fitness values
will improve as parents are replaced by better offspring.

In the following, the main components of the genetic search are
briefly described. First, the encoding transforms a solution to a problem
into a bit string. For example, if the problem is to maximize a numerical
function f whose domain is a set of integers, then each chromosome can
represent an integer in base-2 notation. In this case, the fitness of each
chromosome is equal to f(x), where x is the integer encoded in the
chromosome.

The reproduction phase favors the best chromosomes via a bias in
the selection process. Namely, a chromosome with high fitness is more
likely to be selected as a parent. Once the parents have been selected,
the recombination phase creates two new offspring by exchanging bit
strings taken from two parent chromosomes. Here, the underlying
assumption is that a better chromosome can be produced by combining
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bit patterns taken from two good chromosomes. An example of a one-
point crossover is shown in Figure 7 for two parent bit strings of length
5. Here, the cross point is (randomly) chosen between the second and
third bit. As we can see, the end parts of both parents are swapped to
create two new offspring.

Generalizations of the one-point crossover are also proposed in the
literature, like the two-point crossover illustrated in Figure 8. Here, two
cross points are (randomly) chosen between the second and third bit,
and the fourth and fifth bit, respectively. Then, the substrings located
between the two cross points on both parents are swapped.

1 1 | 1 0 0 (parent 1)
0 0 | 1 1 1 (parent 2)
__________________
1 1 1 1 1 (offspring 1)
0 0 1 0 0 (offspring 2)

Figure 7.  One-point crossover on two bit strings

1 1 | 1 0 | 0 (parent 1)
0 0 | 1 1 | 1 (parent 2)
__________________
1 1 1 1 0 (offspring 1)
0 0 1 0 1 (offspring 2)

Figure 8.  Two-point crossover on two bit strings

Finally, the mutation phase is designed to maintain a minimum
level of diversity in the population via random modifications to the bit
values. Specifically, the mutation operator flips bit values from 0 to 1
(or from 1 to 0) within each offspring, with a small probability at each
position. A reasonable level of diversity in the population is crucial to
the effectiveness of the search. If a population is composed of similar
chromosomes, the search cannot make any progress because the
offspring look like their parents.

At this point, it is useful to note that a "pure" genetic algorithm does
not make any particular assumption about the fitness function. It only
exploits the value returned by the fitness function to guide the search
(c.f., reproduction phase). Accordingly, pure genetic algorithms are
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robust problem-solving methods that can be applied to the optimization
of complex multimodal functions.

5.2   Parameter optimization

In this application, the genetic search is used to find good values for
the parameters α 1, α 2 and µ  in Step 3 of the parallel insertion heuristic
(see Section 3). The parameters α 1 and α 2 weight the detour and delay
introduced in the route by inserting a new customer, while the
parameter µ  is used within the detour formula. By performing a careful
search of the parameter space, it is expected that better parameter
settings than those obtained through empirical means in [7] will be
found.

In the following, a particular implementation of the genetic search
for this parameter optimization problem is described.

Representation

The domain of values to be explored for each parameter is α 1e [0,1]
and µe [0,1] (note that α 2 is determined through α 1, since α 1+ α 2= 1 ) .
Seven bits are used to encode each parameter value. To decode a
substring as a numerical value, the integer represented by the
substring, namely a value between 0 and 27-1 or 127, is mapped to the
appropriate real domain. For example, if the bit string is 1010101 for
parameter α 1, or 85 in decimal notation, the α 1 value encoded by this
string is 85/127 (approximately 0.67). In general, if the integer value of
the bit string is x, the real value of α 1 is x/127. The same transformation
applies to parameter µ . With 127 values mapped to a real interval of
width 1, a precision to the second decimal point is obtained. Greater
precision can be achieved by adding more bits to the encoding, but the
length of each chromosome increases, and the search space grows. Two
substrings of length 7 encode a parameter setting (α 1, µ ), and three
different settings are concatenated on each chromosome, in order to
perform three different runs of the parallel insertion heuristic for each
problem, as in [7]. A typical chromosome is depicted below.

1000111 | 0011011 | 0000000 | 1111111 | 0101011 | 1000000

α1 µ α1 µ α1 µ

In this example, the parameter settings are :

(α1,µ) = {(71/127, 27/127), (0/127, 127/127), (43/127, 64/127)}
≅ {(0.56, 0.21), (0.00, 1.00), (0.34, 0.50)}.
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Reproduction

The fitness of each chromosome is derived from the quality of the
solution produced by the parallel insertion heuristic, using the
parameter settings encoded on the chromosome. Solution quality is
based on the number of routes and, for the same number of routes, on
total route time. In order to assign a numerical fitness value to a
chromosome, its rank in the population is used [19]. In the example
below, the population is composed of four chromosomes (encoding four
different parameter settings). The value of the solution associated with
each chromosome is shown on the same line. In this example,
chromosome 3 gets rank 1 because its parameter settings produce the
minimum number of routes, while chromosomes 2, 1 and 4 get ranks 2,
3 and 4, respectively.

Number of Routes   Route Time Rank

chromosome 1 1 2 1612.0 3
chromosome 2 1 2 1588.1 2
chromosome 3 1 1 1660.0 1
chromosome 4 1 3 1380.0 4

With these ranks, the fitness of each chromosome can be computed
as follows:

fitnessi  = Max -  [(Max - Min) x (i-1)/(n-1)],

where i is the rank of the chromosome, and n is the number of
chromosomes in the population. Hence, the best ranked chromosome
gets fitness value Max and the worst chromosome gets fitness value
Min. In the current implementation, Max and Min are set to 1.5 and 0.5,
respectively.

A fitness proportional selection scheme is then applied to these
values. Specifically, the selection probability for a chromosome of rank i
is:

f itnessi fitnessi
pi = _____________ = ___________

Σ j=1,...,n fitnessj n

It is worth noting that the sum over all fitness values in a
population of size n is equal to n, because Min + Max = 2, and the
average fitness is 1. Since n different selections (with replacement) must
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be performed on the current population in order to select n parents and
generate n offspring, the expected number of selections Ei  for a
chromosome of rank i is:

Ei = n x pi = fitnessi  .

Hence, the fitness of each chromosome is also equal to its expected
number of selections. For example, the best chromosome with fitness
Max=1.5, is expected to be selected 1.5 times on average over n
different trials.

To reduce the variance associated with proportional selection (i.e.,
each chromosome has a non null probability of being selected between 0
and n times over n different trials), stochastic universal selection or SUS
was applied to the fitness values. This approach guarantees that the
number of selections for any given chromosome is at least the floor of
its fitness, and at most the ceiling of its fitness [20].

Recombination

The crossover operator is the two-point crossover. The crossover
rate is set to 0.60. Hence, about 40% of the parent chromosomes are
copied from one generation to the next without any modification.

Mutation

The classical mutation operator is applied to each new offspring at a
fixed rate of 0.01. Hence, each bit has one chance out of 100 to change
from 0 to 1 or from 1 to 0.

Generation Replacement.

Each new generation replaces the old one. However, elitism is used,
where the best chromosome is preserved from one generation to the
next.

Section 6.  Computational Results

In this section, the set of test problems is briefly described. Then,
we give some additional details about the implementation of the neural
network model and the genetic algorithm. Finally, computational results
on the test problems are reported.

6.1   The test set

For testing purposes, we used Solomon's standard set of 100-
customer Euclidean problems [6]. For each problem, the travel times are
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equivalent to the corresponding Euclidean distances. The design of these
problems highlights factors that can affect the behavior of vehicle
routing heuristics, like geographical data, number of customers serviced
by a vehicle, and time window characteristics (e.g. percentage of time-
constrained customers, tightness and positioning of the time windows,
width of the scheduling horizon).

The geographical data were either randomly distributed according
to a uniform distribution (problem sets R1 and R2), clustered (problem
sets C1 and C2) or mixed with randomly distributed and clustered
customers (problem sets RC1 and RC2). The time window at the depot is
narrow for sets R1, C1 and RC1. Hence, only a few customers can be
serviced on the same route. Conversely, the time window at the depot is
wide for sets R2, C2 and RC2, so that many customers can be serviced on
the same route.

 Each set includes problems with wide time windows, narrow time
windows or a mix of wide and narrow time windows. For problems of
type R and RC, the time windows have a uniformly distributed,
randomly generated center and a normally distributed random width.
For problems of type C, the time windows are positioned around the
arrival times obtained from near optimal solutions of the corresponding
problems with no time windows. The reader is referred to [6] for
additional details about these problems.

6.2   The implementation

This section provides additional implementation details about the
neural network model and the genetic algorithm.

6.2.1   The neural network model

In the current implementation, the following values and initial
conditions are used:

(a) all the weight vectors are initially located at the origin (plus a
small random perturbation)

(b) the learning rate η is initially set to 0.8 and its value is
decreased from one pass to another through the set of
coordinates, according to the following formula [16]:

η = 0.8 x e -0.239x(p-1)

In this formula, p is the number of passes through the
coordinates, and is initially set to 1.
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(c) the stopping criterion is

∆E < 0.001 ,

where E is the objective function that monitors the network's
performance. Hence, the training algorithm stops when E
decreases by less than 0.001 after one complete pass through
the coordinates.

6.2.2  The genetic algorithm

The genetic search for the best parameter settings is applied to the
parallel insertion heuristic with the neural network initialization.
Although the genetic search is computationally expensive and runs for
about 15 minutes on a SPARC 2 workstation for each problem set, the
best parameter settings can be used to solve any new problem with
similar characteristics (i.e., there is no need to run the genetic algorithm
again). Also, a different search is performed on each set of problems.
Consequently, the best parameter settings are not the same from one set
of problems to another.

During the genetic search, the fitness and rank of each chromosome
is determined through the average solution produced over a particular
set of problems, according to the following rule: for each problem j in set
X, run the parallel insertion heuristic with the three parameter settings
encoded on the chromosome, and take the best solution bestj ; then,
compute the average of the bestj 's over set X. For these experiments, the
size of the population was set to 30, and the number of generations was
set to 20. In each case, the initial populations were seeded with
chromosomes encoding the parameter settings suggested in [6,7]. More
precisely, eight chromosomes were constructed from these settings, and
the remaining chromosomes were randomly generated.

6.3   Numerical results

Table 1 shows the results of the three route construction heuristics
using Solomon's test problems. I1 is Solomon's heuristic [6]. PARIS is the
PARallel InSertion heuristic of Potvin and Rousseau [7], while PARIS+ is
the new implementation with the neural network model and the genetic
algorithm. Finally, a comparison is also provided with the cyclic transfer
heuristic SP3 of Thompson and Psaraftis [5]. In the latter case, route
improvement procedures are included in the heuristic (e.g., exchange of
customers between routes). Therefore, SP3 is not a pure route
construction heuristic, unlike the three other methods.
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For each set of problems, Tables 1a, 1b and 1c show the average
number of routes, route time, and computation time. For PARIS+, the
three parameter settings suggested by the genetic algorithm are also
shown. Note that each parameter value must be divided by 27-1 or 127
in order to get the exact real number, and that the α 2  value can be
determined through the equation α 1  + α 2  = 1. Finally, note that a
reduction of 0.1 in the average number of routes over a particular set of
problems means that one route has been saved overall (since there are
approximately 10 problems in each set).

R1
12 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 13.6 2695.5 1.2* - - -

PARIS 13.3 2696.0 4.2* - - -

PARIS+ 13.2 2660.1 5.2* (127,119),(127,092),(063,127)

SP3 13.1 2484.0   65.0** - - -

* Sparc2 workstation
* * IBM PC-AT

R2
11 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 3.3 2578.1 6.2 - - -

PARIS 3.1 2513.3 4.0 - - -

PARIS+ 3.0 2490.6 4.4 (123,115),(109,102),(127,127)

SP3 3.1 2333.0 260.0 - - -

Table 1a.   Random Problems
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C1
9 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 10.0 10104.2 1.2 - - -

PARIS 10.7 10610.3 3.9 - - -

PARIS+ 10.0 10042.3 4.2 (121,043),(127,116),(126,114)

SP3 10.0 9965.0 31.0 - - -

C2
8 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 3.1 9921.4 3.6 - - -

PARIS 3.4 10477.6 3.2 - - -

PARIS+ 3.0 9706.6 3.7 (127,101),(122,116),(126,111)

SP3 3.0 9649.0 71.0 - - -

Table 1b.  Clustered Problems

RC1
8 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 13.5 2775.0 1.2 - - -

PARIS 13.4 2877.9 4.1 - - -

PARIS+ 13.0 2779.7 6.1 (105,124),(123,114),(095,110)

SP3 13.0 2598.0 61.0 - - -

RC2
8 problems

Avg.
Number

of
Routes

Avg.
Route
Time

Avg.
Comput.

Time
(seconds)

(α1, µ)

I 1 3.9 2955.4 4.8 - - -

PARIS 3.6 2807.4 3.3 - - -

PARIS+ 3.4 2701.1 3.9 (109,116),(118,122),(084,111)

SP3 3.7 2706.0 140.0 - - -

Table 1c.   Mixed problems
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The tables show that the neural network and genetic algorithm in
PARIS+ provide substantial improvement over the results obtained with
the original PARIS implementation. In fact, a total of 18 routes were
saved over the 56 test problems. This reduction is important, because
large acquisition and maintenance costs are associated with each vehicle.
The route savings were achieved through the fine tuning of the
parameter values, and through the application of the neural network-
based route initialization procedure.

Table 1 also shows that PARIS+ outperforms I1 on all problem sets.
It is important to remember that PARIS, PARIS+, and I1 are all pure
route construction heuristics. That is, they insert customers one by one
into routes until all customers are serviced. There are no reordering
procedures to modify the sequence of customers within each route, or
exchange of customers between routes to improve the final solution.
Even if PARIS+ does not incorporate any reordering or exchange
procedures, it is competitive with SP3 in regard to the average number
of routes. Overall, two additional routes are saved over SP3 on the 56
test problems. However, the reordering and exchange procedures within
SP3 significantly improve total route time with the exception of problem
set RC2.

Section 7.  Concluding Remarks

In this paper, a competitive neural network model and a genetic
algorithm were used to improve a parallel insertion heuristic for the
VRPTW. Overall, the combination of neural network, genetic algorithm
and operations research techniques proved to be very useful, and
provided a way to reduce the number of routes significantly.

We note two possible avenues for further research. First, the neural
network initialization was based on spatial considerations only. Better
results could possibly be achieved by considering both spatial and
temporal issues during the initialization phase. In this case, a third input
unit relating to the time window at each customer would be added to
the neural network (e.g., the upper bound on the time window).

A second avenue of research would focus on the ART network [13].
In the competitive network described in this paper, the number of
output units is fixed. Since each output unit stands for a cluster (route),
we need to obtain an initial estimate of the number of routes with
Solomon's I1 heuristic. The ART network does not require such a priori
knowledge. It determines the number of routes by itself, to obtain an
acceptable clustering of customers. With the ART model, our parallel
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insertion heuristic would not rely on Solomon's heuristic to estimate this
initial number of routes.
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