Département d'informatique et de génie logiciel Compression de données IFT-4003/IFT-7023

Notes de cours Préliminaires mathématiques pour le codage avec perte

Édition Hiver 2012

Mohamed Haj Taieb

Local: PLT 2113

Courriel: mohamed.haj-taieb.1@ulaval.ca

Faculté des sciences et de génie Département de génie électrique et de génie informatique

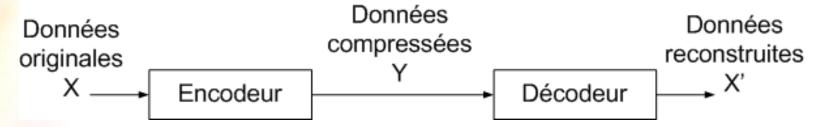
Plan de la présentation

□ Compression avec perte:

- Introduction
- Critère de distorsion
- Système visuel humain
- Perception auditive
- Rappel sur la théorie d'information
- Théorie de débit distorsion
- Modèles pour la conception et l'analyse des systèmes de compression avec perte

Introduction

□ Schéma de compression:



- \square Compression sans perte: Réversible $\rightarrow X=X'$
 - Codage entropique: l'entropie, tout comme la vitesse de la lumière, est une limite fondamentale.
 - Le débit R est la préoccupation principale.
- \square Compression avec perte: Irréversible $\rightarrow X \neq X'$
 - Réduire le débit pour une distorsion minimale D entre X et X' → compromis de débit distorsion.

Critère de distorsion (1)

■ Notation:

- $x_{n=1:N}$: Séquence originale de données.
- $y_{n=1:N}$: Séquence reconstruite.
- ☐ Erreur quadratique moyenne (MSE):

$$\sigma^2 = \sigma_d^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - y_n)^2$$

□ Rapport signal à bruit (SNR):

$$SNR = \frac{\sigma_{x}^{2}}{\sigma_{d}^{2}} = \frac{\frac{1}{N} \sum_{n=1}^{N} x_{n}^{2}}{\frac{1}{N} \sum_{n=1}^{N} (x_{n} - y_{n})^{2}}$$

□ Rapport signal à bruit en décibel (dBel):

$$SNR(dB) = 10\log_{10}\frac{\sigma_x^2}{\sigma_d^2}$$

Critère de distorsion (2)

□ Peak-signal-to-noise-ratio (PSNR):

$$PSNR(dB) = 10\log_{10} \frac{x_{peak}^2}{\sigma_d^2}$$

 x_{peak} : valeur crête du signal

■ Moyenne des différences absolues (norme 1):

$$d_1 = \frac{1}{N} \sum_{n=1}^{N} |x_n - y_n|$$

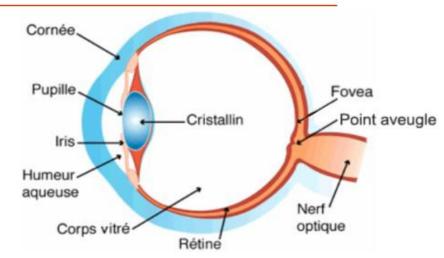
■ Valeur maximale de l'erreur (norme infinie):

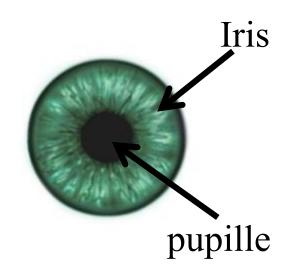
$$d_{\infty} = \max_{n} \left| x_{n} - y_{n} \right|$$

Système visuel humain (1)

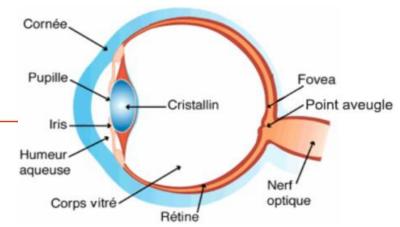
☐ Anatomie de l'œil:

- Cornée: protection du globe oculaire.
- Iris: diaphragme de contrôle de la quantité de lumière.
- Pupille: sa taille varie en fonction de la luminosité (diamètre=2 mm en pleine lumière, 8 mm dans l'obscurité).
- Point aveugle: endroit où le nerf optique vient se raccorder à la rétine.





Système visuel humain (2)



■ Anatomie de l'œil:

- Rétine: membrane où l'image vient se projeter. Elle est tapissée de photorécepteurs:
 - les cônes et
 - les bâtonnets.

 Cristallin: lentille convergente assurant la netteté de la vision grâce à la variation de sa courbure → mise au point.

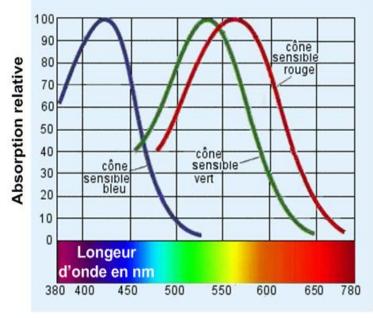
Système visuel humain (3)

□ Anatomie de l'œil:

 Cônes: Il y a trois types de cônes. Chaque type est sensible à une longueur d'onde donnée du spectre visible

(short, medium, long wavelength):

- Spectre bleu (S): 482-465.
- Spectre vert (M): 560-530.
- Spectre rouge (L): 730-622.
- Sont au nombre de 6.5 millions.
- Concentrés dans la fovéa.
- Moins nombreux que les bâtonnets.
- Assurent une meilleure résolution que les bâtonnets.
- Assurent une vision photopique (vision nette et colorée).



Cristallin

Fovea

Point aveugle

Cornée

Pupille

aqueuse

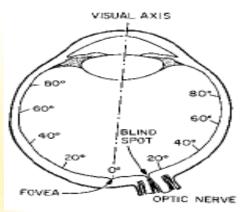
Système visuel humain (4)

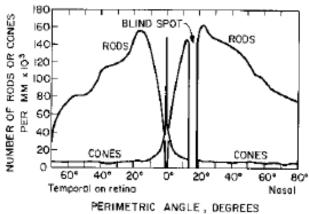
Pupille Point aveugle Point aveugle Corps vitré Rétine

■ Anatomie de l'œil:

- Bâtonnets: sont absents de la zone centrale (la fovéa) mais il sont répartis sur tout le reste de la rétine.
- Ils sont plus sensibles à la lumière que les cônes.
- Assurent une vision scotopique (vision achromatique et moins nette) → Assurent la vision dans l'obscurité.

□ Répartition des cônes et des bâtonnets dans la rétine:





Système visuel humain (5)

Sensibilité au contraste:

- L'œil est sensible à une plage énorme d'intensité: 1 à 10¹⁰.
- Cependant à un instant donné, on ne peut pas voir toute la plage de luminosité.
- L'œil s'adapte à un niveau de luminosité moyen.
- L'œil est sensible au contraste de la luminosité plutôt qu'à la valeur effective de la luminosité.

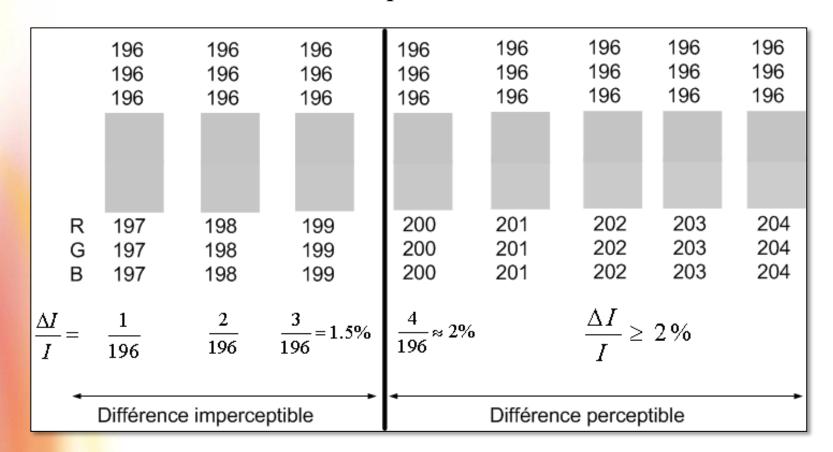
■ Rapport de Weber:

- La plus petite différence perçue (just noticeable difference [jnd]): ΔI
- Rapport de Weber: $\frac{\Delta I}{I} = \text{constante} = K$ Pour la perception de la variation de luminosité: $\frac{\Delta I}{I} = K = 2\%$

Système visuel humain (6)

■ Rapport de Weber:

• Rapport de Weber: $\frac{\Delta I}{I} = K = 2\%$

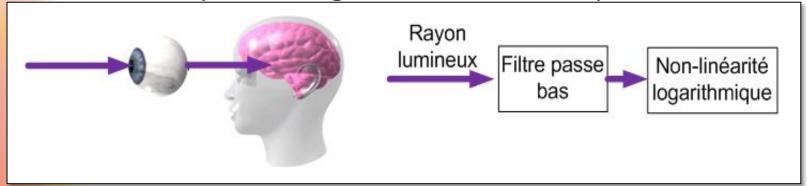


Système visuel humain (7)

Rapport de Weber: On a:
$$\frac{d \log I}{dI} = \frac{1}{I} \Rightarrow d \log I = \frac{dI}{I} \Rightarrow \Delta \log I = \frac{\Delta I}{I}$$

Comme:
$$\frac{\Delta I}{I} = \text{constante} = K \Rightarrow \Delta \log I = K$$

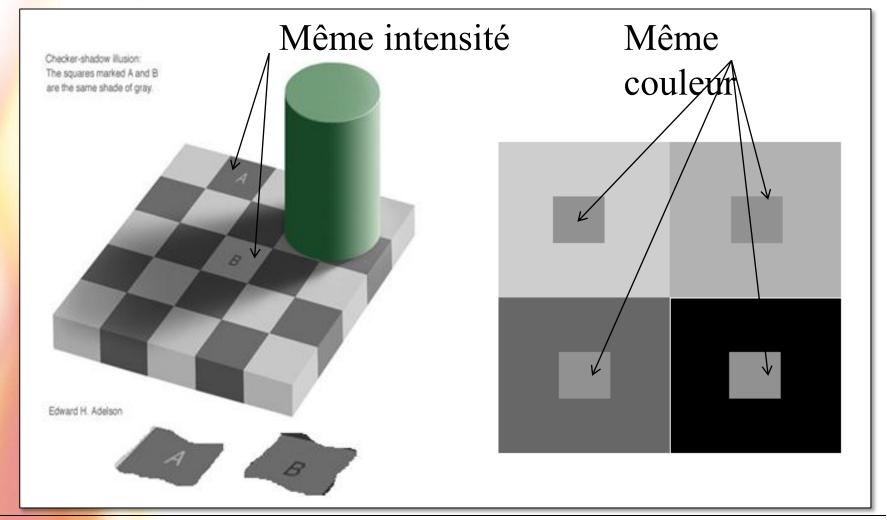
- La sensitivité de l'œil est une fonction logarithmique.
- L'œil → récepteur non linéaire mais logarithmique.
- On sait aussi que l'œil agit comme un filtre passe bas.



- Compression introduisant une distorsion non perceptible.
- Exemple: distorsion dans les hautes fréquences.

Système visuel humain (8)

□ Sensibilité au contraste: [illusion optique]



Perception auditive (1)

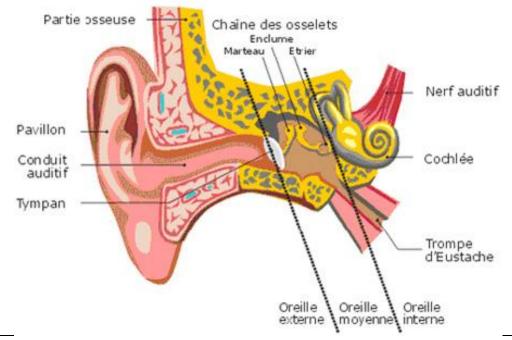
■ Système auditif humain:

Oreille externe: dirige l'onde sonore vers l'oreille moyenne.

 Oreille moyenne: cavité remplie d'air. Elle assure la conversion des ondes de pression en vibrations acoustiques.

Oreille interne: conversion des vibrations en impulsions

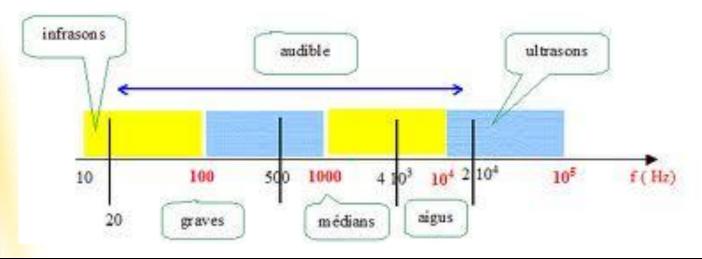
nerveuses.



Perception auditive (2)

■ Système auditif humain:

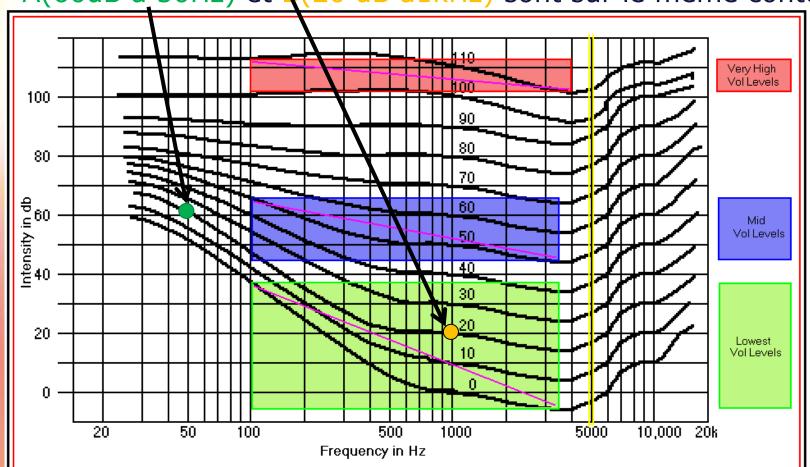
- Fréquence audible: de 20 Hz à 20 kHz.
- La perception auditive a plusieurs composantes non-linéaires.
- La réponse auditive dépend aussi de la fréquence:
- Une onde sonore à 1kHz et d'intensité 20 dB engendre la même pression acoustique qu'une onde à 50 Hz et d'intensité 60 dB.



Perception auditive (3)

□ Contours de niveau de pression acoustique égale :

A(60dB à 50Hz) et B(20 dB à1kHz) sont sur le même contour.



Perception auditive (4)

■ Bandes critiques:

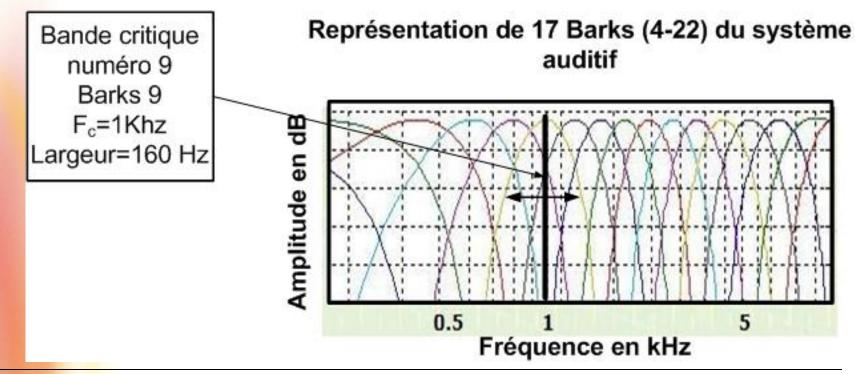
La plage
 audible 20 Hz
 à 20 kHz
 comporte 24
 bandes
 fréquentielles
 appelées les
 bandes
 critiques.

Numéro (Barks)	Fréquence Centrale (Hz)	Largeur (Hz)	Fréquences de coupure	
			Basse (Hz)	Haute (Hz)
1	50	-	-	100
2	150	100	100	200
2 3 4 5 6 7 8	250	100	200	300
4	350	100	300	400
5	450	110	400	510
6	570	120	510	630
7	700	140	630	770
8	840	150	770	920
9	1000	160	920	1080
10	1170	190	1080	1 270
11	1370	210	1270	1480
12	1600	240	1480	1720
13	1850	280	1720	2000
14	2150	320	2000	2 3 2 0
15	2 500	380	2 3 2 0	2700
16	2900	450	2700	3150
17	3 400	550	3 150	3700
18	4 000	700	3 700	4 400
19	4800	900	4400	5 3 0 0
20	5 800	1 100	5 3 0 0	6400
21	7 000	1300	6400	7700
22	8 500	1800	7 700	9 500
23	10 500	2 500	9 500	12 000
24	13 500	3 500	12000	15 500

Perception auditive (5)

■ Bandes critiques:

- Oreille= Ensemble de filtres passe-bas qui se chevauchent.
- Si deux tonalités se trouvent dans la même bande critique, c'est la plus forte qui l'emporte.

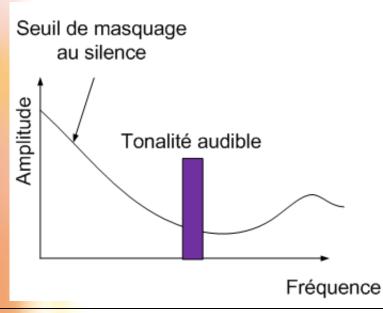


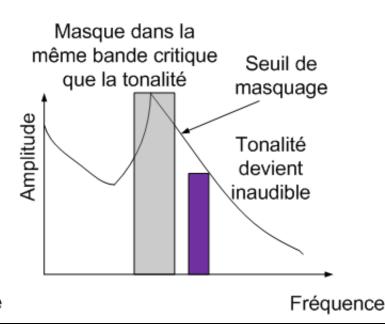
Perception auditive (6)

☐ Effet du masquage:

- Seulement le bruit dans la même bande critique que la tonalité est susceptible de la masquer.
- → Même si l'on se trouve dans un grand vacarme si quelqu'un parle à une fréquence donnée on peut toujours l'entendre.

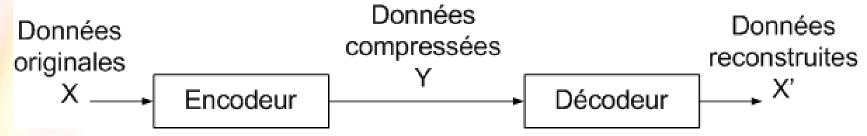
■ Seuil de masquage:





Théorie de l'information (rappel) (1)

□ Schéma de compression avec perte:



- Supposons que X est une source de mots-code à 4 bits.
- *X* ∈ {0, 1, 2, ..., 15}.
- Encodeur : élimine le bit le moins significatif (quantification) $\rightarrow Y \in \{0, 1, 2, ..., 7\}$.
- Reconstruction: décalage vers la gauche en insérant un 0.
- Perte d'information irréversible \rightarrow X' \neq X: X' \in {0, 2,..., 14}.
- Exemple $X=1101 \rightarrow Y=110 \rightarrow X'=1100 \neq X$.
- $X' \neq X \rightarrow$ information mutuelle entre X et X'.

Théorie de l'information (2)

■ Information propre:

• Entropie

$$X \in \{x_0, x_1, \dots, x_{N-1}\} \Rightarrow H(X) = -\sum_{i=0}^{N-1} P(x_i) \log_2 P(x_i)$$

$$Y \in \{y_0, y_1, \dots, y_{N-1}\} \Rightarrow H(Y) = -\sum_{i=0}^{N-1} P(y_i) \log_2 P(y_i)$$

• Information propre d'un événement A

$$i(A) = \log_2 \frac{1}{P(A)} = -\log_2 P(A)$$

Information propre conditionnelle

$$i(A|B) = \log_2 \frac{1}{P(A|B)} = -\log_2 P(A|B)$$

Théorie de l'information (3)

■ Exemple:

• Information propre conditionnelle:

$$i(A|B) = -\log P(A|B)$$

- Soit l'événement B="Fraser n'a rien bu durant 2 jours".
- Soit l'événement A="Fraser a soif".
- $P(A|B) \approx 1 \rightarrow i(A|B) \approx 0.$
- C'est-à-dire l'événement A ne fournit pas beaucoup d'information sachant qu'on connait l'événement B.

Théorie de l'information (4)

■ Entropie conditionnelle:

$$H(X|Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i|y_j) P(y_j) \log_2 P(x_i|y_j) \Rightarrow H(X|Y) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i,y_j) \log_2 P(x_i|y_j)$$

$$H(Y|X) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i|y_j) P(y_j) \log_2 P(y_i|x_j) \Rightarrow H(Y|X) = -\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i,y_j) \log_2 P(y_i|x_j)$$

Interprétation

- H(X|Y): quantité d'incertitude restante concernant X sachant qu'on a reconstruit Y.
- La connaissance additionnelle de Y réduit l'incertitude concernant X.
- \rightarrow $H(X|Y) \leq H(X)$ [voir problème 5 pour la démonstration]

Théorie de l'information (5)

■ Exemple:

- Source équiprobable de symboles X à 4 bits.
- $X \in \{0, 1, ..., 15\} \rightarrow P(x_i) = 1/16$.
- Compression: élimination du bit LSB puis multiplication par 2→ Y ∈ {0, 2, ..., 14}.
- Entropie de X:

$$H(X) = -\sum_{i=0}^{15} P(X=i) \log_2 P(X=i) = -\sum_{i=0}^{15} \frac{1}{16} \log_2 \frac{1}{16} = 4 \text{ bits}$$

• Entropie de Y:

$$X = b_0 b_1 b_2 b_3 \to Y = b_0 b_1 b_2 = j$$

$$Z = b_0 b_1 b_2 \overline{b_3} \to Y = b_0 b_1 b_2 = j$$

$$P(Y = j) = P(X = j) + P(X = j + 1) = \frac{1}{16} + \frac{1}{16} = \frac{1}{8} \implies H(Y) = 3 \text{ bits}$$

Théorie de l'information (6)

• Probabilité conditionnelle P(X|Y):

$$P(X = i | Y = j) = \begin{cases} 1/2, & \text{si } i = j \text{ ou } i = j+1, \text{ pour } j = 0, 2, \dots, 14\\ 0, & \text{sinon} \end{cases}$$

• Entropie conditionnelle H(X|Y):

$$H(X|Y) = -\sum_{i=0}^{15} \sum_{\substack{j=0 \ j \text{ pair}}}^{14} P(X=i|Y=j) P(Y=j) \log_2 P(X=i|Y=j)$$

$$H(X|Y) = -\sum_{\substack{j=0 \ j \text{ pair}}}^{14} P(X=j|Y=j)P(Y=j)\log_2 P(X=j|Y=j)$$

$$-\sum_{\substack{j=0\\j \text{ pair}}}^{14} P(X=j+1|Y=j) P(Y=j) \log_2 P(X=j+1|Y=j)$$

$$H(X|Y) = -\sum_{\substack{j=0\\j \text{ pair}}}^{14} \left(\frac{1}{2} \times \frac{1}{8}\right) \log_2 \frac{1}{2} - \sum_{\substack{j=0\\j \text{ pair}}}^{14} \left(\frac{1}{2} \times \frac{1}{8}\right) \log_2 \frac{1}{2} = 1$$

Intuitivement, Y informe sur 3 bits de X, il nous reste à connaître un seul bit → H(X|Y)=1.

Théorie de l'information (7)

- Probabilité conditionnelle P(Y|X): $P(Y=j|X=i) = \begin{cases} 1, & i=j \\ 1, & i=j+1 \\ 0, & \text{sinon} \end{cases}$
- Entropie conditionnelle H(Y|X):

$$H(Y|X) = -\sum_{i=0}^{15} \sum_{\substack{j=0 \ j \text{ pair}}}^{14} P(X=i|Y=j) P(Y=j) \log_2 P(Y=j|X=i)$$

$$H(Y|X) = -\sum_{\substack{j=0 \ j \text{ pair}}}^{14} P(X=j|Y=j) P(Y=j) \log_2 P(Y=j|X=i)$$
$$-\sum_{\substack{j=0 \ j \text{ pair}}}^{14} P(X=j+1|Y=j) P(Y=j) \log_2 P(Y=j|X=j+1)$$

$$\mathbf{H}(Y|X) = -\sum_{\substack{j=0\\j \text{ pair}}}^{14} \left(\frac{1}{2} \times \frac{1}{8}\right) \log_2 1 - \sum_{\substack{j=0\\j \text{ pair}}}^{14} \left(\frac{1}{2} \times \frac{1}{8}\right) \log_2 1 = 0$$

• Intuitivement, X contient 4 bits dont 3 bits forment Y. Donc connaissant X, Y est parfaitement connu: H(Y|X)=0.

Théorie de l'information (8)

Information mutuelle moyenne

$$I(X;Y) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i, y_j) \log \frac{P(x_i|y_j)}{P(x_i)}$$

$$I(X;Y) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i | y_j) P(y_j) \log \frac{P(x_i | y_j)}{P(x_i)}$$

$$I(X;Y) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i | y_j) P(y_j) \log P(x_i | y_j) - \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i | y_j) P(y_j) \log P(x_i)$$

$$I(X;Y) = -H(X|Y) - \sum_{i=0}^{N-1} \log P(x_i) \sum_{j=0}^{M-1} P(x_i|y_j) P(y_j)$$

Loi des probabilités totales : $P(x_i)$

$$I(X;Y) = -H(X|Y) - \sum_{i=0}^{N-1} P(x_i) \log P(x_i)$$

$$I(X;Y) = H(X) - H(X|Y)$$

• Information mutuelle:

$$i(x_k; y_j) = \log \frac{P(x_k|y_j)}{P(x_k)}$$

Théorie de l'information (9)

Propriété

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y;X)$$

Retour à l'exemple:

- H(X)=4 bits.
- H(X|Y)=1 bit.
- I(X;Y) = H(X) H(X|Y) = 3 bits.
- ou encore:
- H(Y)=3 bits.
- H(Y|X) = 0 bit.
- I(X;Y) = H(Y) H(Y|X) = 3 bits.

Théorie de l'information (10)

■ Entropie différentielle

- Soit X une variable aléatoire continue avec une fonction de densité de probabilité (pdf) $f_X(x)$.
- L'entropie différentielle est définie par:

$$h(X) = -\int_{-\infty}^{+\infty} f_X(x) \log f_X(x) dx$$

Exemple: X variable uniformément distribuée sur [a,b)

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{si } x \in [a,b) \\ 0, & \text{sinon} \end{cases}$$

$$h(X) = -\int_{-\infty}^{+\infty} f_X(x) \log f_X(x) dx = -\int_{a}^{b} \frac{1}{b-a} \log \frac{1}{b-a} dx = \log(b-a)$$

Théorie du débit distorsion (1)

Définition

- Compromis entre la distorsion et le débit.
- Débit R: nombre de bits moyen par symbole.
- Fonction de débit distorsion R(D): débit minimal nécessaire pour encoder une source en maintenant une distorsion ne dépassant pas D: N-1 M-1 $D = \sum \sum P(x_i, y_j) d(x_i, y_j)$

Procédure

- Débit= H(Y).
- Contrainte $D \leq D^*$.
- Recherche de tous les encodeurs assurant une distorsion $D \leq D^*$.
- Choix de l'encodeur qui génère la plus petite entropie.

Encodeur avec

perte: Distorsion D

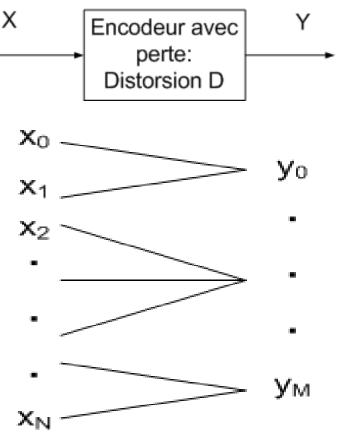
Théorie du débit distorsion (2)

□ Calcul de la distorsion

La distorsion est déterminée par:

$$D = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(x_i, y_j) d(x_i, y_j)$$
$$= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} P(y_j | x_i) P(x_i) d(x_i, y_j)$$

Lorsque la connaissance de la valeur à l'entrée, x, spécifie parfaitement la valeur de reconstruction, y, la distorsion peut être évaluée. Dans cette situation on a:



$$P(y_j \mid x_i) = \begin{cases} 1 & \text{pour un certain } j_i \text{ qui dépend uniquement de } i, \\ 0 & \text{sinon.} \end{cases}$$

Théorie du débit distorsion (3)

□ Calcul de la distorsion

$$D = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \underbrace{P(y_j \mid x_i)}_{=0 \text{ si } j \neq j_i} P(x_i) d(x_i, y_j)$$

$$= \sum_{i=0}^{N-1} \underbrace{P(y_{j_i} \mid x_i)}_{=1} P(x_i) d(x_i, y_{j_i})$$

$$= \sum_{i=0}^{N-1} P(x_i) d(x_i, y_{j_i})$$

Encodeur avec

- Cependant la reconstruction, y, n'est pas toujours parfaitement déduite de la valeur à l'entrée, x.
- Il y a plusieurs techniques de compression efficaces qu'on ne traite pas dans le calcul de la distorsion.
- Voir exemple ci-dessous.

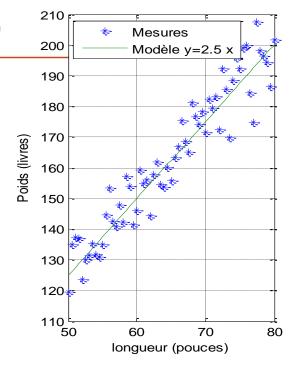
Théorie du débit distorsion (4)

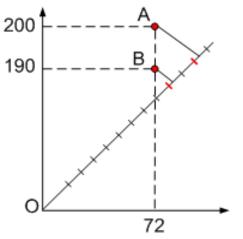
□ Exemple (7.5.1)

- Soit un ensemble de mesures de la longueur X (en pouces) et du poids Y (en livres).
- X et Y sont fortement corrélés: valeurs concentrées autour de y=2.5 x.

\square Schéma de compression de la paire (x,y)

- Projection des échantillons sur la droite y=2.5 x → point P
- Envoi de la distance séparant l'origine
 O du plus proche entier de P.





Théorie du débit distorsion (5)

□ Projection et reconstruction

• Encodage de A (72, 200)

$$P_A = \overrightarrow{OA} \cdot \overrightarrow{u} = 72 \times 0.37139 + 200 \times 0.92847 = 212.43$$

- \Rightarrow Code (A) = 212.
- Décodage de 212

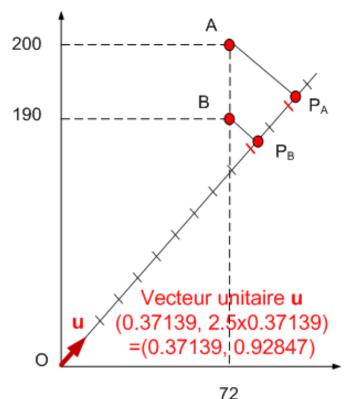
$$\sqrt{x^2 + y^2} = 212 \Rightarrow \sqrt{x^2 + (2.5x)^2} = 212$$

$$\Rightarrow \sqrt{7.25x^2} = 212$$

$$\Rightarrow x = \frac{212}{\sqrt{7.25}} = 78.735$$

$$\Rightarrow$$
 $y = 2.5 \times x = 196.84$

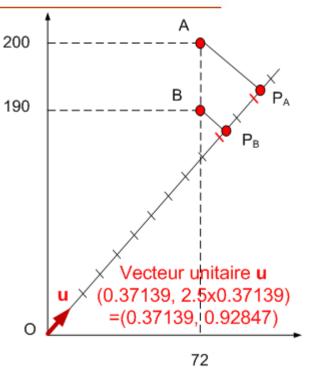
• Reconstruction: A^* (79, 197)



Théorie du débit distorsion (6)

□ Projection et reconstruction

- Encodage de A $(72, 200) \Rightarrow \text{Code (A)=212}$.
- Reconstruction: A*(79, 197)
- Encodage de B (72, 190) \Rightarrow Code (B)=203.
- Reconstruction: $B^*(75, 188)$



- A et B ont la même longueur. Cependant la reconstruction A* et B* ont des longueurs différentes.
- Ceci est dû au fait la reconstruction de la longueur dépend aussi du poids.

Théorie du débit distorsion (7)

- Forme générale de la distorsion $D = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} d(x_i, y_j) P(x_i) P(y_j \mid x_i)$
 - Facteur 1: mesure de la distorsion $d(x_i, y_i)$. Le choix de cette mesure dépend de l'application.
 - Facteur 2: densité de probabilité de la source $P(x_i)$.
 - <u>Facteur 3</u>: probabilité conditionnelle $P(y_j|x_i)$ décrivant le schéma de compression.
 - Pour une source donnée $\{P(x_i)\}$ et une mesure $d(x_i,y_j)$ spécifiée, la distorsion est une fonction de la méthode de compression: $D=D(\{P(y_i \mid x_i)\})$.
 - Pour une distorsion cible D*, l'ensemble des schémas de compression est noté:

$$\Gamma = \{ \{ P(y_j | x_i) \} \text{ tel que } D(\{ P(y_j | x_i) \} \le D^* \}$$

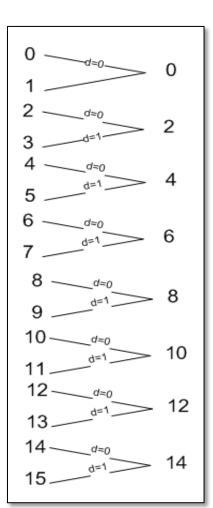
Théorie du débit distorsion (8)

Exemple

- Source: $X \in \{0, 1, ..., 15\} \rightarrow P(x_i) = 1/16$.
- Compression: $Y \in \{0, 2, ..., 14\} \rightarrow H(Y) = 3$ bits.
- Mesure de la distorsion: $d(x_i, y_i) = (x_i, y_i)^2$

$$D = \sum_{i=0}^{N-1} P(x_i) (x_i - y_{j_i})^2 = \sum_{\substack{i=0 \ i \text{ pair}}}^{15} \left(\frac{1}{16} \times 1 \right) + \sum_{\substack{i=0 \ i \text{ impair}}}^{15} \left(\frac{1}{16} \times 0 \right) = 0.5$$

- <u>Distorsion cible</u>: Considérons D*=225,
- ☐ Même le mapping aléatoire (i.e. $P(y_j|x_i)=1/8$) peut être considéré → Pareillement H(Y)=3 bits.
- Cependant le mapping aléatoire ne transmet aucune information. On ne peut alors rien transmettre: 0 bits.
- Ainsi, l'entropie H(Y) ne peut être une mesure du débit.

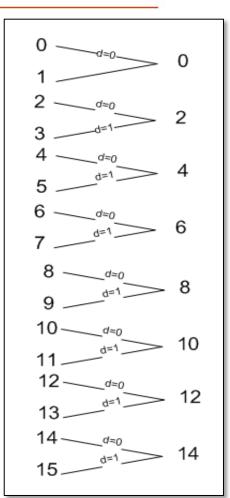


Théorie du débit distorsion (9)

■ <u>Débit minimum défini par Shannon</u>

$$R(D) = \min_{P(y_i|x_i) \in \Gamma} I(X;Y)$$

- Reconsidérons l'exemple précédent
 - -H(Y|X)=0
 - H(Y) = 3 bits
 - I(X;Y) = H(Y) H(Y|X) = 3 bits
- Compression aléatoire
 - Intuitivement, Y ne donne aucune information sur X donc :
 - $I(X;Y)=0 \rightarrow \text{ débit} = 0 \text{ au lieu de 3 bits.}$
 - Dans ce genre de situation, où aucun transfert de données n'est effectué, il vaut mieux utiliser un débit égal à 0.



Exemple 3 : Fonction de débit-distorsion pour une source binaire (1)

- Source d'information binaire : $X \in \{0,1\}$, avec P(0) = p et P(1) = 1 p
- Mesure de distorsion : $d(x_i, y_j) = x_i \oplus y_j$
- Fonction de débit-distorsion :

$$I(X;Y) = H(X) - H(X|Y)$$

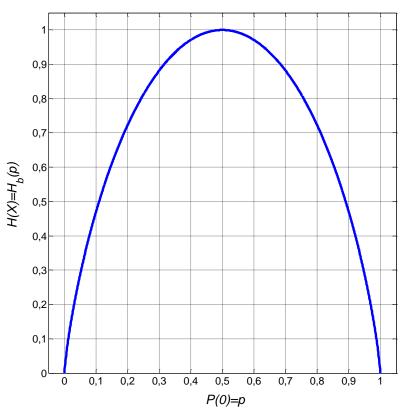
$$I(X;Y) = H(X) - H(X \oplus Y|Y)$$

$$I(X;Y) \ge H(X) - H(X \oplus Y)$$

Entropie de X:

$$H(X) = -p \log_2 p - (1-p) \log_2 (1-p)$$

$$H(X) = H_b(p) = H_b(1-p)$$



Exemple 3 : Fonction de débit-distorsion pour une source binaire (2)

 Fonction de débit-distorsion : minimiser l'information mutuelle tout en respectant le critère de distorsion:

$$I(X;Y) \ge H(X) - H(X \oplus Y)$$
 avec :
 $\Rightarrow H(X) = H_b(p) = -p \log_2 p - (1-p) \log_2 (1-p)$: déterminé par la source
 $\Rightarrow H(X \oplus Y) = H_b(P(X \oplus Y = 1))$: à maximiser sur l'ensemble $\{P(x_i | y_j)\}$
 \Rightarrow sujet à la contrainte de distorsion : $E[d(x_i, y_j)] \le D$

Avec la mesure de distorsion
$$d(x_i, y_j) = x_i \oplus y_j$$
, on a $E[d(x_i, y_j)] = E[(x_i \oplus y_j)]$:
$$E[d(x_i, y_j)] = 0 \times P(X = 0, Y = 0) + 1 \times P(X = 0, Y = 1) + 1 \times P(X = 1, Y = 0) + 0 \times P(X = 1, Y = 1)$$
$$E[d(x_i, y_j)] = P(X = 0, Y = 1) + P(X = 1, Y = 0)$$
$$E[d(x_i, y_j)] = pP(Y = 1|X = 0) + (1 - p)P(Y = 0|X = 1)$$
Donc, il faut que $E[d(x_i, y_j)] = P(X \oplus Y = 1) \le D$

Exemple 3 : Fonction de débit-distorsion pour une source binaire (3)

En tenant compte de la contrainte de $E\left[d\left(x_{i}, y_{j}\right)\right] = P\left(X \oplus Y = 1\right) \leq D$,

on peut minimiser le débit requis I(X;Y) en maximisant le terme $H(X \oplus Y)$:

$$I(X;Y) \ge H(X) - H(X \oplus Y)$$

$$I(X;Y) \ge H_b(p) - H_b(P(X \oplus Y = 1))$$

$$I(X;Y) \ge H_b(p) - H_b(D)$$

Pour $0 \le D , le débit minimal avec <math>E\left[d\left(x_i, y_j\right)\right] \le D$ est :

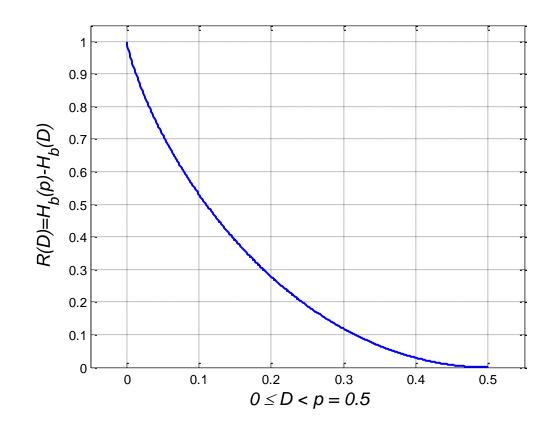
$$I(X;Y) \ge R(D) = H_b(p) - H_b(D)$$

Par symmétrie de la fonction d'entropie $H_{b}(p)$, on obtient :

$$R(D) = \begin{cases} H_b(p) - H_b(D) & \text{pour } D < \min\{p, 1-p\} \\ 0 & \text{ailleurs} \end{cases}$$

Exemple 3 : Fonction de débit-distorsion pour une source binaire (4)

$$R(D) = \begin{cases} H_b(p) - H_b(D) & \text{pour } D < \min\{p, 1-p\} \\ 0 & \text{ailleurs} \end{cases}$$



Exemple 4 : Fonction de débit-distorsion pour une source gaussienne (1)

- Source d'information gaussienne de moyenne nulle et
- ullet de variance σ^2
- Mesure de distorsion (erreur quadratique moyenne) :

$$d(x,y) = (x-y)^2$$

Critère de distorsion (contrainte de distorsion) :

$$E\left[\left(x-y\right)^2\right] \leq D$$

- La fonction de débit-distorsion R(D) dépend de l'information
- mutuelle entre X et Y : I(X;Y) = h(X) h(X|Y) I(X;Y) = h(X) h(X-Y|Y) $I(X;Y) \ge h(X) h(X-Y)$
- Ici, h(X) est l'entropie différentielle de la source gaussienne.

Exemple 4 : Fonction de débit-distorsion pour une source gaussienne (2)

 On doit minimiser l'information mutuelle I(X;Y) tout en respectant la contrainte de distorsion D. h(X-Y) est alors l'entropie différentielle d'une gaussienne de variance D:

$$I(X;Y) \ge h(X) - h(X - Y)$$

$$I(X;Y) \ge \frac{1}{2} \log(2\pi e\sigma^{2}) - \frac{1}{2} \log(2\pi eD)$$

$$I(X;Y) \ge \frac{1}{2} \log\left(\frac{\sigma^{2}}{D}\right)$$

• Si Y est une gaussienne de moyenne nulle et de variance $\left(\sigma^2 - D\right)$

$$f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi D}} \exp\left(-\frac{x^2}{2D}\right) \qquad \Rightarrow \qquad I(X;Y) = \frac{1}{2} \log\left(\frac{\sigma^2}{D}\right)$$

Fonction de débit-distorsion :

$$R(D) = \begin{cases} \frac{1}{2} \log \left(\frac{\sigma^2}{D} \right) & \text{pour } D < \sigma^2 \\ 0 & \text{pour } D \ge \sigma^2 \end{cases}$$

Modèles de probabilité (1)

Modélisation pour la compression sans perte

- L'objectif est de reconstruire la valeur exacte.
- La modélisation est en fait une estimation empirique qui donne le même estimé à l'encodeur et au décodeur.
- Une correction d'estimation est encodée pour assurer une reconstruction exacte → codage résiduel.

Modélisation pour la compression avec perte

- Modélisation de l'allure générale.
- Utilisation de fonctions de distribution de probabilité analytiquement malléables.
- La modélisation améliore à la fois la compression et la reconstruction.

Modèles de probabilité (2)

Distribution uniforme

 Modèle d'ignorance: toutes les valeurs sont équiprobables.

 $f_X(x) = \begin{cases} \frac{1}{b-a} & \text{pour } a \le x \le b \\ 0 & \text{ailleurs.} \end{cases}$

Distribution gaussienne

- Distribution communément utilisée pour deux raisons:
 - 1. Mathématiquement malléable.
 - 2. Constitue la limite de la somme de plusieurs variables aléatoire: loi de la limite centrale.

$$N(\mu, \sigma^2) \rightarrow f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Modèles de probabilité (3)

Distribution Laplacienne

- Distribution concentrée autour de zéro.
- La voix comporte énormément de silences.
- La différence entre pixels voisins d'une image est concentrée autour de 0.
- Dans ces situations la distribution gaussienne n'est pas efficace.
- Fonction de distribution d'une variable aléatoire de moyenne nulle avec une allure Laplacienne de variance σ² est donnée par:

$$f_X(x) = \frac{1}{\sqrt{2\sigma^2}} \exp{-\frac{\sqrt{2}|x|}{\sigma}}$$

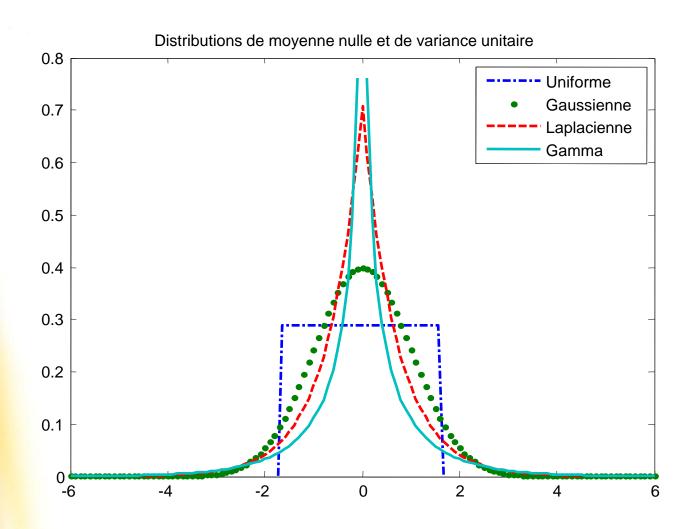
Modèles de probabilité (4)

■ <u>Distribution Gamma</u>

- Distribution encore plus concentrée autour de zéro.
- Mais moins malléable.
- Fonction de distribution d'une variable aléatoire de moyenne nulle avec une allure Gamma de variance σ² donnée par:

$$f_X(x) = \frac{\sqrt[4]{3}}{\sqrt{8\pi\sigma |x|}} \exp\left(-\frac{\sqrt{3}|x|}{2\sigma}\right)$$

Modèles de probabilité (5)



Modèles de systèmes linéaires (1)

- □ ARMA (N,M) (modèles autorégressifs et moyenne mobile)
 - Equation aux différences:

$$x_{n} = \sum_{i=1}^{N} a_{i} x_{n-i} + \sum_{i=1}^{M} b_{j} \varepsilon_{n-j} + \varepsilon_{n}$$
Autorégressive Moyenne mobile

- $\{x_n\}$ échantillons du processus à modéliser.
- $\{\varepsilon_n\}$ séquence de bruit blanc stationnaire au sens large:

$$R_{\varepsilon\varepsilon}(k) = \begin{cases} \sigma_{\varepsilon}^2 & \text{pour } k = 0\\ 0 & \text{sinon.} \end{cases}$$

Modèles de systèmes linéaires (2)

\square ARMA (N,0) = AR(N) (modèles autorégressifs)

• Équation aux différences:

$$x_n = \sum_{i=1}^{N} a_i x_{n-i} + \varepsilon_n$$
Autorégressive

- Modèle utilisé dans la compression de la voix.
- Pas besoin de connaître tout l'historique de la séquence mais seulement des N échantillons passés:

$$P(x_n \mid x_{n-1}, x_{n-2},...) = P(x_n \mid x_{n-1}, x_{n-2},..., x_{n-N})$$

 \rightarrow Il s'agit d'un modèle de Markov d'ordre N.

Modèles de systèmes linéaires (3)

\square Fonction d'autocorrélation $R_{xx}(k)$

Définition:

$$R_{xx}(k) = E[x_n x_{n-k}]$$

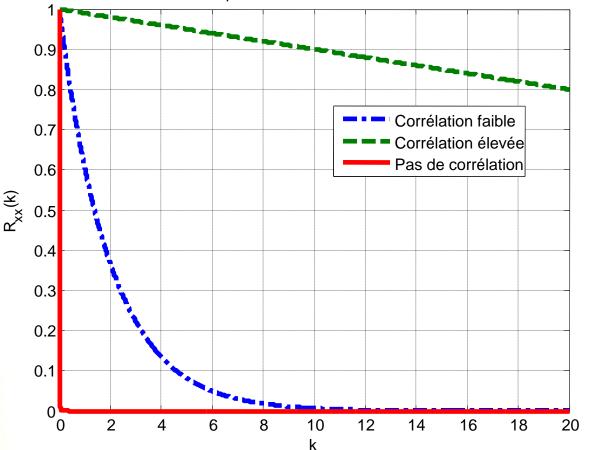
- Décrit le comportement inter-échantillons.
- Si $R_{xx}(k)$ décroît lentement \rightarrow Corrélation interéchantillons élevée.
- Si $R_{xx}(k)$ décroît rapidement \rightarrow Corrélation interéchantillons faible.
- Aucune corrélation inter-échantillons (cas du bruit blanc) → fonction d'autocorrélation = impulsion de Dirac.

Modèles de systèmes linéaires (4)

□ Fonction d'autocorrélation $R_{xx}(k)$ $R_{xx}(k) = E[x_n x_{n-k}]$

$$R_{xx}(k) = E[x_n x_{n-k}]$$

Fonction d'autocorrélation pour différentes valeurs de corrélation inter-échantillons



Modèles de systèmes linéaires (5)

$$R_{xx}(k) = E\left[x_{n}x_{n-k}\right] = E\left[\left(\sum_{i=1}^{N} a_{i}x_{n-i} + \varepsilon_{n}\right)x_{n-k}\right]$$

$$= E\left[\sum_{i=1}^{N} a_{i}x_{n-i}x_{n-k}\right] + E\left[\varepsilon_{n}x_{n-k}\right]$$

$$= \sum_{i=1}^{N} a_{i}E\left[x_{n-i}x_{n-k}\right] + E\left[\varepsilon_{n}x_{n-k}\right] \quad \text{(permutation somme-espérance)}$$

$$= \begin{cases} (1) \to \sum_{i=1}^{N} a_{i}R_{xx}(k-i) & \text{pour } k > 0 \\ (2) \to \sum_{i=1}^{N} a_{i}R_{xx}(i) + \sigma_{\varepsilon}^{2} & \text{pour } k = 0 \end{cases}$$

(1) ε_n et x_{n-k} sont indépendants $\Rightarrow E[\varepsilon_n x_{n-k}] = 0$ pour k > 0

$$(2)E\left[\varepsilon_{n}x_{n}\right] = E\left[\left(\sum_{i=1}^{N}a_{i}x_{n-i} + \varepsilon_{n}\right)\varepsilon_{n}\right] = \sum_{i=1}^{N}a_{i}\underbrace{E\left[x_{n-i}\varepsilon_{n}\right]}_{=0} + \underbrace{E\left[\varepsilon_{n}\varepsilon_{n}\right]}_{\sigma_{\varepsilon}^{2}}$$

Modèles de systèmes linéaires (6)

□ Exemple: Fonction d'autocorrélation d'un processus AR(3)

$$R_{xx}(k) = \begin{cases} \sum_{i=1}^{N} a_i R_{xx}(k-i) & \text{pour } k > 0\\ \sum_{i=1}^{N} a_i R_{xx}(i) + \sigma_{\varepsilon}^2 & \text{pour } k = 0 \end{cases}$$

$$R_{xx}(0) = a_0 R_{xx}(0) + a_1 R_{xx}(1) + a_2 R_{xx}(2) + \sigma_{\varepsilon}^2 \left[\text{on a: } R_{xx}(k) = R_{xx}(-k) \right]$$

3 équations et 3 inconnues: $\begin{cases} R_{xx}(1) = a_0 R_{xx}(0) + a_1 R_{xx}(1) + a_2 R_{xx}(2) \\ R_{xx}(2) = a_0 R_{xx}(1) + a_1 R_{xx}(0) + a_2 R_{xx}(1) \\ R_{xx}(3) = a_0 R_{xx}(2) + a_1 R_{xx}(1) + a_2 R_{xx}(0) \end{cases}$

Connaissance de $R_{xx}(k) \Rightarrow$ les 3 coefficients du modèle AR(3) $\{a_1, a_2, a_3\}$

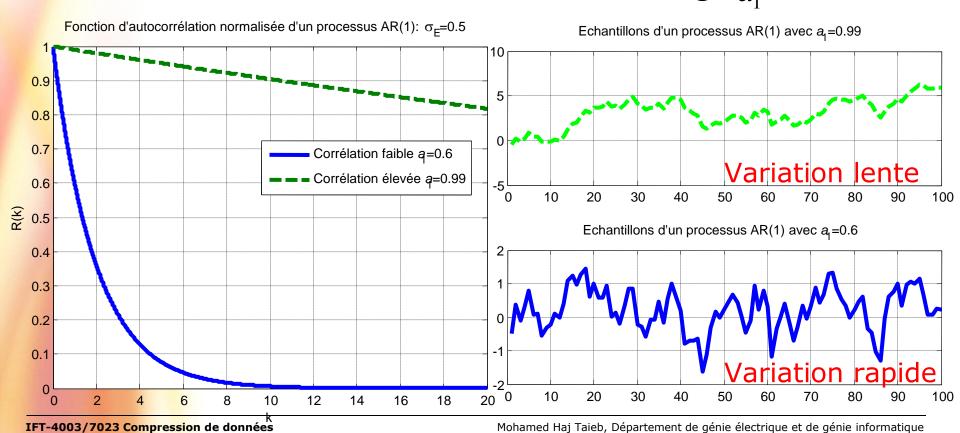
Connaissance des coefficients du modèles et de $\sigma_{\varepsilon}^2 \Rightarrow R_{xx}(k)$

Modèles de systèmes linéaires (7)

Exemple: Relation entre le comportement temporel et fonction d'autocorrélation:

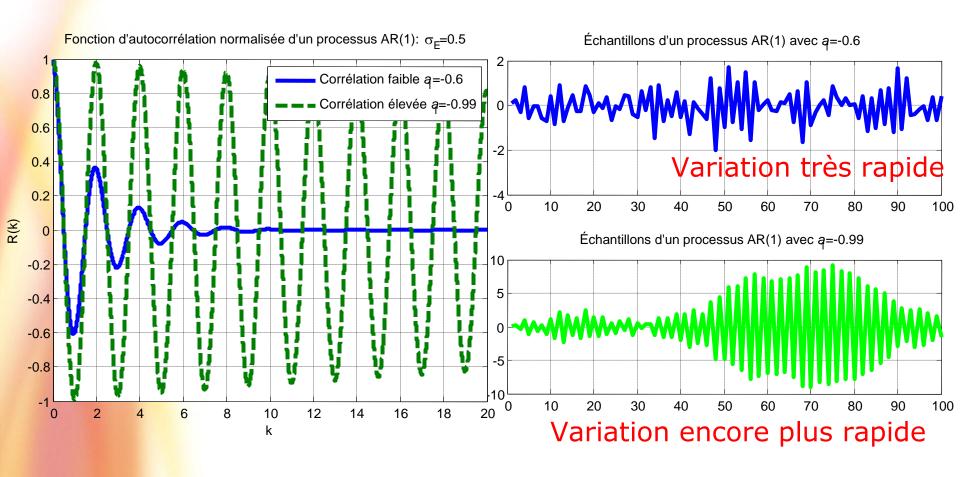
Prob.8

Source AR(1):
$$x_n = a_1 x_{n-1} + \varepsilon_n$$
 $\xrightarrow{\text{Prob.8}}$ $R_{xx}(k) = \frac{1}{1 - a_1^2} a_1^k \sigma_{\varepsilon}^2$



Modèles de systèmes linéaires (8)

□ Processus AR(1) avec un coefficient négatif



Modèles de systèmes linéaires (9)

- ☐ MA (0,M) (Processus à moyenne mobile)
 - Equation aux différences:

$$x_n = \sum_{i=1}^{M} b_i \varepsilon_{n-j} + \varepsilon_n$$
Moyenne mobile

Processus à moyenne mobile d'ordre M.