Danny Dubé Hiver 2007

Version: 19 mars

Série d'exercices #7 Optimisations et analyses statiques

1. Appliquez la quatrième analyse de types (vue en classe) sur les programmes donnés en exemple dans les notes de cours. Ces programmes sont reproduits ici :

```
(a) (_1(_2(\mu_3A.
                   (\lambda_4 \mathrm{m}.
                        (\lambda_5 n.
                            (if_6 m_7)
                                    (\cos_8 (\cos_9 m_{10}) (_{11}(_{12}A_{13} (\cot_{14} m_{15})) n_{16}))
               (\cos_{18} \# f_{19} \# f_{20}))
(b) (_1(_2(\lambda_3 f. (\lambda_4 x. (_5 f_6 (_7 f_8 x_9)))))
               (\lambda_{10}y. (cons_{11} \# f_{12} y_{13})))
           (\cos_{14} \# f_{15} \# f_{16})
(c) (_1(_2(\lambda_3z.\ (if_4\ z_5\ z_6\ (\lambda_7x.\ x_8)))
              (\text{car}_9 (\text{pair}?_{10} (\text{cons}_{11} \# f_{12} \# f_{13}))))
           \#f_{14})
(d) (_1(\lambda_2 f. (if_3 \# f_4)
                              (_{5}f_{6} \# f_{7})
                              (_8f_9 (cons_{10} \# f_{11} \# f_{12}))))
           (\lambda_{13}x. (car_{14} x_{15})))
(e) ({}_{1}(\lambda_{2}f.({}_{3}(\lambda_{4}z.({}_{5}({}_{6}f_{7}(\lambda_{8}y.\#f_{9}))\#f_{10}))
                         (\operatorname{car}_{11} (_{12}f_{13} (\operatorname{cons}_{14} \# f_{15} \# f_{16})))))
           (\lambda_{17} x. x_{18}))
(f) (_1(\lambda_2 i. (_3(_4i_5 i_6) \# f_7))
           (\lambda_8 x. (_9(\lambda_{10} y. x_{11}) \# f_{12})))
```

- 2. Pour chacune des mises en situations suivantes, une proposition d'optimisation est émise. Certaines propositions sont correctes, d'autres non. Dites ce qu'il en est et justifiez votre réponse.
 - (a) Étant donné que la fonction $(\lambda_{12}x. (_{13}f_{14} x_{15}))$ a le même comportement que 'f', on remplace e_{12} par 'f'.
 - (b) En analysant l'expression $({}_{21}(\lambda_{22}x.\ e_{23})\ e_{34})$, on a pu constater que $x \notin FV(e_{23})$. Donc, l'argument passé à la fonction est forcément ignoré. On choisit alors de remplacer e_{21} par e_{23} .
 - (c) En analysant l'expression (if₃₈ (pair?₃₉ e_{40}) e_{48} e_{51}), on a observé que e_{40} ne produit jamais des fonctions. On décide alors de remplacer e_{38} par (if₃₈ e_{40} e_{48} e_{51}).
 - (d) On décide d'optimiser l'expression (car_{55} ($\mu_{56}L$. ($cons_{57}$ x_{58} L_{59}))) en la remplaçant par 'x' puisque le code ne fait qu'extraire le premier élément d'une liste de 'x'. Le fait que celle-ci puisse être infinie n'a pas d'importance ici.
 - (e) En examinant l'expression (if e_{80} e_{81} (if e_{89} e_{93} e_{99}) (if e_{104} e_{105} e_{110} e_{117}), on a pure constater que $e_{89} = e_{105}$ et que $e_{99} = e_{117}$ (égalité au sens syntaxique). Or, pour simplifier les tests, on décide de reformuler les conditions ainsi : (if e_{89} (if e_{81} e_{93} e_{110}) e_{99}).
 - (f) On décide de remplacer l'appel $(_{63}e_{64} (\operatorname{cdr}_{71} \# f_{72}))$ par $(\operatorname{cdr}_{71} \# f_{72})$ puisque, de toute façon, cet appel est condamné à mener à une erreur.
 - (g) On décide de remplacer l'appel ($_{75}e_{76}$ ($\mu_{77}z. z_{78}$)) par ($\mu_{77}z. z_{78}$) puisque, de toute façon, cet appel est condamné à boucler à l'infini.