
Efficient Propagators for Global Constraints

by

Claude-Guy Quimper

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2006

c©Claude-Guy Quimper 2006

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Claude-Guy Quimper

ii

Abstract

We study in this thesis three well known global constraints. The All-Different

constraint restricts a set of variables to be assigned to distinct values. The global

cardinality constraint (GCC) ensures that a value v is assigned to at least lv vari-

ables and to at most uv variables among a set of given variables where lv and uv are

non-negative integers such that lv ≤ uv. The Inter-Distance constraint ensures

that all variables, among a set of variables x1, . . . , xn, are pairwise distant from p,

i.e. |xi− xj| ≥ p for all i 6= j. The All-Different constraint, the GCC, and the

Inter-Distance constraint are largely used in scheduling problems. For instance,

in scheduling problems where tasks with unit processing time compete for a single

resource, we have an All-Different constraint on the starting time variables.

When there are k resources, we have a GCC with lv = 0 and uv = k over all

starting time variables. Finally, if tasks have processing time t and compete for a

single resource, we have an Inter-Distance constraint with p = t over all starting

time variables. We present new propagators for the All-Different constraint,

the GCC, and the Inter-Distance constraint i.e., new filtering algorithms that

reduce the search space according to these constraints. For a given consistency, our

propagators outperform previous propagators both in practice and in theory. The

gains in performance are achieved through judicious use of advanced data structures

combined with novel results on the structural properties of the constraints.

iii

Acknowledgements

I would like to thank my advisor Alejandro López-Ortiz for his enthusiasm in

working with me on a broad selection of problems ranging from video-on-demand to

computational geometry, and of course, constraint programming which is the topic

of this thesis. I appreciated the time we spent working together. I will remember

his precious advice on the importance of constantly acquiring new knowledge and

diversifying my research topics as well as his advice on how to address open prob-

lems. I would also like to thank Peter van Beek whose excellent course on constraint

programming was the starting point for my doctoral studies. I appreciated his ju-

dicious comments, suggestions, and ideas. Many thanks to Toby Walsh for inviting

me twice to visit NICTA in Sydney, Australia. I really appreciate his invitation to

join the COMIC research group on constraint programming. Many thanks to Bill

Cunningham, Ian Munro, Peter van Beek, and Pascal Van Hentenryck for being

on my thesis committee and their useful comments. I would like to thank all my

coauthors. I am looking forward to collaborating again with you. Finally, I would

like to thank my mother Lyse, my father Michel, my girlfriend Jiye, and all my

friends for their presence and their support during my graduate studies.

iv

Contents

1 Introduction 1

2 Theoretical Background 9

2.1 Introduction . 9

2.2 Graph Theory . 9

2.2.1 Network Flows . 10

2.2.2 Matchings . 12

2.2.3 Hall’s Marriage Theorem . 17

2.3 Constraint Programming . 17

2.3.1 Historical Background . 17

2.3.2 General Concepts . 19

2.3.3 Consistencies . 20

2.3.4 Propagation . 24

2.3.5 Constraints . 25

3 Existing Propagators for the All-Different and GCC Constraints 29

3.1 Introduction . 29

3.2 Binary Constraints . 29

3.3 Domain Consistency . 30

v

3.3.1 All-Different . 30

3.3.2 GCC . 33

3.4 Range Consistency . 35

3.5 Bounds Consistency . 38

3.5.1 Puget’s Propagator . 38

3.5.2 Mehlhorn and Thiel’s Propagator 39

3.5.3 Katriel and Thiel’s Propagator 40

3.6 Variations on the Problem . 41

4 New Propagators for the All-Different Constraint 43

4.1 Introduction . 43

4.2 Bounds Consistency for the All-Different Constraint 43

4.2.1 Time Complexity Analysis 49

4.2.2 Experiments . 52

4.3 Range Consistency for the All-Different Constraint 60

4.3.1 Basic Hall Intervals . 61

4.3.2 A New Algorithm for Range Consistency 63

4.3.3 Experiments . 67

4.4 The All-Different Constraint on Non Integer Variables 70

4.4.1 Beyond Integer Variables . 70

4.4.2 The All-Different Constraint on Sets 73

4.4.3 The All-Different Constraint on Tuples 77

4.4.4 The All-Different Constraint on Multi-Sets 79

4.4.5 Indexing Domain Values . 80

4.4.6 Experiments . 81

vi

5 New Propagators for the Global Cardinality Constraint 85

5.1 The Upper Bound Constraint (ubc) 86

5.2 The Lower Bound Constraint (lbc) 87

5.3 An Iterative Algorithm for Local Consistency of the GCC 90

5.4 Bounds Consistency for the GCC 94

5.4.1 The Upper Bound Constraint (ubc) 94

5.4.2 The Lower Bound Constraint (lbc) 95

5.4.3 Experiments . 101

5.5 Range Consistency for the GCC . 106

5.5.1 Finding the Basic Characteristic Intervals 108

5.5.2 Dynamic Case . 114

5.5.3 Experiments . 115

5.6 Domain Consistency for the GCC 117

5.6.1 Matching in a Graph . 117

5.6.2 Pruning the Domains . 119

5.6.3 Dynamic Case . 120

5.7 The EXT-GCC Constraint . 120

5.7.1 Mixed Consistency . 120

5.7.2 Bounding the Cardinality Variables 123

5.7.3 Domain Consistency is NP-Hard 123

5.8 Universality . 127

5.8.1 Universality of the Lower Bound Constraint 127

5.8.2 Universality of the Upper Bound Constraint 128

5.9 The Global Cardinality Constraint on Non Integer Variables 130

vii

6 The Inter-Distance Constraint 133

6.1 Introduction . 133

6.2 The Inter-Distance Constraint 134

6.3 Towards a Quadratic Propagator 137

6.4 A Quadratic Propagator . 142

6.4.1 General Scheme . 142

6.4.2 Keeping Track of Adjustment Intervals 144

6.5 Experiments . 146

6.5.1 Scalability Test . 146

6.5.2 Runway Scheduling Problem 147

6.6 Conclusion . 148

7 Conclusion 151

viii

List of Tables

4.1 Golomb ruler problem . 54

4.2 Instruction scheduling problem . 55

4.3 Time (sec.) to find all or first solutions for n-queens problems. . . 59

4.4 The quasigroup problem . 60

4.5 Golomb ruler problem . 68

4.6 Græco-latin square . 84

5.1 Instruction scheduling problem (multiple-issue pipelined processors) 103

5.2 Car sequencing problems . 104

5.3 Sports league scheduling problem 104

5.4 Random problems for the GCC . 105

5.5 Sport tournament scheduling problem (Time) 116

5.6 Sport tournament scheduling problem (Backtracks) 116

6.1 Internal and external adjustment intervals 138

6.2 Time to solve the runway scheduling problem. 148

6.3 Time to solve the runway scheduling problem (equal landing intervals)149

ix

List of Figures

2.1 Finding a feasible flow in a graph 13

2.2 Matching in a bipartite graph . 14

2.3 Partial order on BD, RC, BDC, and DC. 23

3.1 Value-graph . 31

3.2 Residual graph . 33

3.3 Régin’s value graph for the GCC 35

4.1 Trace of the bounds consistency propagator on All-Different . . 46

4.2 Pathological problem for All-Different 53

4.3 Random problems for the All-Different constraint 56

4.4 Random problems with holes for the All-Different constraint . 58

4.5 Range consistency propagators for All-Different. 69

4.6 Binomial tree representation of a set variable domain 75

4.7 Indexing tree . 81

4.8 Græco-latin square . 83

5.1 Trace of Algorithm 8 . 98

5.2 Pathological problem for the GCC 102

5.3 Finding a generalized matching in a graph is NP-Hard 125

xi

6.1 Scalability test on the Inter-Distance constraint. 147

xii

List of Algorithms

1 Making a problem locally consistent 25

2 Leconte’s algorithm . 37

3 Enforcing Bounds Consistency on All-Different(X) 48

4 Detecting the basic Hall intervals . 65

5 All-Different propagator for variables with large domains 72

6 Enumerating combinations . 74

7 Enumerating tuples . 79

8 Bounds consistency algorithm for the lbc 96

9 Printing basic characteristic intervals inbounds consistent problems. . 111

10 Enforcing range consistency on the GCC. 113

11 Testing the universality of the ubc 130

12 Enforcing bounds consistency on the Inter-Distance constraint . . 143

13 Compute the insertion point . 145

xiii

Chapter 1

Introduction

Large organizations such as corporations and governments need to optimize their

operations or simply find satisfactory solutions to their problems in the course of

their normal business activities. With the advent of the electronic computer during

the second half of the last century, it became feasible to attempt to solve these

problems mechanically. This new technology even allowed to optimize processes

that would have never been tackled before. Since many of these problems are NP-

Hard, there is no known polynomial time algorithm that can solve all instances. It

follows then that combinatorial problems need to be studied using an alternative

approach in order to obtain a solution. The scientific community has suggested

multiple approaches to solve combinatorial problems. In general, solutions that are

more flexible have gained more attention.

The operations research community has extensively used linear programming as

a main tool to solve optimization and also combinatorial problems. The technique

consists of reducing a problem to a linear program i.e., a system of linear equations

Ax = b subject to x ≥ 0 whose solution must minimize the linear expression

cT x. Linear program solvers like the simplex method or the interior point method

efficiently find optimal solutions to linear programs. One can add the restriction

that the components of x are required to take integer values. This new problem

called an integer program captures the class of NP-Hard problems.

NP-Hard problems can also be reduced to the satisfiability problem. This prob-

1

2 Efficient Propagators for Global Constraints

lem consists of finding a valid assignment to boolean variables that are subject to

an expression formed by conjunctions, disjunctions, and negations of boolean vari-

ables. The SAT community offers different tools to solve the satisfiability problem.

NP-Hard problems can be reduced to the satisfiability problem and then submitted

to a SAT solver.

All the techniques described above require reducing a combinatorial or an op-

timization problem to a linear program, an integer program, or a satisfiability

problem, and then submit the transformed problem to a specialized solver. There

exist some programming paradigms that allows to directly express the problem as

it is and let the computer find the solution.

Logic programming is a programming paradigm that aims at solving problems

only by stating the facts about the instance of the problem and by giving some

inference rules. Prolog [15] is a well known programming language that uses this

paradigm. The paradigm evolved to become constraint logic programming which

directly uses constraints such as A > B as predicates. Constraint programming fol-

lows the constraint logic programming paradigm. With constraint programming,

one lists the variables of the problem and the constraints representing the relations

between the variables. Each variable is associated to a set of values called its do-

main that specifies which values can be assigned to the variable. The variables,

the domains, and the constraints form a constraint satisfaction problem. Differ-

ent search techniques exist to solve constraint satisfaction problems such as the

exploration of a search tree and local searches.

A common technique to reduce the search space is to filter the domains of the

variables. Let dom(x1) = [1, 4] and dom(x2) = [2, 6] be two variable domains.

Let x1 > x2 be a constraint in the problem. Filtering this constraint removes

from dom(x1) and dom(x2) the values that cannot be part of any solution. In our

example, filtering the domains of x1 and x2 results in the new domains: dom(x1) =

[3, 4] and dom(x2) = [2, 3]. The algorithm that filters the domain is called a filtering

algorithm or propagator. The constraint propagation phase consists of iteratively

calling the constraint propagators until no more values can be removed. When the

constraint propagation phase reaches this fix point, the problem is said to be locally

consistent.

Introduction 3

A propagator can enforce different level of consistencies. A propagator enforcing

domain consistency removes the maximum number of values from the domains. A

propagator enforcing bounds consistency approximates the variable domains with

intervals and then increases the lower bound and decreases the upper bound of

each domain. Finally, a propagator enforcing range consistency removes all possible

values from one domain while approximating all other domains with intervals.

Some constraints occur more often than others in combinatorial problems. This

is the case for the All-Different constraint which ensures that a set of variables

are assigned to pairwise distinct values. This constraint is largely used in schedul-

ing problems where tasks with unit processing time compete for a resource. We

therefore want all execution times to be different. Permutations can also be mod-

eled using an All-Different constraint. We simply post an All-Different

constraint on n variables whose domains consists of the integers from 1 to n.

The All-Different constraint is one of the most studied constraints (see for

instance [46, 51, 54, 60, 63, 65, 67, 83, 84]). We present in this thesis (see Chap-

ter 4) new algorithms that filter the variable domains for this constraint.

A generalization of the All-Different constraint is the global cardinality con-

straint (GCC). This constraint ensures that a value v is assigned to at least lv vari-

ables and to at most uv variables among a set of given variables. When lv = 0 and

uv = 1 for all values v, we obtain the All-Different constraint. This constraint

naturally appears, for instance, in scheduling problems where tasks with unit pro-

cessing times compete for a set of k resources. In this case, we have a GCC over

all starting time variables where lv = 0 and uv = k. The GCC also occurs in sport

scheduling problems where teams must play at least once a week but no more than

say, thrice a week.

We study another generalization of the All-Different constraint called the

Inter-Distance constraint. Given a set of variables x1, . . . , xn, the Inter-Distance

constraint ensures that all variables are pairwise distant from p, i.e. |xi − xj| ≥ p

for all i 6= j. When p = 1, the Inter-Distance constraint specializes into an

All-Different constraint. The Inter-Distance constraint is particularly use-

ful for modeling scheduling problems where tasks with processing time p compete

for a single resource. In this case, we want each starting time to be at distance at

4 Efficient Propagators for Global Constraints

least p from all other starting times.

The main contribution of this thesis is a collection of new propagators en-

forcing bounds and range consistency for the All-Different constraint and

the GCC. We also present a new propagator for the bounds consistency of the

Inter-Distance constraint. The development of propagators for global con-

straints is an important research area in constraint programming. Designing spe-

cialized propagators for these constraints can lead to a stronger pruning of the

search tree that can result in an exponential gain in computational time [78].

Even though we approach problems from a theoretical point of view, the solu-

tions we propose are of practical use. We implemented our propagators and tested

them against already existing techniques. All our propagators were implemented

using constraint programming libraries such as ILog. When comparing to existing

propagators achieving the same consistencies, our propagators offer better perfor-

mance both in practice and in theory.

Some of our algorithms have already been integrated (by others) into different

commercial and open source constraint programming libraries such as Choco [44],

Gecode [2], Koalog [43], Mistral [30], and Disolver [29].

The algorithms presented in this thesis have real life applications. Indeed, the

constraints we study in this thesis model many problems occurring in industry.

For example, in manufacturing, the All-Different constraint and the GCC

allow modelling, planning, and scheduling of tasks when resources are limited.

Problems can range from scheduling the daily operations of a plant in order to sat-

isfy demand to planning the annual operations based on an expected demand. The

All-Different constraint, the GCC, the Inter-Distance constraints allow for

the optimization of plant utilization, management of events on a supply-chain, and

inventory control. For instance, the wood industry has established different tech-

niques to dry wood. One can dry wood with a dryer or simply by storing the wood

in a yard. Each process leads to different wood qualities and processing times. The

GCC and the All-Different constraint can help in modelling a plant to ensure

that the capacity of the dryers and the yard is not exceeded while still satisfying

the demands throughout the year.

Introduction 5

In planning, it is often the case that one desires to order a sequence of operations.

The All-Different constraint ensures that each operation appears once and only

once in the sequence. Fast propagators are required in order to reschedule tasks

when perturbations occur in a schedule or the demand for goods fluctuates. The

need for robust solutions often increases the demand on computation time. It is

therefore more important than ever to have time efficient algorithms.

For the All-Different, GCC, and Inter-Distance constraints, we propose

some propagators whose complexities are independent of the range of possibilities a

variable can be assigned. This is particularly relevant in scheduling problems where

variables are assigned time points usually expressed in hours, minutes, or seconds.

The more precise the schedule is, the larger the numbers get (e.g. 1 hour = 3600

seconds). We present in this thesis solutions such that the increase in precision

does not alter the running time of the algorithms. This is a critical requirement in

air traffic control [6]. In this field, computer scientists solve scheduling problems

for plane landing such that a gap of time g is maintained between each landing

for safety reasons. The propagator we present for the Inter-Distance constraint

solves this scheduling problem without being affected by the requested precision.

The propagator we propose for the Inter-Distance constraint is particularly

useful to model the frequency allocation problem. Consider an environment where

many communication devices need to communicate through radio signals. Each

transmitter and receiver can emit or receive signals within a specific range of the ra-

dio spectrum. Moreover, each pair of transmitter and receiver must use a frequency

that does not interfere with other communications. In other words, each radio sys-

tem within a same geographical area must be assigned to frequencies spaced out by a

given gap g that ensures interference-free communications. The Inter-Distance

constraint models this invariant. As for scheduling problems, our propagator is

as efficient when solutions are expressed in MHz as when expressed in Hz. The

magnitude of the solution numbers does not affect the running time.

Compilers need to efficiently schedule sequences of instructions to enter the

execution pipeline of the processor. Some processors allow one, two, or even four

instructions to enter the pipeline at the same time. Malik et al. [53] used our

propagators for the GCC and the All-Different constraint to compute the

6 Efficient Propagators for Global Constraints

optimal schedule that leads to the fastest execution of a program. They showed that

even though the problem in its general form is NP-Hard, constraint programming is

time competitive with the heuristic based approach and returns optimal solutions.

Part of the work presented in this thesis has already been published in the

following form:

1. C.-G. Quimper, A. López-Ortiz, G. Pesant. A Quadratic Propagator for the Inter-

Distance Constraint, In Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI 06), 2006.

2. C.-G. Quimper and T. Walsh, The All Different and Global Cardinality Constraints

on Set, Multiset and Tuple Variables, to appear in Recent Advances in Constraints:

Joint ERCIM/CoLogNET International Workshop on Constraint Solving and Con-

straint Logic Programming, Revised Selected and Invited Papers. Lecture Notes

in Artificial Intelligence, Vol. 3419 M. Carlsson, F. Fages, B. Hnich, and F. Rossi

(Eds.) 2006.

3. C.-G. Quimper and T. Walsh. Beyond Finite Domains: the All Different and

Global Cardinality Constraints, In Proceedings of the 11th International Confer-

ence on Principles and Practice of Constraint Programming, pages 812–816 and in

Proceedings of 1st International Workshop on Constraint Programming: Beyond

Finite Integer Domains, pages 5–17, Sitges, Spain, 2005.

4. C.-G. Quimper, A. Golynski, A. López-Ortiz, and P. van Beek, An Efficient Bounds

Consistency Algorithm for the Global Cardinality Constraint, Invited paper for the

Special Issue of the Ninth International Conference on Principles and Practice of

Constraint Programming, Constraint Journal, 10(2):115-135, 2005

5. C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved Algo-

rithms for the Global Cardinality Constraint, In Proceedings of the 10th Interna-

tional Conference on Principles and Practice of Constraint Programming, Toronto,

Ontario, September, pages 542-556, 2004.

6. C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. Bashir Sadjad.

An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint,

In Proceedings of the 9th International Conference on Principles and Practice of

Introduction 7

Constraint Programming (also available as a technical report, CS-2003-10, School

of Computer Science, University of Waterloo), Kinsale, Ireland, September, pages

600-614, 2003.

7. C.-G. Quimper. Enforcing Domain Consistency on the Extended Global Cardinality

Constraint is NP-hard. Technical Report, CS-2003-39, School of Computer Science,

University of Waterloo, 2003.

8. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A Fast and Simple

Algorithm for Bounds Consistency of the Alldifferent Constraint, In Proceedings of

the 18th International Joint Conference on Artificial Intelligence (IJCAI03) (also

available as a technical report, CS-2003-05, School of Computer Science, University

of Waterloo), Acapulco, Mexico, August, pages 245-250, 2003.

The thesis is structured as follows. In Chapter 2, we present the general notions

used throughout the thesis. The reader familiar with graph theory and constraint

programming can skip these sections. In Chapter 3, we present a survey of different

existing propagators for the GCC and the All-Different constraint. In Chap-

ter 4, we present our propagators for the All-Different constraint. In Chapter 5,

we present our propagators for the GCC. Finally, In Chapter 6, we present a prop-

agator for the Inter-Distance constraint. We conclude in Chapter 7.

Chapter 2

Theoretical Background

2.1 Introduction

We present in this chapter the fundamental notions upon which our research is

based. First, we introduce network flows and matchings in graphs. Finally, we

introduce the main concepts in constraint programming. Note that we limit our

survey to those aspects within the scope of our research as each of the topics

discussed here forms a research field on its own.

2.2 Graph Theory

Network flows form an important class of satisfaction and optimization problems.

Dantzig, Ford, and Fulkerson [19] settled the basics of the field by studying graph

problems. We consider three main problems. In the first one, called the transporta-

tion problem, one tries to minimize the cost of carrying goods from warehouses to

stores under constraints for demand and supply. In the second problem called the

shortest path problem, the goal is to minimize the distance traveled in a graph to

go from a vertex a to a vertex b. Finally, the assignment problem consists in as-

signing one task to a machine, given the set of tasks each machine can accomplish.

These problems served as a starting point from which many aspects of graph theory

9

10 Efficient Propagators for Global Constraints

emerged. We provide in this section the basics of flow theory that are used in the

context of our research. We follow the notation of Ahuja, Magnanti, and Orlin [4].

We then specialize to matching theory, an instance of flow theory.

2.2.1 Network Flows

A flow in a directed graph G = 〈V, E〉 is a mapping f : E 7→ N between an edge

and an integer. A source is a node with only outgoing edges and a sink is a node

with only incoming edges. All other nodes are called inner nodes. In this work,

we consider graphs with only one source s and one sink t. Any inner node n is

subject to the conservation equilibrium condition which states that the amount of

incoming flow in node n is equal to the amount of outgoing flow. More formally,

for a given node n ∈ V we have:

∑

(a,n)∈E

f(a, n) =
∑

(n,b)∈E

f(n, b) (2.1)

The flow value v(f) is the amount of flow going out of the source i.e., v(f) =
∑

(s,u)∈E f(s, u). Notice that by propagation of the conservation equilibrium, the

flow value is also the amount of flow arriving at the sink.

Flows are often subject to capacity constraints. For example, we might wish to

have a minimum amount of flow on a given edge. At the same time, an edge might

have a maximum capacity. Formally, a flow f(e) on an edge e ∈ E is bounded by the

lower capacity l(e) and the upper capacity u(e) of the edge i.e., l(e) ≤ f(e) ≤ u(e).

A flow that satisfies all capacity constraints is called a feasible flow. Finally, a

maximum flow is a feasible flow whose flow value is maximum.

Given a feasible flow f in a graph G, the residual graph Gf of f is a directed

graph which captures the unused or left over capacity from the flow. The residual

graph Gf has the same nodes as graph G, and for each edge e = (u, v) in G, we

have,

a) a forward edge (u, v) in Gf with weight u(e)− f(e) if f(e) < u(e),

Theoretical Background 11

b) a backward edge (v, u) in Gf with weight f(e) if f(e) > l(e),

c) no other edges.

Residual graphs are used in the Ford-Fulkerson algorithm [19] to construct max-

imum flows. Indeed, suppose f is a feasible flow. Let an augmenting path p be a

path in the residual graph Gf that connects the source s to the sink t. Let ∆f

be the smallest weight associated to an edge in p. Then, adding (subtracting) ∆f

to the flow of each forward (backward) edge in p results in a flow f ′ of greater

value. It is known that successively finding augmenting paths and consequently

modifying the flow f until no paths exist between the source s and the sink t leads

to a maximum flow. A depth-first-search finds an augmenting path in O(|E|) steps

resulting in an overall running time complexity of O(v(f)|E|).

The Ford-Fulkerson algorithm successively finds augmenting paths until no aug-

menting path connects the source s to the sink t. The following theorem attributed

to Berge [10] guarantees that the resulting flow is maximal. Petersen [59] proved

this theorem before Berge for a more restrictive class of flows called matchings (see

next section).

Theorem 2.1 (Berge [10]) A flow f is a maximum flow if and only if there is

no augmenting path in the residual graph Gf connecting the source s to the sink t.

The Ford-Fulkerson algorithm finds a maximum flow in a graph as long as an

initial feasible flow is provided. When the lower capacities l(e) are null for every

edge in the graph, the trivial flow in which f(e) = 0 for every edge e is a feasible

flow to start with. When some lower capacities are strictly positive i.e., l(e) > 0,

there is no trivial feasible flow. In fact, some graphs do not have any feasible flows.

Berge [11] showed how to construct an initial feasible flow, if one exists.

Berge’s algorithm [11] transforms a graph G with positive lower capacities into

a graph G′ where all lower capacities are null. For every edge (a, b) ∈ E with

a positive lower capacity l(a, b) > 0, he suggests to create an edge (s, b) in G′

connecting the source to the end point b with an upper capacity u(s, b) = l(a, b) and

a null lower capacity l(s, b) = 0. Similarly, we create an edge (a, t) in G′ connecting

12 Efficient Propagators for Global Constraints

the starting point of the edge to the sink with upper capacity u(a, t) = l(a, b) and

a null lower capacity l(a, t) = 0. The upper capacity of edge (a, b) is modified to

become u(a, b) − l(a, b) while the lower capacity is set to 0. We now find a flow

that saturates all edges that have been added in G′. To do so, we successively find

augmenting paths in the residual graph of G′ that pass through the new edges until

all these edges become saturated. If there is no augmenting path passing by a new

unsaturated edge, then there exists no feasible flow and the problem is unsolvable.

To retrieve the feasible flow in G, we simply delete the edges that were added in

G′ and add the lower capacity l(e) to the flow f(e) for every edge in the graph.

Figure 2.1 illustrates the process using a small graph as an example.

Residual graphs hold an interesting property: they quickly allow to determine if

there exists a maximum flow in which a specific edge carries a flow. More formally,

we have the following theorem which is common knowledge in flow theory. See for

instance Ahuja et al. [4].

Theorem 2.2 Let f be a maximum flow in graph G, Gf its associated residual

graph, and e an edge in G. There exists a maximum flow f ′ such that f ′(e) > 0 if

and only if f(e) > 0 or e belongs to a cycle of Gf .

2.2.2 Matchings

The assignment problem is a special case of the maximum flow problem. It is also

known as the maximum matching problem. Consider a bipartite graph G = 〈V, E〉
where the nodes V are divided into two sets: the left nodes set L and the right

nodes set R. All edges in E connect a node in L with a node in R. A matching M

is a subset of E such that no two edges are adjacent to the same node. A maximum

matching M is a matching such that the number of edges in M is maximal. A

matched edge is an edge in M and a matched node is a node adjacent to a matched

edge. A free edge is an edge that is not in M and a free node is a node that is not

adjacent to any edge in M .

One can compute a maximum matching by adding a source and a sink to the

graph G. The source is connected to all edges in L and the sink to all edges in R.

Theoretical Background 13

(a) (b)

(c) (d)

[0, 7] [0, 4]

[0, 4]

[0, 4]
[0, 1] [2, 4]

[0, 8]

s a

bc

t
[0, 7] [0, 4]

[0, 4]

[0, 4]
[0, 1] [0, 2]

[0, 8]

s a

bc

t

[0, 2]

[0, 2]

s a

bc

t
2

2

2

2

s a

bc

t
2

2
2

0

0

0

0

Figure 2.1: Finding a feasible flow in a graph where some edges have a positive

lower capacity. a) Original graph with lower and upper capacities. b) Modified

graph with new edges. c) Augmenting paths saturating the new edges. d) Feasible

flow and resulting residual graph.

14 Efficient Propagators for Global Constraints

All edges have unit upper capacity i.e., u(e) = 1. In a maximum flow f , the edges

in E that admit a flow of one form the maximum matching M . Figure 2.2 shows a

matching (edges in bold) obtained from a network flow.

ts

G

L R

Figure 2.2: Matching in a bipartite graph obtained from a network flow.

The residual graph of a matching M is the directed graph GM where matched

edges are oriented from right nodes to left nodes and free edges are oriented from

left nodes to right nodes. An augmenting path is a path connecting a free node in

L to a free node in R. Let M be a matching and P be the edges of an augmenting

path. Observe that a matching of higher cardinality can be obtained by computing

the symmetric difference M ⊕ P defined as M ⊕ P = (M ∪ P)− (M ∩ P).

Hopcroft and Karp [36] developed an algorithm that finds a maximum matching

M in a bipartite graph in O(
√

M |E|) steps. Their algorithm starts with an initially

empty matching M = ∅ which is improved at each iteration by finding a set of

disjoint shortest augmenting paths. An iteration that finds a set of augmenting

paths proceeds in two steps.

The first step consists of performing a breadth-first search (BFS) on the residual

graph GM starting from the set of free nodes in L. The BFS labels nodes with value

i if the node is at distance i from a free node in L. This distance is minimal by

construction of the BFS. Let d be the length of the shortest path between a free

node in L and a free node in R. The BFS labels all nodes whose distance from

empty nodes in L is not greater than d.

The second step of the algorithm uses a stack to perform a depth-first search

(DFS). The DFS starts from a free node in L and is only allowed to traverse an edge

(a, b) such that node a is labelled with i and b is an unvisited node labelled with

Theoretical Background 15

i + 1. After traversing such an edge, the DFS marks both nodes a and b as visited.

When the DFS reaches a free node in R, the nodes stored in the DFS stack form

a path starting from a free node in L to a free node in R. By definition, this path

is an augmenting path. The DFS restarts on a different free node in L and tries

to reach another free node in R without visiting nodes that have been visited in a

previous DFS. When the DFS finishes, a collection of disjoint shortest augmenting

paths have been found. The matching can consequently be augmented. Hopcroft

and Karp proved that both steps need to be executed a maximum of
√

|M | times to

obtain a maximum matching M . This observation leads to a running time analysis

of O(
√

|M ||E|).

A natural question is to determine if there exists a maximum matching M that

contains a specific edge e in E. Clearly, a maximum matching M is a certificate that

proves that each of its edges belongs to a least one maximum matching. How about

for edges not in M? Suppose we have an alternating cycle C in GM . By alternating

cycle, we mean an even length cycle in the residual graph GM whose edges are

alternately in M and in E −M . One could apply the symmetric difference M ⊕C

to obtain a new matching of equal cardinality where every edge in the cycle C is

added if it does not belong to M or removed if it already belongs to M . Therefore,

the maximum matchings M and M⊕C are two certificates proving that every edge

on an alternating cycle belongs to at least one maximum matching.

A second transformation can be applied to obtain a new matching of equal

cardinality. An alternating path is a path whose edges are alternately in M and

in E − M . Let p be an alternating path of even length starting at a free node.

By applying the symmetric difference M ⊕ p, we obtain a new matching of equal

cardinality where edges in p are removed from M if they belong to M or added to

M if they do not belong to the matching. The matchings M and M ⊕ p are two

certificates proving that edges in p belong to at least one maximum matching.

Note that an edge might have many different certificates proving that it belongs

to some maximum cardinality matching. Some other edges might not belong to

any maximum cardinality matching and therefore do not have any certificate. The

following theorem specifies when an edge belongs to some but not all maximum

matchings.

16 Efficient Propagators for Global Constraints

Theorem 2.3 (Berge [11]) An edge belongs to some but not all maximum match-

ings if and only if, for an arbitrary maximum matching M , it belongs to either an

even alternating path which begins at a free vertex, or an even alternating cycle.

Proof (⇐) Let M be the edges of a maximum matching. Let P be the edges of

an even alternating paths which begins at a free vertex or the edges of an even

alternating cycle. Let M ′ = M ⊕ P be a maximum matching formed by the

symmetric difference of M and P . Clearly, every edge in P belongs to M or M ′

but not both.

(⇒) Let M and M ′ be two maximum matchings such that edge e belongs to

only one of these matchings. Let P = M ⊕M ′ be the mutual difference of M and

M ′. Since the degree of a node in M and M ′ is at most one, the degree of a node

in P is at most two. There are therefore only paths and cycles in P . The only way

a node n ∈ P can have a degree of 2 is by having an adjacent edge in M and an

other adjacent edge in M ′. Therefore, every path and cycles are alternating paths

of M and M ′. The paths in P cannot be augmenting paths in M or M ′ since they

are maximum matchings. Consequently, the paths in P necessarily have an even

length. To conclude the proof, since edge e belongs to only one of the matchings

M and M ′, then it belongs to an alternative path or cycle in P of even length. 2

From Theorem 2.3 we conclude the following. If an edge belongs to an even

alternating path or an even alternating cycle, then it belongs to some but not all

matchings. If an edge does not belong to any even alternating path or even cycle,

it either belongs to all or no matchings. If such an edge belongs to a matching M

then it belongs to all matchings and if it does not belong to matching M then it

belongs to no matchings.

Finding a maximum matching M , the alternating cycles, and the even alter-

nating paths is therefore sufficient to decide if each edge belongs to a maximum

matching.

Theoretical Background 17

2.2.3 Hall’s Marriage Theorem

Hall [28] studied the problem of testing the existence of a complete system of distinct

representatives (CDR). Consider m sets S1, . . . , Sm. A CDR is a set of m distinct

elements t1, . . . , tm such that ti ∈ Si. Hall’s research led to what is now known as

Hall’s marriage theorem which we quote verbatim.

Theorem 2.4 (Hall [28]) In order that a CDR shall exist, it is sufficient that for

each k = 1, 2, . . . , m, any selection of k of the sets shall contain between them at

least k elements.

In other words, there exists a CDR if and only if the union of any k sets among

S1, . . . , Sm contains at least k elements.

This result has varied applications in matching theory. Consider a bipartite

graph G with left-nodes L and right-nodes R such that |L| ≤ |R|. Let adj(n) be

the set of nodes adjacent to node n. From Hall’s marriage theorem, we deduce the

following corollary.

Corollary 2.1 There exists a matching of size |L| if and only if for any set S of

k ≤ |L| nodes, we have |∪n∈Sadj(n)| ≥ k.

Hall’s marriage theorem will be particularly useful in Chapter 4 and Chapter 5.

2.3 Constraint Programming

2.3.1 Historical Background

Constraint programming is the result of a long evolution that traces its roots to

logic programming. This programming paradigm evolved to become logic program-

ming and finally became constraint programming. We will describe each of these

programming paradigms and the main languages that use these paradigms.

Logic programming was first introduced with the programming language PLAN-

NER [35] and later popularized with Prolog [15]. Contrarily to procedural languages

18 Efficient Propagators for Global Constraints

such as C and Pascal that require a clear sequence of instructions to achieve a com-

putation, logic programming only requires a set of predicates stating the facts about

the problem and a set of rules allowing to generate new facts. For instance, to de-

fine a function returning true if an element e belongs to a sequence L, one simply

has to mention that e belongs to L if the sequence L, or one of its subsequences,

starts with the element e. Example 2.1 shows the Prolog code associated to these

rules.

Example 2.1 The following code defines a function isIn(E, L) that returns true

if element E appears in the list L.

isIn(E, [E | _]).

isIn(E, [_ | L]) :- isIn(E, L).

The user states its request on the form of a goal. For instance isIn(4, [2,

X, 4]), the following goal requests if there exists an X such that the expression

is satisfied. The solver refers to the rules entered in the inference engine to derive

new goals that need to be achieved. In our example, applying the second rule

leads to the new goal isIn(4, [X, 4]) which can be satisfied by applying the first

rule. Prolog was first developed to process natural languages [15]. It later became

popular in many areas, from theorem proving [79] to planning [48].

The logic programming paradigm evolved to become the constraint logic pro-

gramming paradigm. With this paradigm, one can use constraints instead of pred-

icates. For instance, the rule A(X) :- X > 100, B(X) has two predicates A(X)

and B(X) and one constraint X > 100. Suppose while trying to satisfy the goal

A(X), the inference engine encounters another constraint X < 50. Then the in-

ference engine concludes that the goal A(X) is unreachable. This is done without

attempting to assign a value to the variable X.

The programming language CHIP [17] introduced finite domains to constraint

logic programming. A variable X can be required to belong to a finite domain such

as X ∈ {1, 4, 6}, X ∈ [1, 5], or X ∈ {red, green, blue}. The presence of constraints

can eliminate some inconsistent values in the domains. ECLiPSe [1] is another

example of a constraint logic programming language.

Theoretical Background 19

Constraint programming is a programming paradigm based on constraint logic

programming. This programming paradigm allows to state the problem one wants

to solve by declaring the variables of the problem, the domains associated to the

variables, and some constraints describing the relations between the variables. The

variables, the domains, and the constraints form a constraint satisfaction problem.

The aim of constraint programming is to solve any problem simply by stating what

to solve while minimizing the stated information about how to solve it. OPL [32]

is an example of a constraint programming language.

Constraint programming libraries are now implemented with imperative lan-

guages. Some libraries such as Gecode [2], ILog [3], Disolver [29], Mistral [30], Koa-

log [43], and Choco [44] allow to state the variables and the constraints of a problem

in languages such as Java and C++. This architecture allows a better integration

of constraint programming to legacy code. Many programming languages among

B-Prolog [88], CHIP V5 [17], Ciao Prolog [12], ECLiPSe [1], Oz/Mozart [73], SIC-

Stus [38], and OPL [31] also offer integration with other programming languages.

2.3.2 General Concepts

We present in this section the main concepts related to constraint programming.

A Constraint Satisfaction Problem (CSP) is defined by a set of variables X =

{x1, x2, . . . , xn} and a set of constraints C = {C1, C2, . . . , Cm}. The domain dom(xi)

of a variable xi defines which values can be assigned to the variable xi. An assign-

ment is an n-tuple t = (t1, . . . , tn) such that xi = ti for all xi ∈ X. Each constraint

Ci ∈ C is associated to a set of variables Var(Ci) ⊆ X called the scope of the con-

straint. Formally, a constraint Ci is a set of |Var(Ci)|-tuples i.e., a set of tuples of

size |Var(Ci)|. Let i1, . . . , im be the indices of the variables in Var(Ci). An assign-

ment t satisfies the constraint Ci if (ti1 , . . . , tim) ∈ Ci. An assignment t is a solution

if it belongs to the Cartesian product of all variable domains i.e., ti ∈ dom(xi) and

it satisfies all constraints. Example 2.2 gives an example of a CSP.

Example 2.2 Let x1, x2, and x3 be three variables such that dom(x1) = {2, 3, 4},
dom(x2) = {1, 2, 3, 4}, and dom(x3) = {3, 4, 5}. Let C1 : x1 < x2 and C2 : x1 +x2 =

20 Efficient Propagators for Global Constraints

x3 be two constraints such that Var(C1) = {x1, x2} and Var(C2) = {x1, x2, x3}. The

unique solution t to this problem is given by the tuple t = 〈x1, x2, x3〉 = 〈2, 3, 5〉.

The arity of a constraint Ci is the number of variables in its scope Var(Ci).

When the arity is one, we say that the constraint is a unary constraint. When the

arity is two, the constraint is a binary constraint. When the arity is an arbitrary

but fixed n, the constraint is an n-ary constraint.

Some constraints can be decomposed into simpler constraints i.e, constraints of

smaller arity. For instance, consider the constraint Sum([x1, . . . , xn], z) which is

satisfied if
∑n

i=1 xi = z. This constraint, after introducing the variables y1, . . . , yn,

can be decomposed into the binary and ternary constraints y1 = x1, yi = yi−1 + xi,

and z = yn. The Sum constraint is a global constraint.

Definition 2.1 (Global Constraint) A global constraint is a constraint of arbi-

trary arity that can be decomposed into constraints of smaller arity.

Global constraints gained in popularity with the CHIP system [9, 17]. Beldiceanu

et al. [8] list more than 270 global constraints in their catalog. We will see in the

following sections and chapters that some global constraints can solve CSPs more

efficiently.

2.3.3 Consistencies

Filtering the variable domains is an important step in the resolution of CSPs [52, 74].

It consists of removing from the variable domains the values that cannot be part

of a solution. We present the notions of support and consistency that will later be

used to filter the variable domains.

Definition 2.2 (Support) Let C be a constraint and xi1 , . . . , xim be the variables

in the scope Var(C). A support for value v ∈ dom(xij) is an assignment t such that

tij = v and (ti1 , . . . , ti,m) ∈ C i.e., a tuple satisfying the constraint C, such that

tij = v.

Theoretical Background 21

We study in particular two types of support.

A domain support determines for which values there exists an assignment satis-

fying a given constraint such that each variable is assigned to a value in its domain.

Definition 2.3 (Domain Support) Given a constraint C and a variable xi ∈
V ar(C), a value v ∈ dom(xi) has a domain support with respect to xi if there

exists an assignment t ∈ C such that ti = v and tj ∈ dom(xj) for any variable

xj ∈ Var(C).

We assume there exists a total ordering among the values in the universe D

i.e., for any two elements v and u in D, the transitive operator v < u is either

true or false but never undefined. An interval support is an approximation of the

domain support. Each variable domain dom(xi) is approximated by the interval

[min(dom(xi)), max(dom(xi))]. If all variable domains are intervals, then the inter-

val support is equivalent to the domain support.

Definition 2.4 (Interval Support) Given a constraint C and a variable xi ∈
V ar(C), a value v ∈ dom(xi) has an interval support if there exists an assignment

t ∈ C such that ti = v and min(dom(xj)) ≤ tj ≤ max(dom(xj)) for any variable

xj ∈ Var(C).

Clearly, removing from a variable domain a value that does not have a support

preserves the set of solutions. One can consequently reduce the search space by suc-

cessively removing values that do not have a support for a constraint. A constraint

is consistent when there are no more unsupported values in the domains. From the

two types of support defined above, we define four different local consistencies. A

constraint C is

1. domain consistent if for each variable xi ∈ Var(C), all values in dom(xi) have

a domain support.

2. range consistent if for each variable xi ∈ Var(C), all values in dom(xi) have

an interval support.

22 Efficient Propagators for Global Constraints

3. bounds consistent if for each variable xi ∈ Var(C), both values min(dom(xi))

and max(dom(xi)) have an interval support.

4. bounds(D) consistent if for each variable xi ∈ V ar(C), both values min(dom(xi))

and max(dom(xi)) have a domain support.

Bounds consistency was first introduced for solving numerical problems [49, 33].

The term bounds consistency is actually used for different types of consistencies.

See [14] for a disambiguation. In this thesis, we will restrict ourselves to the defi-

nition stated above.

We can introduce a partial order among consistencies in which consistency A is

stronger than consistency B if all problems that are A-consistent for a constraint Cj

are also B-consistent for the same constraint [16]. In this case, we write A � B. En-

forcing a stronger consistency prunes to a greater extent the variable domains than

a weaker consistency but usually requires more computational power. A weaker

consistency is generally faster to enforce but prunes less the domains, resulting

in a longer backtracking search. The best choice of consistencies depends on the

problem to solve and generally requires some experiments to determine.

In the consistencies studied above, domain consistency is stronger than range

consistency since every value that has a domain support also has an interval sup-

port. Range consistency is stronger than bounds consistency since more values

in the former consistency have an interval support. Example 2.3 illustrates this

comparison. Figure 2.3 shows the partial order among the consistencies.

Example 2.3 Consider the following variable domains dom(x1) = {1, 3, 5}, dom(x2) =

dom(x3) = dom(x4) = {2, 4}, and an All-Different constraint over all these

variables that ensures that all variables are assigned to distinct values. The vari-

able domains are bounds consistent since the smallest value and the greatest value

of each variable domain have an interval support.

Value 3 in dom(x1) does not have an interval support. In order to make the

problem range consistent, we have to remove 3 from the domain of x1.

Finally, none of the values have a domain support since there exist no solutions

Theoretical Background 23

BDC

BC DC

RC

≺≺

≺
≺

Figure 2.3: Relationship between bounds consistency (BC), range consistency

(RC), bounds(D) consistency (BDC), and domain consistency (DC).

satisfying the constraint with the given variable domains. When testing for domain

consistency, we detect that the constraint is unsatisfiable.

Domain consistency, range consistency, and bounds consistency are canonical in

the field but the bounds(D) consistency mentioned in [14] is rarely used in practice.

Generally, testing for domain support is more expensive than testing for bounds

support. Moreover, it is often the case that when testing for a domain support of

one value, we implicitly test for the domain support of all values in the variable

domains. Therefore, domain consistency seems to offer a stronger consistency than

bounds(D) consistency for the same computational cost. For this reason, we will

focus our study on the first three consistencies and will no longer mention the

bounds(D) consistency.

Enforcing a consistency on a constraint Cj consists in removing from the do-

mains of the variables Var(Cj) the values that do not have a support. Enforcing

domain consistency on constraint C1 in Example 2.2 would remove the values 1

and 2 from dom(x2) since both values cannot be greater than the smallest value

in dom(x1). Similarly, the value 4 would be removed from the domain of x1. If a

variable domain becomes empty after removing all its values then the constraint

is unsatisfiable. Each constraint requires a specialized filtering algorithm called a

propagator to remove values that do not have a support.

Definition 2.5 (Propagator) A propagator is an algorithm associated to a par-

ticular constraint C that removes from the domains of the variables in Var(C) some

values that do not have a support for this constraint.

24 Efficient Propagators for Global Constraints

A propagator achieves domain, range, or bounds consistency on a constraint C

if, after being executed, the constraint C is domain, range, or bounds consistent.

Finally, we define what is consistency at the level of the problem. The level of

consistency for each constraint is implicit.

Definition 2.6 (Local Consistency) A problem is said to be locally consistent

if all its constraints are consistent.

2.3.4 Propagation

Searching in a solution tree is a commonly used technique to solve CSPs. The

algorithm chooses a variable xi and instantiates it to a value v in its domain by

eliminating all values in dom(xi) but v. It then makes the problem locally consistent

by iteratively enforcing a consistency on the constraints by calling the constraint

propagators. If not all domains are bounded by a single value, another variable is

instantiated and the operation is repeated. If a constraint cannot be satisfied, the

algorithm backtracks to the previous instantiation and tries to assign another value

to the variable. The search reaches a solution when all variable domains contain a

single value and all constraints are satisfied.

To efficiently make a problem locally consistent, constraint programming solvers

such as ILOG [3] maintain a queue Q of modified variables that initially only

contains the newly instantiated variable xi. The algorithm pops a variable xp from

the queue and enforces consistency on all constraints restricting variable xp. If

a variable domain gets modified when enforcing consistency, it is pushed on the

queue unless it is already there. The problem becomes locally consistent when

the queue gets empty. The whole process is called constraint propagation. The

algorithm shown in Figure 1 performs constraint propagation until the problem

becomes locally consistent.

It is also possible to maintain a queue of constraints. A constraint C is pushed

on the queue whenever the domain of a variable xi ∈ Var(C) is modified. ILOG [3]

uses both a queue of variables and a queue of constraints. Constraints that require

Theoretical Background 25

Algorithm 1: LocalConsistency(xm) makes a problem locally consistent.

Input: The variable xm that has been instantiated

Q← {xm}
while Q 6= ∅ do

xi ← pop(Q)

for Cj such that xi ∈ V ar(Cj) do
// Function prune enforces consistency on constraint Cj

// and returns a list of modified variables.

M ← prune(Cj)

if ∃ xk ∈ M, dom(xk) = ∅ then
The problem is unsatisfiable

Q← Q ∪M

more computational power to propagate are pushed on the queue of constraints and

are propagated only when the queue of variables becomes empty.

There are several known heuristics which accelerate the search for a solution.

For example, the choice of which variable to instantiate is an important one.

Gent et al. [24] compare different heuristics such as choosing the variable with

the smallest domain first, the most constrained variable first, the variable that

maximizes the solution density first, or the variable that maximizes the expected

number of solutions first. A depth-first search is commonly used to explore the

search tree but other searches can also be used. For instance, when the minimum

discrepancy search [86] backtracks, it does not necessarily backtrack to the node

representing the last variable instantiation but rather backtracks to a visited node

that is closer to the solution.

2.3.5 Constraints

In this thesis, we will closely study two constraints in particular: the All-Different

and the Global Cardinality Constraint (GCC) both introduced by Régin in [67, 68].

Definition 2.7 (All-Different) The constraint All-Different(x1, . . . , xn) is sat-

isfied if and only if all variables are assigned to distinct values. Formally, the

26 Efficient Propagators for Global Constraints

All-Different constraint is satisfied if and only if xi 6= xj for all i 6= j.

The All-Different constraint naturally occurs in many CSPs such as schedul-

ing problems. For example, consider a set of tasks contending for a single non-

shared resource. We can model this problem in a CSP with an All-Different

constraint over the execution time variables. Another example is the Golomb ruler

problem (see problem 6 in CSPLib [25]) in which a ruler is to be assigned n marks

for which the n(n−1)
2

possible distances between two marks are all distinct. The

All-Different constraint guarantees the distinctness between all distances. This

problem has applications in x-ray crystallography and radio astronomy. The n-

queens problem consists of finding a placement of n queens on a n× n chessboard

such that no queen attacks another queen. The n-queens problem can be modeled

with 3 All-Different constraints: one for the rows and one for each of the diag-

onals. The columns are implicitly different by the formulation of the problem. The

n-queen problem is similar to the quasigroup problem (problem 3 in CSPLib [25])

that requires to colour the cells of an n × n table with n colours such that cells

on a same row or column are of different colours. Finally, the All-Different

constraint appears in industrial problems such as the car sequencing problem (see

problem 1 in CSPLib [25]) that requires an ordering of cars on an assembly lane

such that machines assembling different options are not overloaded.

The global cardinality constraint is a generalization of the All-Different

constraint.

Definition 2.8 (Global Cardinality Constraint) The global cardinality con-

straint GCC(x1, . . . , xn, l, u, D) holds if and only if for each value v in D, at least

l[v] and at most u[v] variables are assigned to v.

If l is the null vector and u the vector whose components are equal to one, we

obtain the All-Different constraint.

The GCC occurs in many scheduling problems where resources are limited.

For example, in a scheduling problem with k processors, the GCC ensures that no

more than k scheduling time variables are assigned to the same time slot. In other

problems, the variables ti may represent tasks to be accomplished by a group of

Theoretical Background 27

people i.e., the assignment ti = John indicates that John will execute task number

i. A GCC on the task variables with lv = 1 and uv = 2 guarantees that each

individual will accomplish at least 1 task but not more than 2 tasks.

Chapter 3

Existing Propagators for the

All-Different and GCC

Constraints

3.1 Introduction

In this chapter, we present the main known algorithms developed by others to

propagate the All-Different and GCC constraints. We present the propagators

according to the level of consistency they achieve. This order is similar to the

chronological order of publication. In Chapters 4 and 5, in turn, we introduce new

propagators that improve those presented in this chapter.

3.2 Binary Constraints

Recalling that the All-Different constraint is satisfied when all variables are

pairwise different, a simple way to propagate the constraint is to post n(n−1)
2

dif-

ference constraints (6=) between each pair of variables. The All-Different con-

straint is therefore decomposed into simpler constraints to be propagated.

29

30 Efficient Propagators for Global Constraints

The constraint x 6= y is propagated as follows. When the domain of variable

x contains a single value, this value is removed from the domain of y. The same

rule applies when the domain of y contains only one value. When simultaneously

considering the n(n−1)
2

binary constraints, we obtain the following simple rule: if a

variable contains a single value in its domain, this value is removed from all other

variable domains.

The propagator only needs to be triggered when a variable domain gets bound

to a single value. When it happens, the propagator prunes the domains of other

variables in O(n) steps.

This technique is simple and easy to implement but lacks pruning power, as the

following example illustrates.

Example 3.1 Consider the following variable domains subject to an All-Different

constraint: dom(x1) = dom(x2) = {1, 3} and dom(x3) = {1, 2, 3}. The values 1

and 3 from the domain of x3 do not have a domain support. A propagator using

binary constraints of difference is unable to detect these values since all variable

domains contain more than one element.

3.3 Domain Consistency

Régin [67] was the first to consider merging the n(n−1)
2

constraints of difference into

a single global constraint which is the All-Different constraint. His goal was

to obtain a higher level of consistency able to detect all unsupported values in the

variable domains, i.e. to achieve domain consistency.

3.3.1 All-Different

Given an All-Different constraint, Régin’s algorithm constructs a bipartite

graph G called the value-graph. There is a node in graph G for each variable

xi and a node for each value v. There is an edge between variable-node xi and the

value-node v if and only if value v belongs to the domain of xi, i.e. v ∈ dom(xi).

Existing Propagators for the All-Different and GCC Constraints 31

x1

x2

x3

1

2

3

Figure 3.1: Value-graph of Example 3.1. Bold edges form a matching of maximum

cardinality

Figure 3.1 shows the value graph corresponding to the problem described in Exam-

ple 3.1 in Section 3.2.

Clearly, there is a one to one relationship between an assignment satisfying the

All-Different constraint and a matching of maximum cardinality in the value

graph G. For instance, bold edges in Figure 3.1 form a matching of cardinality 3.

The matching also corresponds to the assignment x1 = 1, x2 = 3, x3 = 2.

Régin draws two conclusions from the relationship between assignments and

matchings. First, for a problem with n variables, there is a matching of cardinality

n if and only if the constraint is satisfiable. Second, an edge (xi, v) belongs to a

matching of cardinality n if and only if value v has a domain support in dom(xi).

Consequently, propagating the All-Different constraint consists of determining

if there exists at least one matching of cardinality n to ensure the satisfiability of

the constraint. In a second pass, one needs to mark all edges that could belong

to such matching. Each edge remaining unmarked corresponds to a value to be

removed from a variable domain.

As seen in Section 2.2.2, using the Hopcroft-Karp algorithm, we can find a

matching of maximum cardinality in O(
√

nm) steps where n is cardinality of the

maximum matching and m the number of edges. In our case, we have n = |X|
and m = |X||D|; hence we can find the matching in O(|X|1.5|D|) time where |X|
is the number of variables and |D| the number of distinct values in the domains.

Otherwise, if the cardinality of the maximum matching is inferior to the number

32 Efficient Propagators for Global Constraints

of variables, we conclude that the constraint is unsatisfiable. If the maximum

matching M contains |X| edges, then we now proceed to the identification of the

edges that do not belong to any maximum matching.

Régin’s algorithm first creates a residual graph GM which is a directed version

of the graph G. Edges that belong to the maximum cardinality matching M are

oriented from the variable-nodes to the value-nodes. Edges that do not belong to M

are oriented from value-nodes to variable-nodes. From Theorem 2.3, we know that

all edges that belong to a cycle of GM belong to a matching of maximum cardinality.

Régin therefore finds all strongly connected components in GM using an algorithm

for that end by Tarjan [80] and marks all edges that connect two nodes in the same

component. Those edges necessarily belong to at least one maximum cardinality

matching. A simple depth-first search (DFS) starting from free value-nodes marks

all edges that lie on an even-length path starting at a free node. Theorem 2.3 in

Section 2.2.2 certifies that these edges are part of at least one maximum matching.

Moreover, all unmarked edges that do not belong to the matching M do not belong

to any other maximum cardinality matching. An unmarked edge (xi, v) that is not

in M signifies that the value v does not have a domain support in dom(xi). Such

values are removed from the variable domains and the problem becomes domain

consistent.

From Example 3.1, given the maximum matching represented in Figure 3.1, we

obtain the residual graph depicted in Figure 3.2. Notice that the edges (x3, 1),

and (x3, 3) do not belong to any even-length path starting from a free node or any

cycle. Therefore, these edges do not belong to any maximum matching. Values 1

and 3 should be removed from the domain of x3 since they do not have any domain

support.

Régin shows how to make his algorithm dynamic, i.e. being able to reuse previ-

ous computations to reestablish domain consistency on the variables. Suppose that

during the constraint propagation phase another constraint removes a value v from

a variable domain dom(xi). Two situations could occur. Either the edge (xi, v)

belongs to the previously computed matching M , or it does not. If the edge (xi, v)

does belong to the matching M , then we no longer have a matching of cardinality

|X|. We can perform in O(|X||D|) steps a DFS to find a path connecting the free

Existing Propagators for the All-Different and GCC Constraints 33

x1

x2

x3

1

2

3

Figure 3.2: Residual graph associated to the matching represented in Figure 3.1

variable node xi to a free value node. Applying this augmenting path to the match-

ing reestablishes a matching of cardinality |X|. If the removed edge (xi, v) does

not belong to the matching M , we still have a matching of cardinality |X| and we

do not need to find an augmenting path. Once we have a matching of cardinality

|X|, we only need to recompute the strongly connected components and find the

even-length paths starting from a free node to prune the domains. This can be

done in O(|X||D|) steps. In summary, two cases can occur: the edge (xi, v) belongs

to the matching M or it does not belong to the matching M . In either case, the

algorithm maintains domain consistency in O(|X||D|) steps instead of O(|X|1.5|D|)
steps.

3.3.2 GCC

Régin [68] modified his algorithm for the All-Different constraint to propagate

the global cardinality constraint (GCC). The approach is similar to the one used

for the All-Different constraint but uses flow theory instead of matching theory.

The former is a generalization of the latter. The following example illustrates the

tasks that the propagator needs to accomplish.

Example 3.2 Let the variables x1, . . . , x6 have the domains dom(x1) = {2},
dom(x2) = {1, 2}, dom(x3) = {2, 3}, dom(x4) = {2, 3}, dom(x5) = {1, 2, 3, 4}, and

dom(x6) = {3, 4} and a single global cardinality constraint GCC(x1, . . . , x6, l, u)

with the following lower and upper bounds on the occurrences of values,

34 Efficient Propagators for Global Constraints

v 1 2 3 4

lv 0 1 1 2

uv 3 2 1 3

Value 4 has to be assigned to at least 2 variables and only variables x5 and x6

contain it in their domain. Clearly, variables x5 and x6 must be assigned to value

4. Together, values 2 and 3 can be assigned to at most 3 variables and variables x1,

x3, and x4 can only be assigned to one of these values. Therefore, 2 and 3 must be

removed from the domain of all variables except x1, x2, and x4. Enforcing domain

consistency results in the following domains: dom(x1) = {2}, dom(x2) = {1},
dom(x3) = {2, 3}, dom(x4) = {2, 3}, dom(x5) = {4}, and dom(x6) = {4}.

Régin [68] proved a one-to-one relationship between an assignment that satisfies

the GCC and a maximum flow in a graph. In his proof, he constructs a value graph

of the problem where each variable xi is a variable-node and each value v is a value-

node. There is an edge (xi, v) if and only if value v belongs to the domain of xi. A

source node s is connected to all variable nodes and all value nodes are connected

to a sink node t. Each edge is associated to two values: a lower and an upper

capacity. The lower capacity of an edge connecting a value node v to the sink is lv

while its upper capacity is uv. All other edges have a null lower capacity and a unit

upper capacity. Figure 3.3 shows the value graph corresponding to Example 3.2.

As for the All-Different constraint, Régin uses Theorem 2.3 in Section 2.2.2

to find edges that belong to a maximum flow. He first computes in O(|X|2|D|) steps

a maximum flow f using the Ford-Fulkerson algorithm. According to Theorem 2.2

in Section 2.2.1, an edge can carry a flow in some maximum flow if and only if it

carries a flow in f or it belongs to a cycle in the residual graph Gf . Therefore,

enforcing domain consistency on the GCC is reduced to computing a feasible flow

f and finding the strongly connected components in the residual graph Gf . Finding

the strongly connected components requires O(|X||D|) steps. Therefore, the total

running time complexity of the propagator is O(|X|2|D|).
In contrast to the binary constraint representation, the global formulation of the

All-Different constraint and the GCC allow us to prune all inconsistent values

with respect to the constraints. This extra pruning is achieved at a higher cost since

Existing Propagators for the All-Different and GCC Constraints 35

x1

x2

x3

x4

x5

x6

s

1

2

3

4

t

[0, 1]

[0, 1]

[0, 3]

[1, 1]

[1, 2]

[2, 3]

x1

x2

x3

x4

x5

x6

s

1

2

3

4

t

a b

Figure 3.3: a) Régin’s value graph for the Global Cardinality Constraint. Bold

edges are edges admitting a flow of 1. Other edges have a null flow. This flow

corresponds to the assignment x1 = 2, x2 = 1, x3 = 2, x4 = 3, x5 = 4, and x6 = 5

b) The residual graph associated to the assignment.

the algorithms are more complex. Experiments prove that most of the time, for

the All-Different and the GCC constraints, it is more efficient overall to spend

more time pruning more values. However, there are some specific problems for which

it is advantageous to prune the domains less but at a higher speed (see [46, 63] for

instance). The next sections describe weaker consistencies that are faster to enforce.

3.4 Range Consistency

Based on the success of Régin [67] with the All-Different constraint, Leconte [46]

designed an algorithm for range consistency. This consistency is weaker than do-

main consistency but is easier to enforce.

Leconte’s algorithm approximates all variable domains with intervals. For in-

stance, if the domain of variable xi is the set {2, 5, 8}, his algorithm approximates

dom(xi) with the interval [2, 8]. We call the lower bound of a variable the smallest

element in its domain. Similarly, we call the upper bound of a variable the high-

est element in its domain. Given the new problem where all variable domains are

36 Efficient Propagators for Global Constraints

intervals, removing all inconsistent values results in enforcing range consistency in

the original problem. In other words, enforcing domain consistency on the approx-

imated problem enforces range consistency on the original problem.

Leconte was the first to use the notion of Hall interval to propagate the All-Different

constraint.

Definition 3.1 (Hall Interval) A Hall interval is an interval H such that there

are exactly |H| variables whose domains are contained in H.

The following example illustrates the concept of Hall interval.

Example 3.3 Consider the following variable domains subject to an All-Different

constraint: dom(x1) = dom(x2) = [3, 4], dom(x3) = [2, 3], and dom(x4) = [1, 5].

The interval [3, 4] is a Hall interval since 2 variables, x1 and x2, have their domain

contained in this interval of size 2. The interval [2, 4] is also a Hall interval since

this interval of 3 elements contains the domains of 3 variables, namely x1, x2, and

x3. There are no other Hall intervals in this problem.

The values in a Hall interval H are fully consumed by the variables that form

the Hall interval and become unavailable for all other variables. In Example 3.3,

because of the Hall interval [3, 4], we know that values 3 and 4 will be assigned to

variables x1 and x2. These values become unavailable for other variables like x3 and

x4. The interval [3, 4] should therefore be removed from dom(x3) and dom(x4). To

enforce range consistency, it is necessary and sufficient to remove all Hall intervals

from the domains of the variables that are not fully contained in these Hall intervals.

Leconte’s algorithm considers all intervals [a, b] where a is the lower bound of a

variable domain and b is an upper bound and checks if the interval contains b−a+1

variable domains. Such an interval is a Hall interval and its values are removed from

every variable domains that are not contained in [a, b]. The algorithm uses a proper

iteration over all variables in order to reach a running time complexity of Θ(n2).

Figure 2 shows the pseudo-code of the algorithm1.

1The last for loop has been modified to correct a flaw in the original pseudo-code

Existing Propagators for the All-Different and GCC Constraints 37

Algorithm 2: Leconte’s algorithm [46] enforces range consistency in O(n2)

steps.

for xj in decreasing order of max(dom(xj)) do
count← 0;

k ← −1;

for xi in decreasing order of min(dom(xi)) do

if k ≥ 0 then
Remove [min(dom(xk)), max(dom(xj))] from dom(xi);

if max(dom(xi)) ≤ max(dom(xj)) then
count← count + 1;

if count = max(dom(xj))−min(dom(xi)) + 1 then
k ← i;

for xi such that max(dom(xj)) < max(dom(xi)) do

if min(dom(xk)) ≤ min(dom(xi)) then
Set minimum of dom(xi) to min(dom(xk)) + 1;

Leconte shows that his algorithm is optimal in the worst case with the following

example.

Example 3.4 (Leconte 96 page 24 [46]) Let x1, . . . , xn be n variables subject

to an All-Differentconstraint whose domains contain all distinct odd numbers

ranging from 1 to 2n − 1 and let xn+1, . . . , x2n be n variables whose domains are

[1, 2n− 1]. An algorithm maintaining range consistency needs to remove the n odd

numbers from each of the n variable domains which is done in Θ(n2).

This example proves that some instances of the problem require Θ(n2) steps to

achieve range consistency. However, in practice, this situation rarely occurs. In the

next chapter, we will present an output sensitive algorithm that runs in O(n2) on

the problem presented in Example 3.4 but can run in amortized linear time on a

sequence of similar problems as is usually the case in a backtracking search.

38 Efficient Propagators for Global Constraints

3.5 Bounds Consistency

Puget [63] was the first to design a propagator for the bounds consistency of

the All-Different constraint. As in range consistency, the strategy consists

in approximating the variable domains with the smallest covering intervals, i.e.

dom(xi) ≈ [min(dom(xi)), max(dom(xi))]. To achieve bounds consistency, inter-

vals must be shrunk until all interval bounds have an interval support. It is not

necessary to create holes in the intervals, only the bounds are updated. Bounds

consistency is the most studied form of consistency by number of publications on

the topic (e.g. [39, 51, 54, 63, 66]). We will highlight the main contributions in this

section, and we will present our own contributions in Chapters 4 and 5.

3.5.1 Puget’s Propagator

Puget [63] discovered a very useful property while designing the first propagator

for the bounds consistency of the All-Different constraint. He found that in

order to achieve bounds consistency, it is sufficient to design an algorithm that

only shrinks the lower bounds of the variable domains. The upper bounds can

be shrunk by constructing a symmetric problem where all variable domains are

negated, i.e. dom(x′
i) = [−max(dom(xi)),−min(dom(xi))]. The algorithm that

shrinks the lower bound can then be applied on the modified problem to obtain the

new upper bounds for the original variable domains.

Puget’s algorithm detects some Hall intervals H = [a, b]. Variable domains

dom(x) = [c, d] having their lower bound in H but their upper bound outside of H

are shrunk to the interval [b + 1, d]. To achieve a better running time complexity

than Leconte’s O(n2) algorithm for range consistency, Puget understood that some

Hall intervals must be ignored. Indeed, a problem with n variables can have as

many as n2 Hall intervals. Let H1 = [a1, b], H2 = [a2, b], . . . , Hm = [am, b] be m

different Hall intervals sharing the same upper bound b and let the left-most Hall

interval be the Hall interval with the smallest lower bound. Puget’s algorithm only

uses left-most Hall intervals to shrink the variable lower bounds. The number of

left-most Hall intervals is bounded by n. Using a balanced binary tree to store

Existing Propagators for the All-Different and GCC Constraints 39

these Hall intervals, Puget achieves bounds consistency in O(n log n) steps.

Puget proved that it is possible to achieve bounds consistency within a better

running time complexity than range consistency. His algorithm was later improved

in both the theoretical and the empirical sense.

3.5.2 Mehlhorn and Thiel’s Propagator

Mehlhorn and Thiel [54] were the first to propose a linear time algorithm for the

bounds consistency of the All-Different constraint. Their approach is similar

to that of Régin for domain consistency since they also use matching theory. They

construct a similar value graph as Régin, i.e. a bipartite graph with a node for each

variable and each distinct value in the domains. The graph differs from Régin’s

graph on the set of edges. Their graph G has an edge between a variable node

xi and a value node v if and only if the value v lies between min(dom(xi)) and

max(dom(xi)). In order to keep the running time complexity linear in terms of

variables, the algorithm must take great care to never enumerate or iterate through

the entire list of edges since their number might be quadratic in the number of

variables.

The constructed graph leads to a restricted class of bipartite graphs called con-

vex bipartite graphs.

Definition 3.2 (Convex bipartite graph) A convex bipartite graph G = (L, R, E)

is a bipartite graph whose right-nodes R can be labeled with numbers from 1 to |R|
such that the neighbors of every left-node l ∈ L have labels forming an interval.

Clearly, the value graph for the All-Different constraint when all variable

domains are intervals is a convex bipartite graph. Algorithms operating on this class

of graphs are generally more efficient. Given a lower-bound and an upper-bound

ordering of the variable domains, Mehlhorn and Thiel compute a maximal matching

in O(|X|) steps which is independent of the domain sizes. Then they compute and

mark the strongly connected components and observe some properties that allow

to mark the nodes on an even-length path leading to a free node in O(|X|) steps

40 Efficient Propagators for Global Constraints

regardless of the number of value nodes. Finally, their algorithm finds the smallest

and highest marked value in each variable domain and assigns the lower and upper

bound of the domain to these values. The time complexity of their propagator is

O(t + |X|) where t is the time required for sorting the |X| variables by lower and

upper bounds.

3.5.3 Katriel and Thiel’s Propagator

Katriel and Thiel [39, 40] generalized the propagator for the bounds consistency

of the All-Different constraint developed by Mehlhorn and Thiel [54] in order

to enforce the same consistency on the GCC. Since GCC requires a flow instead

of a matching, the authors developed an algorithm to compute a flow in a convex

bipartite graph.

We recall that we are looking for a flow f where the amount f(e) of flow on

edge e ∈ E lies between two constants l(e) and u(e). Katriel and Thiel designed

an algorithm that proceeds in three phases to find such a flow in a convex bipartite

graph. In the first phase, the algorithm finds a flow satisfying the condition f(e) ≤
u(e) for each edge e ∈ E. In the second phase, the algorithm finds a flow that

satisfies the inequality f(e) ≥ l(e) for each edge e ∈ E. On the third phase,

both flows are merged together in order to fully satisfy the capacity conditions, i.e.

l(e) ≤ f(e) ≤ u(e) for all e ∈ E.

Once the flow has been found, the algorithm proceeds as usual by marking all

edges in the same strongly connected component or on an even-length path leading

to a free node. The algorithm assigns as new lower bound for the domain the first

marked value in this domain. Similarly, the highest marked value in a variable

domain becomes the new upper bound.

The algorithm operates in O(|X|+ |D|) steps where |X| is the number of vari-

ables and |D| the number of distinct values in the variable domains.

Existing Propagators for the All-Different and GCC Constraints 41

Pruning the Cardinality Variables

The algorithm Katriel and Thiel developed in [39] does not only achieve bounds

consistency on the variable domains, it also achieves bounds consistency on the

cardinality variables. The cardinality variables occur in a generalization of the

GCC called the extended global cardinality constraint (EXT-GCC).

Definition 3.3 (Extended Global Cardinality Constraint) The extended global

cardinality constraint EXT-GCC([x1, . . . , xn], [C1, . . . , Cm], D) holds if and only if

for each value v in D, there are Cv variables among x1, . . . , xn assigned to v.

To enforce bounds consistency on the cardinality variables, one has to determine

what is the minimum number and the maximum number of variables that can be

assigned a specific value. The following example shows the result of enforcing

bounds consistency on the EXT-GCC.

Example 3.5 Consider the following variable domains dom(x1) = dom(x2) =

[1, 2], dom(x3) = [2, 4], and dom(x4) = [3, 4] and the following cardinality vari-

able domains dom(C1) = dom(C2) = dom(C4) = [0, 1], and dom(C3) = [0, 3].

Enforcing bounds consistency on EXT-GCC(x1, . . . , x4, C1, . . . , C4, [1, 4]) results

in the following variable domains: dom(x3) = [3, 4], dom(C1) = dom(C2) = [1, 1],

dom(C3) = [1, 2], and all other variable domains remain unchanged.

Katriel and Thiel enforce bounds consistency on the cardinality variables by

iteratively modifying the flow on the value graph. Each modification to the flow

ensures that the maximum amount of flow is pushed on the edge connecting a

specific value node to the sink. This amount is exactly the value corresponding

to max(dom(Cv)). A similar algorithm is derived for the lower bounds of the

cardinality variables.

3.6 Variations on the Problem

There exist many variations of the All-Different and the GCC constraints.

Régin [70] describes a cost-based GCC where an assignment between a variable xi

42 Efficient Propagators for Global Constraints

and a value v generates a cost of ci
v. In order to satisfy the constraint, the sum of

the costs associated to each variable must lie in a given interval. The algorithm

given has running time complexity of O (|X|S(|X||D|, |X|+ |D|)) where S(m, n) is

the time required to find a shortest path in a graph with n nodes and m edges. The

propagator for the Cost-GCC is similar to the one for the GCC. Minimum-cost

maximum-flows (see [4]) are used instead of maximum flows.

The soft version of the All-Different constraint called Soft-All-Different

is used in over-constrained problems, i.e. problems that do not have a solution sat-

isfying all constraints. In many problems, having variables assigned to different

values is more a preference than a requirement. The propagator of Petit et al. [60]

relaxes the All-Different constraint and directs the search to a solution where

the number of variables assigned to the same value is minimized. Unfortunately,

their algorithm does not enforce domain consistency and suffers from a high running

time complexity of O(|X|3.5|D|2). Van Hoeve’s propagator [83] fixes both deficien-

cies by enforcing domain consistency in O(|X|2|D|) steps. The same algorithm can

be adapted for the soft version of GCC called Soft-GCC [85].

Régin and Gomes [72] propose the cardinality matrix constraint. Consider a set

of variables disposed in a table with one variable per cell. The cardinality matrix

constraint is a collection of GCC’s: one for each row and each column. Enforcing

domain consistency on this constraint is NP-Hard. Hence, the authors decompose

the constraint into several constraints: one GCC per row, one GCC per column,

and one 0/1-Cardinality-Matrix constraint for each value in the variable do-

mains. They show how enforcing domain consistency on these constraints is strictly

stronger (�) than enforcing domain consistency on GCC’s on rows and columns.

The algorithms presented are similar to those used for the propagation of the GCC

and the All-Different constraint.

Chapter 4

New Propagators for the

All-Different Constraint

4.1 Introduction

In this chapter, we present our propagators for the All-Different constraints.

In all cases, they improve either the theoretical or practical performance (or both)

of the best known algorithms.

4.2 Bounds Consistency for the All-Different

Constraint

We propose a propagator based on Hall’s theorem that enforces bounds consistency

on the All-Different constraint [51]. The algorithm runs in O(t + |X|) where

t is the time required to sort the set X of variables by lower and upper bounds.

There exist algorithms able to sort the variables in linear time. In practice, bubble-

sort offers the best performance since the propagator is generally called with the

variable list almost sorted. The propagator we propose is simpler and outperforms

in practice the one suggested by Mehlhorn and Thiel [54].

43

44 Efficient Propagators for Global Constraints

Our algorithm proceeds as follows. We process each variable by non-decreasing

upper bounds. If the current variable domain dom(xi) = [a, b] has its lower bound

inside an already discovered Hall interval H = [c, d], we shrink the interval by

shifting the lower bound to d + 1. We then check if there is a Hall interval whose

upper bound is b. If this is the case, we record the left-most Hall interval having

this upper bound, i.e. the largest Hall interval with upper bound b. We shrink the

upper bounds using a symmetric algorithm. To illustrate how variable domains are

pruned, we use a simple example first introduced by Puget [63].

Example 4.1 Let dom(x1) = [3, 4], dom(x2) = [2, 4], dom(x3) = [3, 4], dom(x4) =

[2, 5], dom(x5) = [3, 6], and dom(x6) = [1, 6] be six variable domains. Enforcing

bounds consistency prunes the domains as follows: dom(x1) = [3, 4], dom(x2) =

[2, 2], dom(x3) = [3, 4], dom(x4) = [5, 5], dom(x5) = [6, 6], and dom(x6) = [1, 1]

An interval I can contain up to |I| variable domains. If this limit is exactly

met then I is a Hall interval. We describe a technique to compute the capacity of

candidate Hall intervals. Each time we process a variable domain, we decrement by

one the capacity of the interval into which the domain lands. When the capacity

reaches 0, we report the Hall interval.

Let all n variable domains be semi-open intervals of the form dom(xi) = [ai, bi)

and let E be the set of endpoints such that E = {ai}ni=1 ∪ {bi}ni=1 ∪ {m, n} where

m is a sentinel value of at least two less than any other value in E and n is at

least two more. We construct a union-find data structure S (see [21] for a survey

on these structures) over the elements in E where each set is represented by a tree

and labeled with the root of this tree. Initially, all elements in S are singletons.

Let r1 and r2 be two adjacent roots such that r1 < r2. There is a directed edge

(r2, r1) whose weight capacity(r2) represents the capacity of the semi-open interval

[r1, r2). In Example 4.1 we have S = {1, 2, 3, 5, 6, 7, 9} and the tree data structure

is as follows.

1
1←− 2

1←− 3
2←− 5

1←− 6
1←− 7

2←− 9

Adjacent trees can be merged together by making the root with the highest

value the parent of the root with the lowest value.

New Propagators for the All-Different Constraint 45

We process variables by non-decreasing order of upper bound. Let dom(xi) =

[ai, bi) be the current variable domain. Using the data structure S described above,

one can compute the capacity of any interval [d, bi) such that d ∈ S by summing

up all capacity numbers on the path from bi to the root of the tree that contains

d. When we process a variable domain dom(xi) = [ai, bi), we look for the successor

of ai in S and find the root r2 of its tree. Let r1 be the root that precedes r2 and

r3 the root that follows r2. We decrement the capacity capacity(r2) of [r1, r2) by

1. If it becomes null, we merge the tree rooted at r2 with the tree rooted at r3 by

making r2 a child of r3. We also make r3 point to r1 since a root always points to

the root of the preceding tree.

If after this operation, bi is no longer a root, the interval [r1, bi) has now a

capacity of capacity(r3) − (r3 − bi) ≤ 0. If the capacity is null, we have exactly

bi − r1 domains contained in the interval [r1, bi) and by definition, [r1, bi) is a Hall

interval. If the capacity is negative, we are trying to assign bi − r1 values to more

than bi− r1 variables which is impossible. The constraint is therefore unsatisfiable.

The first graph of each step in Figure 4.1 shows the evolution of the data structure

and indicates which Hall intervals are discovered. We keep the height of the trees

low by means of a standard union-find path compression process [21].

We now show how to store Hall intervals in an efficient data structure. Observe

that a Hall interval is necessarily of the form [a, b) where {a, b} ⊂ S. We consider a

new data structure where each endpoint in E is a node that points to its predecessor

except for the first element in E that does not have a predecessor. If a Hall interval

[a, b) is discovered, we follow the path from b to a and make all elements on this

path point to b. We also make b point to where a was originally pointing to. With

this configuration, a lower bound ai belongs to a Hall interval if it points to a

greater element than itself. To retrieve the upper bound of this Hall interval, we

follow the links from ai until we reach a node b that points to a node smaller than

itself. This element b is the open upper bound of a Hall interval [a, b). Each time

we follow links, we do path compression to make future calls faster. The second

graph of each step in Figure 4.1 shows how Hall intervals are stored.

Putting it all together, we design an algorithm that updates both the capacity

trees and the Hall intervals. Algorithm 3 uses the following variables and functions:

46 Efficient Propagators for Global Constraints

Initial situation

-1 1
2 1

2
1

3
2

5 6 7
1 1

9
2

-1 1 2 3 5 6 7 9

dom(x1) = [3, 4]

-1 1
2 1

2
1

3
1

5 6 7
1 1

9
2

-1 1 2 3 5 6 7 9

dom(x2) = [2, 4]

-1 1
2 1

2

3

1
5 6 7

1 1
9

2

-1 1 2 3 5 6 7 9

dom(x3) = [3, 4] new Hall interval [2, 4]

-1 1
2 1

2

3

5

6 7
1 1

9
2

-1 1 2 3 5 6 7 9

dom(x4) = [2, 5], dom(x′
4)← [5, 5] Hall: [2, 5]

-1 1
2 1

2

3 5 6

7
1

9
2

-1 1 2 3 5 6 7 9

dom(x5) = [3, 6], dom(x′
5)← [6, 6] Hall: [2, 6]

-1 1
2 1

2

3

5

6

7

9
2

-1 1 2 3 5 6 7 9

dom(x6) = [1, 6] Hall: [1, 6]

-1 1
2

2 3 5

6

7

9
2

-1 1 2 3 5 6 7 9

Figure 4.1: Trace of Example 4.1: each row represents an iteration where a variable

is processed. The first graph illustrates the state for the vectors bounds, t and d

while the second graph shows the state of the vectors bounds and h.

New Propagators for the All-Different Constraint 47

• maxsorted[0 . . . |X| − 1] is the array of variables sorted by upper bounds.

• bounds[0 . . . |S| − 1] is a sorted array containing the elements of S.

• tree[0 . . . |S| − 1] are the pointers of the tree structure where si ∈ S points to

tree[i].

• capacity[0 . . . |S| − 1] holds capacities such that capacity[i] is the capacity of

the half-open interval [bounds[tree[i]], bounds[i]).

• minrank and maxrank are the indices of the above array bounds such that

bounds[minrank(xi)] = min(dom(xi)) and bounds[maxrank(xi)] = max(dom(xi)).

• hall[0 . . . |S| − 1] is the Hall interval data structure such that if hall[i] < i

then the half-open interval [bounds[hall[i] + 1], bounds[i]) is a Hall interval. If

hall[i] > i then bounds[i] belongs a Hall interval such that following the path

i, hall[i], hall[hall[i]], . . . until an element pointing to an element smaller than

itself leads to the open-upper bound b of the Hall interval [a, b).

• pathmax(a, x) follows the pointers x, a[x], a[a[x]], . . . until an element points to

an index smaller than itself. The function returns the greatest index visited.

• pathset(a, x, b, c) follows the pointers x, a[x], a[a[x]], . . . until an element points

to b and set all these pointers to c.

48 Efficient Propagators for Global Constraints

Algorithm 3: Enforcing Bounds Consistency on All-Different(X)

Sort X by non-decreasing upper bounds

for i← 1 to |S| − 1 do
tree[i]← hall[i]← i− 1

capacity[i]← bounds[i]− bounds[i− 1]

for i← 0 to |X| − 1 do
x← maxsorted[i].minrank, y ← maxsorted[i].maxrank

z ← pathmax(tree, x + 1)

j ← tree[z]

capacity[z]← capacity[z]− 1

if capacity[z] = 0 then

// Merge the tree rooted at z with the previous tree

rooted at tree[z].

tree[z]← z + 1

z ← pathmax(tree, tree[z])

tree[z]← j

pathset(tree, x + 1, z, z)

if capacity[z] < bounds[z]− bounds[y] then return Inconsistent

if hall[x] > x then

// The lower bound of dom(maxsorted[i]) is in a Hall

interval

w ← pathmax(hall, hall[x])

maxsorted[i].min← bounds[w] // Increase the lower bound

pathset(hall, x, w, w)

if capacity[z] = bounds[z]− bounds[y] then

// Mark the newly discovered Hall interval

pathset(hall, hall[y], j − 1, y)

hall[y]← j − 1

return Consistent

New Propagators for the All-Different Constraint 49

4.2.1 Time Complexity Analysis

To compute the running time complexity of the algorithm, note that each instruc-

tion is repeated at most |X| times and all of them are constant time operations

except for pathset and pathmax. Since each call to pathmax is followed by a call

on pathset over the same nodes of the tree, the latter function determines the time

complexity of the algorithm.

The cost of a call to pathset is highly dependent on the state of the forest of

trees tree. If the trees are tall, a call to pathset is expensive; yet path compression

makes subsequent calls cheaper for a greater number of nodes than before. Since

the actual cost of a call to pathset varies during the execution of the algorithm,

we will perform an amortized analysis in order to bound the cost of the function

on a sequence of n calls.

The amortized analysis of our algorithm is similar to that of the union-find data

structure with naive union and path compression (see [21] for a survey). Tarjan

and Leeuwen [81] give an amortized analysis of this specific case. Hopcroft and

Ullman [37] attribute this result to Paterson [58]. For the sake of clarity, we present

the amortized analysis adapted to our problem.

Let the reference trees be the trees obtained at the end of the execution of

the algorithm when path compression has been disabled, i.e. all calls to pathset

are omitted. Let h(a) be the height of node a in the reference trees. Let Ft

be the forest generated by the algorithm after the tth call to pathset with path

compression enabled. Let pt(a) be the parent of node a in Ft. Notice that h(a)

refers to the reference trees while p(n) refers to the actual trees Ft. Finally, we

define the following potential function over each node.

Φa(t) =

{

0 If a is a root

blog(h(pt(a))− h(a))c otherwise

Notice that this potential function can take a maximum of dlog(n)e distinct

values. Procedure pathset performs a path compression over all nodes on the path

connecting a node a to the root r of the tree. There can be up to n nodes on this

50 Efficient Propagators for Global Constraints

path but no more than dlog(n)e distinct potential values. For each potential value

v, we choose the highest node i with Φi(t) = v and pay 1 unit of computation for it.

This charges a cost of O(n log n) to procedure pathset. For all other nodes with

potential value v, we prove that their potential function goes up by at least one.

Lemma 4.1 Let i be the highest node with potential Φi(t) on the compression path

and let j be a lower node with the same potential Φj(t) = Φi(t). Then after path

compression, we have Φj(t + 1) ≥ Φj(t) + 1.

Proof The length of the path connecting j to the root of the tree r in the reference

tree is necessarily greater than the sum of the length of the two sub-segments

connecting j to its parent p(j) and i to its parent p(i). We have

h(r)− h(j) ≥ h(p(i))− h(i) + h(p(j))− h(j) (4.1)

blog(h(r)− h(j))c ≥ blog(h(p(i))− h(i) + h(p(j))− h(j))c (4.2)

Suppose the segment connecting i to its parent p(i) in the reference tree is

longer than the segment connecting j to its parent p(j). In other words, suppose

h(p(i))− h(i) ≥ h(p(j))− h(j). We obtain.

blog(h(r)− h(j))c ≥ blog(2(h(p(j))− h(j)))c (4.3)

blog(h(r)− h(j))c ≥ blog(h(p(j))− h(j))c+ 1 (4.4)

Φj(t + 1) ≥ Φj(t) + 1 (4.5)

On the other hand, if the segment from i to p(i) is shorter than the segment from

j to p(j), i.e. h(p(i))− h(i) ≤ h(p(j))− h(j) we obtain the following inequalities.

blog(h(r)− h(j))c ≥ blog(2(h(p(i))− h(i)))c (4.6)

blog(h(r)− h(j))c ≥ blog(h(p(i))− h(i))c + 1 (4.7)

Φj(t + 1) ≥ Φi(t) + 1 (4.8)

New Propagators for the All-Different Constraint 51

Since both nodes i and j have the same potential at time t, this is equivalent to

Φj(t + 1) ≥ Φj(t) + 1. In either case, the potential of node j increases by at least

one. 2

The following theorem concludes the running time analysis of the algorithm.

Theorem 4.1 Algorithm 3, implemented with the tree data structure, has a run-

ning time complexity of Θ(|X| log |X|) in the worst case.

Proof We charged to procedure pathset a cost of Θ(log |X|). The rest of the actual

cost is absorbed by the potential function of each node. Since the potential of a

node cannot increase more than log |X| times, a sequence of |X| calls to pathset

costs at most O(|X| log |X|).

Fischer [56] gives an example of an instance for which the calls to pathset takes

Θ(|X| log |X|) steps. This occurs when tree is a binomial tree and the pathset

function is called on certain elements. The amortized complexity of Θ(|X| log |X|)
is therefore tight. 2

However, the worst case complexity can be improved. The data structures tree

and hall are in fact union-find data structures that support the operations FIND-

MAX(e) which returns the largest value in the set containing e, FIND-PREV-

MAX(e) which returns the largest element in the set preceding the set containing

element e, and UNION(i, j) which merges the set containing element i with the

set containing element j. The same operations can be realized with a weighted-

union-find data structure such that each root holds the largest element in the tree

and a pointer to the largest element in the previous tree. This brings the worst case

complexity to O(t+ |X|α(|X|)) where α is the inverse of Ackermann’s function and

t the time for sorting |X| variables by lower and upper bounds. This can be further

improved to a running time of O(t + |X|) by using Gabow and Tarjan’s union-find

data structure [20] we call the interval union-find data structure.

Theorem 4.2 Algorithm 3, implemented with the interval union-find data struc-

ture, has a running time complexity of Θ(t + |X|) in the worst case.

52 Efficient Propagators for Global Constraints

Proof The values in the union-set data structures used to store the capacities and

the Hall intervals can be totally ordered in a sequence from the smallest value to

the highest value. Each time the algorithm calls the UNION operator, it merges

two sets A and B together. There always exist an element a ∈ A and an element

b ∈ B such that a and b are adjacent in the ordered sequence. This condition is

sufficient to use the interval union-find. The worst case running time complexity

of a call to UNION and FIND with this data structure is constant time. Hence

the running time complexity of Θ(t + |X|) for Algorithm 3. 2

Despite our best efforts in optimizing the code, the O(t + |X| log |X|) version

provides the best performance when run with input of reasonable size due to its

small hidden constant. We recall that this is a worst case analysis and experiments

show an almost linear behavior in the average case for our sample data set.

4.2.2 Experiments

We compare five propagators for the All-Different constraint: (i) our propaga-

tor introduced in Section 4.2, (ii) our implementation of the propagator of Mehlhorn

and Thiel [54], (iii) ILog’s version of Leconte’s propagator [46] for range consis-

tency, (iv) Régin’s propagator [67] for domain consistency, and (v) a propagator

for value consistency. We use in all seven experiments the ILOG Solver 4.2 soft-

ware library [3], a highly optimized library for constraint programming. We label

our propagator BC, our implementation of Mehlhorn and Thiel’s propagator MT,

Leconte’s propagator RC, Regin’s propagator DC, and the value consistency prop-

agator VC. We implemented Mehlhorn and Thiel propagator (MT) before having

sketched our own bounds consistency propagator (BC) with the intention to make

it as fast as possible. We do not have an implementation of Puget’s algorithm [63]

but using his experimental results and RC as a calibration point, we can perform

a fair comparison with other algorithms over Puget’s selection of problems. We

believe the comparison to be accurate since we use a similar version of ILOG. All

experiments ran on a 300 MHz Pentium II with 228 MB of memory. We averaged

all results over 10 experiments unless otherwise stated.

New Propagators for the All-Different Constraint 53

0

5

10

15

20

25

30

35

40

500 1000 1500 2000 2500 3000

tim
e

to
 fi

rs
t s

ol
ut

io
n

(s
ec

.)

number of variables (n)

DC
RC
VC
BC

Figure 4.2: Time to find the first solution to the pathological problem

The Pathological Problem The pathological problem was designed by Puget

as an adversary for a propagator enforcing bounds consistency. Consider 2n +

1 variables xi for 0 ≤ i ≤ 2n such that dom(xi) = [i − n, 0] for 0 ≤ i ≤ n

and dom(xi) = [0, i − n] for n < i ≤ 2n. There is a unique All-Different

constraint over all variables. This completes the problem. Observe now that the

All-Different constraint requires most of the computation time. We solve the

problem using a lexicographic ordering of the variables. Figure 4.2 shows how

bounds consistency is faster than other forms of consistencies. This result is not

too surprising since the problem is designed specifically to the advantage of bounds

consistency propagators. Therefore we emphasize the fact that BC was twice as

fast as MT and about 5 times faster than Puget’s algorithm which makes BC the

fastest propagator for this problem.

54 Efficient Propagators for Global Constraints

m VC RC DC MT BC

8 0.9 0.5 0.6 0.6 0.3

9 9.0 3.8 4.6 4.4 2.3

10 87.3 31.7 39.5 36.5 18.9

11 1773.6 688.1 871.2 841.4 437.6

Table 4.1: Time (sec.). to find an optimal solution of the Golomb ruler problem

The Golomb Ruler Problem A Golomb ruler (see problem 6 in CSPLib [25])

is a ruler with n marks where the n(n−1)
2

possible distances between two marks are

all distinct. Smith et al. [77] model the problem of finding a Golomb ruler as n

variables xi such that dom(x0) = [1, 1] and dom(xi) = [1, 2n] for 1 ≤ i < n plus
n(n+1)

2
difference variables dj

i for 0 ≤ i < j < n such that dom(dj
i) = [1, 2n]. The

difference variables are subject to dj
i = xj − xi for 0 ≤ i < j < n and we have the

ordering constraints xi−1 < xi for 0 < i < n. We finally apply an All-Different

constraint over all difference variables dj
i . We use a lexicographic variable ordering

to reproduce the same search Puget did. Using RC as a calibration point, our

propagator BC turns out to be 1.5 times faster than Puget’s propagator. Table 4.1

compares all other propagators together and show that BC is approximately 1.6

times faster than MT.

Instruction scheduling problems Instruction scheduling is used to optimize

the object code produced by a compiler. A scheduling problem with n instructions

consists of n variables {xi}i=1...n whose domain represent the arrival time of the

instruction in the execution pipeline. Latency constraints of the form xi ≥ xj + d

where d is a small integer ensure that instruction j is completed before instruction

i is processed. Finally, since only one instruction at a time can be queued, we

apply an All-Different constraint over all execution times xi for 1 ≤ i ≤ n.

Redundant constraints called “distance constraints” are also added as explained

in [82]. We used a minimum-domain-size ordering to solve 15 hard scheduling

problems selected from the SPEC95 floating point, the SPEC2002 floating point

and the MediaBench [47] benchmarks. Table 4.2 shows that our BC propagator

New Propagators for the All-Different Constraint 55

n VC RC DC MT BC

69 0.02 0.04 0.04 0.02

70 0.02 0.05 0.04 0.02

111 0.08 0.07 0.12 0.11 0.07

211

214 40.64 0.67 1.20 0.94 0.46

216 0.31 1.08 0.72 0.38

220 0.29 0.93 0.66 0.32

377 0.84 3.94 2.41 0.79

381 0.28 0.50 3.18 1.15 0.39

394 2.66 7.15 2.66 1.65

556

690 1.91 26.88 3.95 1.61

691 14.47 40.50 6.30 3.14

856 7.72 17.09 10.86 5.48

1006 10.35 87.23 15.90 5.95

Table 4.2: Time (sec.) to find the optimal solution of an instruction scheduling

problem. Problems that were not solved in 10 minutes are represented by blank

entries.

outperforms all other propagators.

Random Problems We next consider some random problems to measure the

scalability of the propagators. We consider problems of n variables whose do-

mains dom(xi) = [ai, bi] are uniformly chosen in [1, n]. We consider a unique

All-Different constraint over all variables and solve the problem in lexicographic

order. Since the problem has only one constraint, most of the computational time

is spent in the All-Different propagator. Figure 4.3 clearly shows the quadratic

complexity of RC and DC. Both BC and MT are almost linear although MT (not

shown) is 2.5 to 3 times slower than BC. The propagator VC was unable to solve

even the smallest problems in less than 10 minutes.

56 Efficient Propagators for Global Constraints

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600

tim
e

to
 fi

rs
t s

ol
ut

io
n

(s
ec

.)

number of variables (n)

DC
RC
BC

Figure 4.3: Time (sec.) required to find the first solution or to detect an inconsis-

tency on random problems. Each entry is averaged over 100 problems.

New Propagators for the All-Different Constraint 57

Schulte and Stuckey [76] studied problems where bounds and domain consis-

tency lead to the same search space. The Golomb problem is one of these problems

where bounds consistency clearly offers a better performance than domain consis-

tency. With the purpose to investigate the weaknesses of our propagator, we study

problems where bounds and domain consistency do not lead to the same search

space.

Random problems with holes Consider the random problems studied pre-

viously where variable domains are of the form [ai, bi]. We create holes in the

domains by randomly removing each value in [ai + 1, bi − 1] with a probability p.

These problems are trivial for domain consistency but are not so for bounds and

range consistency. We therefore use Puget’s strategy that consists of running VC

followed by BC to form the BC+ propagator. We similarly obtain MT+ by run-

ning VC followed by MT. Using the minimum domain size heuristic, we recorded

the percentage of problems that were solved within a period of time of 5 seconds

(see Figure 4.4). As expected, we observed that the more values were removed

from the domains, the more inefficient was bounds and range consistency to solve

a problem. When the value p passes 90%, few values remain in the domains and

problems become easier to solve.

The n-Queens problem The n-Queens problem consists of placing on an n× n

chessboard n queens such that no queen is attacked by another queen. Following

the example provided by ILog [3], we model the problem with n variables qi for

1 ≤ i ≤ n. Queen number i is positioned on column i and row qi. We have

the three following constraints: All-Different(q1, . . . , qn), All-Different(q1−
1, . . . , qn− n), and All-Different(q1 + 1, . . . , qn + n). The first constraint states

that no two queens are on the same row. The two other constraints model the fact

that queens should not be on the same diagonal. Indeed, if two queens qi and qj

were on the same diagonal, we would have
qi−qj

i−j
= ±1 which means that either

qi− i = qj − j or qi + i = qj + j would be true. We branch on the variable with the

smallest domain and break ties on the variable with the lower minimum value in

its domain. On this problem, both BC and MT were unable to solve the problem

58 Efficient Propagators for Global Constraints

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

%
 n

ot
 s

ol
ve

d

Probability (p) of value being removed from domain

BC, BC+, RC with lexicographic
BC with min domain size

BC+, RC with min domain size

Figure 4.4: Percentage of random instances with holes not solved within 5 seconds

for problems with 100 variables. Each data point is the average of 100 problems.

The cutoff (5 seconds) was chosen to be the value that was at least two orders of

magnitude slower than domain consistency, the fastest propagator on these prob-

lems.

New Propagators for the All-Different Constraint 59

within a reasonable time bound. The key to solve this problem is to remove values

from the domains other than variable bounds. Even when BC+ and MT+ were

able to solve the problem, they were not competitive with VC. Table 4.3 reports

the time to find the first and all solutions to the n-queen problem.

n VC RC DC MT+ BC+

all 8 0.0 0.0 0.1 0.2 0.1

9 0.2 0.2 0.3 0.6 0.3

10 0.6 0.8 1.0 2.3 1.0

11 2.7 3.5 4.4 10.4 4.6

12 13.1 17.0 21.6 52.3 22.6

first 100 0.1 0.1 0.4 0.2 0.1

200 0.3 0.5 2.4 1.0 0.5

400 1.1 2.9 17.5 4.3 1.9

800 5.7 20.3 160.0 22.0 10.1

1600 32.5 164.4 1264.2 111.8 56.2

Table 4.3: Time (sec.) to find all or first solutions for n-queens problems.

The Quasigroup Problem The quasigroup problem consists of filling the cells

of an n × n table with numbers from 1 to n such that each number appears on

each row and each column. In addition to this requirement, certain permutation

constraints are imposed as described in Problem 3 of CSPLib [25]. We model the

problem with one variable per cell with an All-Different constraint on each row

and each column. We used the minimum domain heuristic for order of instantiation.

Table 4.4 shows the time in seconds for each problem we solved.

In all our experiments, RC was never the best choice. In problems where values

other than bounds in domains were important, DC and VC outperformed RC. In

other problems where pruning the bounds was more important, bounds consistency

algorithms clearly were the best choice.

60 Efficient Propagators for Global Constraints

axiom order VC RC DC MT+ BC+

3 8 0.2 2.9 2.7 0.2 0.2

9 773.8 630.5 557.0 667.3 641.6

4 8 9.0 7.5 6.9 8.1 7.7

9 1.6 1.3 0.8 1.4 1.4

5 8 0.2 0.1 0.2 0.1 0.1

9 1.1 0.9 0.9 0.9 0.9

10 14.4 12.0 6.3 12.3 12.1

11 67.1 21.1 9.7 21.5 21.2

12 1077.2 708.9 231.6 721.9 712.9

6 8 0.0 0.0 0.0 0.0 0.0

9 0.2 0.2 0.2 0.2 0.2

10 2.0 1.9 1.9 2.1 2.0

11 32.4 31.7 32.1 33.6 32.0

12 842.1 815.8 820.2 864.6 829.5

13 10.0 10.0 10.3 10.8 10.3

7 8 0.9 0.8 0.9 1.0 0.9

9 2.1 2.1 2.3 2.4 2.2

10 499.8 483.8 506.0 529.9 495.2

Table 4.4: Time in seconds to find the first solution of a quasigroup problem. We

solved problems of order 8 to 13 for each axiom.

4.3 Range Consistency for the All-Different Con-

straint

In Section 3.4, we showed how Leconte designed an Θ(n2) propagator for range

consistency of the All-Different constraint and proved its optimality. In this

section, we present a new algorithm whose complexity is linear plus a time propor-

tional to the number of values removed from the variable domains. Since Leconte

proved there can be up to n2 values to remove, our algorithm has the same worst

case complexity as Leconte’s algorithm, i.e. Ω(n2). In practice however we observed

New Propagators for the All-Different Constraint 61

that generally not that many values need to be removed during the propagation

of the All-Different constraint. In fact, often, the propagator does not prune

any variable domains. These observations are promising for propagators whose

complexity depends on the number of values pruned. It is certainly efficient to

remove O(n2) values from the domains in O(n2) instructions but rather inefficient

to detect if the problem is already consistent using that many steps. We therefore

suggest a propagator that detects in linear time if the All-Different constraint

is satisfiable and then spends a constant amount of time per value removed from

a domain. Furthermore, under amortized complexity, our new propagator enforces

range consistency in linear time instead of the worst case of O(n2).

The rest of the section is as follows. We refine concepts related to Hall’s theorem

and present their properties. Based on these concepts, we design a propagator for

the range consistency of the All-Different constraint. We study the asymptotic

behavior of our propagator and finally present some experiments.

4.3.1 Basic Hall Intervals

We introduce a subclass of Hall intervals that we call basic Hall intervals.

Definition 4.1 (Basic Hall Interval) A basic Hall interval is a Hall interval

that cannot be expressed as the union of two Hall intervals.

The basic Hall intervals have several interesting properties in a bounds consis-

tent problem. The first property concerns how basic Hall intervals overlap with

each other.

Lemma 4.2 In a bounds consistent problem, two basic Hall intervals can only

intersect if one Hall interval is a subset of the other Hall interval.

Proof Let H1 and H2 be two basic Hall intervals such that H1 and H2 overlap on

B i.e. B = H1∩H2. By way of contradiction, suppose that H1 6⊆ H2 and H2 6⊆ H1.

Since the problem is bounds consistent, a variable domain that has a bound in a

Hall interval must have the other bound in the same Hall Interval. Let A = H1−B

62 Efficient Propagators for Global Constraints

and C = H2 − B. A variable domain has both bounds in A, B, or C or it has no

bounds in H1 nor H2. Since the sets A, B and C cannot contain more variable

domains than their cardinality and H1 and H2 have to contain as many variables

as values, we conclude that A, B and C are Hall intervals. This contradicts our

hypothesis that H1 and H2 are basic Hall intervals since they can be expressed by

the union of two Hall intervals (H1 = A∪B and H2 = B ∪C). Therefore two basic

Hall intervals cannot overlap if one is not a subset of the other. 2

We prove by way of an example that a basic Hall interval can be a subset

of another basic Hall interval. Consider the following variable domains that are

bounds consistent to the All-Different constraint: dom(x1) = dom(x2) = [1, 3]

and dom(x3) = [2, 2]. The two Hall intervals H1 = [1, 3] and H2 = [2, 2] cannot be

expressed by the union of two other Hall intervals. They are therefore basic Hall

intervals.

The second property relates to bounds of Hall intervals.

Lemma 4.3 In a bounds consistent problem, two different basic Hall intervals can-

not share a common bound.

Proof Let H1 and H2 be two different basic Hall intervals. According to Lemma 4.2,

a basic Hall interval cannot have for lower bound the upper bound of a second basic

Hall interval. Therefore we consider the case where two basic Hall intervals share

the same lower bound or the same upper bound.

Suppose that H1 and H2 are two different basic Hall intervals sharing the same

lower bound i.e. H1 = [a, b] and H2 = [a, c] such that b < c. Let H3 = H2 −H1 =

(b, c]. The number of variable domains contained in H2 can be decomposed as

follows.

C(H2) = C(H1) + C(H3) + |{x | min(dom(x)) ∈ H1 ∧max(dom(x)) ∈ H3}|

Since the problem is bounds consistent and H1 is a Hall interval, we know that

no variables have one bound in H1 and the other bound in H3. We now show that

New Propagators for the All-Different Constraint 63

H3 is also a Hall interval. Observe that

C(H2) = C(H1) + C(H3) + {x ∈ X|min(x) ∈ H1 ∧max(x) ∈ H3}
C(H2) = C(H1) + C(H3)

C(H3) = C(H2)− C(H1)

C(H3) = (c− a + 1)− (b− a + 1)

C(H3) = c− b

Since H2 can be expressed by the union of H1 and H3 and both of them are Hall

intervals, we conclude that H2 is not a basic Hall interval which is in contradiction

with our hypothesis. 2

Since there must be at least one variable domain contained in a basic Hall

interval and every basic Hall interval is uniquely defined by one of its bounds, there

are at most n basic Hall intervals in a problem that counts n variables.

4.3.2 A New Algorithm for Range Consistency

Using the properties of basic Hall intervals, we suggest a new algorithm that makes

a problem range consistent and has a time complexity of O(t + n + u) where t is

the time complexity for sorting n variables and u is the number of values removed

from the domains. This algorithm proceeds in four steps:

1. Make the problem bounds consistent.

2. Sort the variables by increasing lower bounds.

3. Find the basic Hall intervals.

4. Prune the variable domains.

Steps 1 and 2 are not a concern since they can be performed in linear time using

the bounds consistency algorithm described in Section 4.2 and an implementation

of any sorting algorithm. We therefore focus our attention on Steps 3 and 4.

64 Efficient Propagators for Global Constraints

To find the basic Hall intervals, we maintain a stack S of tuples 〈interval, count〉
where interval is an interval of values and count indicates how many processed

variable domains are contained in interval. If the number of elements in interval

equals count, then interval is a basic Hall interval. We maintain an invariant on

the stack such that an interval at a higher level is a subset of the interval at a

lower level. Moreover, intervals on the stack have distinct lower and upper bounds.

We initialize the stack by pushing the infinite interval represented by the tuple

〈[−∞,∞], 0〉. Here, the count variable is set to 0 since no variables have been

processed so far. We also add to the problem a dummy variable domain that

contains values greater than any other values contained in other variable domains.

This dummy variable domain should be large enough (i.e. at least 2) to never create

a Hall interval.

We process each variable domain in ascending order of lower bound. While the

interval on top of the stack does not intersect with the current variable domain,

the algorithm pops the tuple out of the stack. When popping an element out of

the stack, we add to the count variable of the tuple on top of the stack the count

variable of the removed tuple. This operation maintains the number of variable

domains contained in the interval on top of the stack. Each time the count variable

is updated, we check if the interval is a Hall interval, i.e. if the count variable

is equal to the number of values in the interval. The algorithm prints the Hall

intervals as it discovers them.

After popping out the tuples, we are now ready to process the current variable.

We push the current variable domain on the stack and consider it as a potential

basic Hall interval. Let 〈I1, c1〉 and 〈I2, c2〉 be two elements on top of the stack. If

these two elements on the stack do not satisfy the properties of basic Hall inter-

vals stated in Lemma 4.2 and Lemma 4.3, we pop them out and push the tuple

〈I1 ∪ I2, c1 + c2〉 which represents the new candidate for a basic Hall interval. Notice

that we might have to pop tuples and repeatedly merge them together to restore

the stack invariant. Algorithm 4 uses this technique to print all basic Hall intervals.

New Propagators for the All-Different Constraint 65

Algorithm 4: Prints the basic Hall intervals in a bounds consistent problem

push(S,〈[−∞,∞], 0〉)
dom(d)← [max(D) + 1, max(D) + 3]

X ← X ∪ {d}
for x ∈ X in non decreasing order of min(dom(x)) do

while max(int(top(S))) < min(dom(x)) do

if |interval(top(S))| = count(top(S)) then
print interval(top(S))

n← count(pop(S))

count(top(S))← count(top(S)) + n

T ← 〈dom(x), 1〉
while min(interval(T)) ≤ min(interval(top(S))) or

max(interval(top(S))) ≤ max(interval(T)) do
〈I, c〉 ← pop(S)

T ← 〈I ∪ int(T), c + count(T)〉
if S is empty then break

push(S, T)

66 Efficient Propagators for Global Constraints

Algorithm 4 runs in O(n) since each variable is pushed, popped, merged, and

printed at most once. One can prune the variable domains to achieve range con-

sistency by simply removing each basic Hall interval H from the variable domains

that are not fully contained in H. Let n be the number of variables and H the

set of values that belong to a Hall interval. Pruning the variable domains requires

O(n |H|) time. Putting it all together, the total time complexity of Algorithm 4 is

O(t + n + n |H|) where t is the complexity to sort n variables by lower and upper

bounds.

The performance can be further improved by making the propagator incremen-

tal. An incremental propagator is a propagator that reuses computations performed

during previous propagation steps and uses them during the current propagation.

Our propagator can be modified to reuse basic Hall intervals discovered in previ-

ous propagation steps. If no backtrack occurred, we know that variable domains

could only have been reduced since the last propagation step. This reduction of

domain can create new Hall intervals, yet previously discovered Hall intervals never

disappear.

Lemma 4.4 Let H be a Hall interval in a problem containing an All-Different

constraint. If some values are removed from the variable domains of the original

problem, H remains a Hall interval in the modified problem.

Proof By definition, a Hall interval H is an interval that contains as many variable

domains as its cardinality. If variable domains are shrunk, they are still contained

in H and therefore the Hall interval remains a Hall interval. 2

While Hall intervals remain Hall intervals under the reduction of domains, this

is not the case for basic Hall intervals. A basic Hall interval H can be segmented

into several basic Hall intervals H1, . . . , Hn such that H = H1∪ . . .∪Hn. Therefore,

H is no longer a basic Hall interval.

We can make our propagator incremental by only considering new basic Hall

intervals that are not part of a fragmentation of a previously discovered basic Hall

interval. These Hall intervals are the only ones that can create new holes in variable

domains since other Hall intervals have already been processed during previous

New Propagators for the All-Different Constraint 67

propagations. Since Algorithm 4 lists basic Hall intervals in increasing order of

upper bounds, a linear scan can quickly identify new and old basic Hall intervals.

Let H be the set of values belonging to a new basic Hall intervals that is not part of a

segmentation of a previously discovered Hall interval. The running time complexity

of the incremental algorithm is therefore O(t + n + n|H|). The improvement in the

running time complexity is better perceived in the amortized analysis.

Lemma 4.5 The amortized complexity of the incremental propagator over a branch

in the search tree is O(t + n).

Proof When run for the ith time, the incremental algorithm has complexity O(t+

n+n|Hi|). For a problem with n variables, the maximum number of values appear-

ing in a basic Hall interval is n. Suppose the propagator is called m times from the

root to a leaf of the search tree. We have
∑m

i=1 |Hi| ≤ n. The total cost is therefore

O(m (t + n) + n2). It follows that the amortized cost over a sequence of m calls for

m ∈ Ω(n) is O(t + n). 2

Lemma 4.5 proves that in the amortized case, bounds consistency and range

consistency have the same running time complexity.

4.3.3 Experiments

We implemented the propagator described in Section 4.3.2 which we label LRC.

We compared it with already existing propagators on the Golomb ruler problem

(see problem 6 in CSPLib [25]). We essentially used the same model and the same

notation to identify propagators as in Section 4.2.2. All reported times are averaged

over 10 runs.

68 Efficient Propagators for Global Constraints

Time (s) # Fails

n VC RC DC BC BC+ LRC VC others

7 0.0 0.0 0.0 0.0 0.0 0.0 355 110

8 0.5 0.2 0.3 0.2 0.3 0.3 2735 697

9 4.8 2.0 2.5 1.2 2.1 2.2 19445 3740

10 46.7 16.8 20.6 10.3 17.6 18.4 140746 23464

11 951.1 363.0 450.5 237.5 375.9 399.1 2230979 374888

Table 4.5: Left: time (s) to find the first solution to the Golomb ruler problem with

n marks. Right: number of fails during the search. RC, DC, BC, BC+, and LRC

all have the same number of fails.

New Propagators for the All-Different Constraint 69

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

)

n

Time to Solve Random Problems

LRC
RC

Figure 4.5: Time in seconds to solve random problem instances using the incre-

mental propagator LRC and Leconte’s propagator for the range consistency of the

All-Different constraint.

We see on Table 4.5 that our propagator (LRC) is about 10% slower than the

propagator provided by ILog (RC) for the same consistency. This is due to the

hidden constant in the running time complexity. The next experiment shows that

our propagator is faster than RC on larger datasets.

We consider the same random problems studied in Section 4.2.2 to measure

the scalability of the propagators. Recall that in these problems, there are n vari-

ables whose domains dom(xi) = [ai, bi] are uniformly chosen in [1, n]. We consider

a unique All-Different constraint over all variables and solve the problem in

lexicographic order. Since the problem has only one constraint, most of the com-

putational time is spent in the All-Different propagator. We used the same

instances of random problems for testing RC and LRC. The running time for a

specific n is averaged over 100 instances of random problems. Figure 4.5 clearly

shows that the running complexity of LRC is inferior to the complexity of RC.

70 Efficient Propagators for Global Constraints

4.4 The All-Different Constraint on Non Inte-

ger Variables

So far, we have studied the All-Different constraint on integer variables. Under

certain circumstances, we might want to propagate this constraint to variables with

more structure. For instance, we might want to propagate the All-Different

constraint over set variables [27, 26, 62, 57], multiset variables [87], or ordered

tuple variables. Structured variables offer many advantages compared to integer

variables. First, structured variables reduce the memory space required to represent

variable domains. With set variables for instance, instead of listing a large number

of possible sets to be assigned to a variable, one can simply list the potential

elements and the required elements of the set. Second, structured variables improve

the efficiency of propagators by making important information more accessible to

the algorithms. For instance, a propagator might want to know what are the definite

elements in a set without having to iterate through all possible set assignments.

Finally, structured variables offer the usual benefits from data abstraction like ease

of debugging and code maintenance.

The All-Different constraint on non integer variables occurs on a variety

of problems. Consider for instance the round robin sports scheduling problem

(problem 026 in CSPLib [25]). In this problem, we must schedule a tournament

such that all sport teams meet each other. One could see a match as a set of size

two containing the two teams playing together. An All-Different constraint

posted on all sets ensure that every match is unique. We show how to propagate

the All-Different constraint on set, multiset, and tuple variables.

4.4.1 Beyond Integer Variables

A propagator designed for integer variables can be applied to any type of variable

whose domain can be effectively enumerated. For instance, let the following vari-

ables be sets whose domains are expressed by a set of required values and a set of

allowed values.

New Propagators for the All-Different Constraint 71

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {} ⊆ S5, S6 ⊆ {2, 3}

Variable domains can be expanded as follows:

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{}, {2}, {3}, {2, 3}}

And then by enforcing domain consistency on the All-Different constraint,

we obtain

S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{3}, {2, 3}}

We can now convert the domains back to their initial representation.

{} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {3} ⊆ S5, S6 ⊆ {2, 3}

This technique while always correct can lead to intractable problems since vari-

able domains might have exponential size. For instance, the domain of {} ⊆ Si ⊆
{1, . . . , n} contains 2n elements.

As we did for our propagator for the bounds consistency of the All-Different

constraint (see Section 4.2), we use Hall’s marriage theorem (see Theorem 2.4 in

Section 2.2.3) to enforce domain consistency on the All-Different constraint.

The definition of a Hall interval can be generalized to sets as follows.

Definition 4.2 (Hall Set) A Hall set is a set H such that there are |H| variables

whose domains are contained in H.

In our example, the set H = {{}, {1}, {2}, {1, 2}} is a Hall set since its cardinal-

ity is four and exactly four variables (S1, S2, S3, S4) have their domains contained

in H.

The following important lemma allows us to ignore variables whose domains are

too large to be enumerated and only focus on those with “small” domains.

72 Efficient Propagators for Global Constraints

Lemma 4.6 Let n be the number of variables and let F be a set of variables whose

domains are not contained in any Hall set. Let xi 6∈ F be a variable whose domain

contains more than n− |F | values. Then dom(xi) is not contained in any Hall set.

Proof The largest Hall set can contain the domain of n−|F | variables and therefore

has at most n−|F | values. If |dom(xi)| > n−|F |, then dom(xi) cannot be contained

in any Hall set. 2

Using Lemma 4.6, we can iterate through the variables and append to a set

F those whose domain cannot be contained in a Hall set. A propagator for the

All-Different constraint can prune the domains not in F and find all Hall sets.

Values in Hall sets can then be removed from the variable domains in F . This

technique ensures that domains larger than n do not slow down the propagation.

Algorithm 5 exhibits the process for a set of (possibly non-integer) variables X.

Algorithm 5: All-Different propagator for variables with large domains

F ← ∅
for xi ∈ X do

if |dom(xi)| > n− |F | then F ← F ∪ {xi}1

Expand domains of variables in X − F .2

Find values H belonging to a Hall set and propagate the All-Different

constraint on variables X − F .

for xi ∈ F do
dom(xi)← dom(xi)−H;

Collapse domains of variables in X − F .3

To apply our new techniques, three conditions must be satisfied by the repre-

sentation of the variables:

1. Computing the size of the domain must be tractable (Line 1).

2. Domains must be efficiently enumerable (Line 2).

3. Domains must be efficiently computable from an enumeration of values (Line 3)

New Propagators for the All-Different Constraint 73

The next sections describe how different representations of domains for set,

multiset and tuple variables can meet these three conditions.

4.4.2 The All-Different Constraint on Sets

Several representations of domains have been suggested for set variables. We show

how their cardinality can be computed and their domain enumerated efficiently.

One of the most common representations for a set variable S uses the set of required

elements lb(S) and the set of allowed elements ub(S). Any set S satisfying lb(S) ⊆
S ⊆ ub(S) belongs to the domain [27, 62]. To simplify notation, we denote lb(S)

and ub(S) with lb and ub each time the clarity is not compromised. The number

of sets in the domain is given by 2|ub−lb|. We can enumerate all these sets simply

by enumerating all subsets of ub − lb and adding them to the elements from lb.

A set can be represented as a binary vector where each element is associated to

a bit. A bit equals 1 if its corresponding element is in the set and equals 0 if its

corresponding element is not in the set. Enumerating all subsets of ub−lb is reduced

to the problem of enumerating all binary vectors between 0 and 2|ub−lb| exclusively

which can be done in O(2|ub−lb|) steps, i.e. O(|dom(Si)|) steps [42].

Representing the domains with a lower bound and an upper bound might lead

in some cases to a poor approximation. For instance, to represent the domain

dom(S) = {{1, 2}, {3}} using a lower and an upper bound, one has to set the lower

bound to lb = {} and the upper bound to ub = {1, 2, 3}. With this representation,

sets such as {} and {1, 2, 3} are contained in the variable domain. In order to

exclude from the domain these undesired sets, one can also add a cardinality variable

[3]. The domain of a set variable is therefore expressed by dom(Si) = {S | lb ⊆ S ⊆
ub, |S| ∈ dom(C)} where C is an integer variable. We assume that C is consistent

with lb and ub, i.e. min(C) ≥ |lb| and max(C) ≤ |ub|. The size of the domain is

given by Equation 4.9 where
(

a

b

)

is the binomial coefficient.

|dom(Si)| =
∑

j∈C

(|ub− lb|
j − |lb|

)

(4.9)

74 Efficient Propagators for Global Constraints

Algorithm 6: Enumerate the
(

n

t

)

combinations of t elements between 0 and

n− 1. (Source: Algorithm T, Knuth [41] p.5)

cj ← j − 1, ∀j 1 ≤ j ≤ t

ct+1 ← n

ct+2 ← 0

repeat
visit ct, ct−1, . . . , c1

j ← 1

while cj + 1 = cj+1 do
cj ← j − 1

j ← j + 1
cj ← cj + 1

until j > t

The binomial coefficients can be efficiently computed (see for example Chapter

6.1 of [61]). The identity
(

n

k+1

)

= n−k
k+1

(

n

k

)

can be particularly useful to compute the

summation when the domain of C is an interval. The number of steps required to

compute |dom(Si)| is bounded by O(|dom(C)|).

Algorithm 6 enumerates all combinations of t elements chosen from elements

0 to n − 1. Each element i in a combination is mapped to the ith element in

ub − lb. By enumerating all t-combinations for t ∈ dom(C) to which we add the

required elements lb, we enumerate all sets in |dom(Si)|. This algorithm has a time

complexity of O(t +
(

n

t

)

). Since we call it for each t ∈ dom(C), the total time

complexity simplifies to O(max{|ub− lb|, |dom(Si)|}).

Sadler and Gervet [75] suggest adding a lexicographic ordering constraint to the

domain description. This gives more expressiveness to the domain representation

and can eliminate sets that do not belong to the domain. Given two sets S1 and S2,

we say that S1 < S2 holds if S1 comes before S2 in the given lexicographical order.

The new domain representation now involves two lexicographic bounds l and u.

dom(Si) = {S | lb ⊆ S ⊆ ub, |S| = C, l ≤ S ≤ u} (4.10)

New Propagators for the All-Different Constraint 75

0 1 2 3

0 0 0

0 0 0

0

1 1

1

1 ≤ |S|

|S| ≤ 2

{1, 0} ≤ S S ≤ {3, 0}

2

Figure 4.6: Binomial tree representing the domain ∅ ⊆ Si ⊆ {0, 1, 2, 3}, 1 ≤ |Si| ≤
2, and {1, 0} ≤ Si ≤ {3, 0}.

Knuth [41] represents all subsets of a set using a binomial tree like the one

shown in Figure 4.6. The empty set ∅ is the root of the tree to which we can add

elements by branching to a child. One can list all sets in lexicographical order by

visiting the tree from left to right with a depth-first-search (DFS). We clearly see

that the lexicographic constraints are orthogonal to the cardinality constraints.

Based on the binomial tree, we compute, level by level, the number of sets that

belong to the domain. Notice that sets at level k have cardinality k. A set in the

variable domain can be encoded with a binary vector of size |ub − lb| where each

bit is associated to a potential element in ub − lb. A bit set to one indicates that

the element belongs to the set while a bit set to zero means that the element does

not belong to the set. The number of sets of cardinality k in the domain is equal to

the number of binary vectors with k bits set to one and that lexicographically lie

between l and u. Let [um, . . . , u1] be the binary representation of the lexicographic

upper bound u. Assuming
(

b

a

)

= 0 for all negative values of a, let C([um, . . . , u1], k)

be defined as follows.

76 Efficient Propagators for Global Constraints

C([sm, . . . , s1], k) =
m
∑

i=1

si

(

i− 1

k −∑m

j=i+1 sj

)

+ δ(~s, k) (4.11)

δ([sm, . . . , s1], k) =

{

1 if
∑m

i=1 si = k and s0 = 0

0 otherwise
(4.12)

Lemma 4.7 The function C([sm, . . . , s1], k) computes the number of binary vectors

that are lexicographically smaller than or equal to u and that have k bits set to one.

Proof We prove correctness by induction on m. For m = 1, Equation 4.11 holds

with both k = 0 and k = 1. Suppose the equation holds for m, we want to prove it

also holds for m + 1. We claim

C([sm+1, . . . , s1], k) = sm+1

(

m

k

)

+ C([sm, . . . , s1], k − sm+1) (4.13)

If sm+1 = 0, the lexicographic constraint is the same as if we only consider

the m first bits. We therefore have C([sm+1, . . . , s1], k) = C([sm, . . . , s1], k) which

corresponds to Equation 4.13 with sm+1 = 0. Alternatively, if sm+1 = 1, C(s, k)

returns
(

m

k

)

which corresponds to the number of vectors with k bits set to 1 and

the (m + 1)th bit set to zero plus C([sm, . . . , s1], k − 1) which corresponds to the

number of vectors with k bits set to 1 including the (m + 1)th bit. Recursion 4.13

is therefore correct. Successively applying the recursion consists of summing up

the term sm+1

(

m

k

)

for every sm+1 = 1. This process results in Equation 4.11 which

takes into account the base case. 2

Let a and b be binary vectors respectively representing the lexicographical

bounds l and u where bits associated to the required elements lb are omitted.

We denote by a − 1 the binary vector that precedes a in the lexicographic order.

The size of the domain is given by the following equation:

|dom(Si)| =
∑

k∈C

(C(b, k)− C(a− 1, k))

New Propagators for the All-Different Constraint 77

The function C can be evaluated in O(|ub − lb|) steps. Therefore, the size of

the domain dom(Si) requires O(|ub − lb||C|) steps to compute. Enumerating can

also proceed level by level without taking into account the required elements lb

since they belong to all sets in the domain. The first set on level k can be obtained

from the lexicographic lower bound l. If |l| 6= k, we have to find the first set l′ of

cardinality k that is lexicographically greater than l. If |l| < k, we simply add to

set l the k − |l| smallest elements in ub− lb − l. Suppose |l| > k and consider the

binary representation of l. Let p be the kth most significant bit set to 1 in l. We

add one to bit p and duly propagate the carry. We set all bits before p to 0. This

gives a bit vector l′ representing a set with no more than k elements. If |l′| < k, we

add the first k−|l′| elements in ub− lb− l′ to l′ and obtain the first set of cardinality

k.

Once the first set at level k has been computed, subsequent sets can be obtained

using Algorithm 6. Obtaining the first set of each level takes time O(|dom(C)||ub−
lb|) and cumulative calls to Algorithm 6 take time O(

∑

i∈dom(C) i+ |dom(S)|). Enu-

merating the domain therefore requires O(|dom(C)||ub− lb| + |dom(S)|) steps.

4.4.3 The All-Different Constraint on Tuples

A tuple t is an ordered sequence of n elements that allows multiple occurrences of

a same element. Like sets, there are different ways to represent the domain of a

tuple. The most common way is simply by associating an integer variable to each of

the tuple elements. A tuple of size n is therefore represented by n integer variables

x1, . . . , xn.

To apply an All-Different constraint to a set of tuples, a common solution

is to create an integer variable t for each tuple. If each element xi ranges from 0 to

ci exclusively, we add the following channeling constraint between tuple t and its

elements.

t = ((((x1c2 + x2)c3 + x3)c4 + x4) . . .)cn + xn =

n
∑

i

(

xi

n
∏

j=i+1

cj

)

78 Efficient Propagators for Global Constraints

This technique suffers from either inefficient or ineffective channeling between

the variable t and the elements xi. Most constraint libraries enforce bounds con-

sistency on t. A modification to the domain of xi does not affect t if the bounds of

dom(xi) remain unchanged. Conversely, even if all tuples encoded in dom(t) have

xi 6= v, value v will most often not be removed from dom(xi). On the other hand,

enforcing domain consistency typically requires O(n|T |) steps where |T | is the size

of the tuple.

To address this issue, one can define a tuple variable whose domain is defined

by the domain of its elements.

dom(t) = dom(x1)× . . .× dom(xn)

The size of such a domain is given by the following equation which can be

computed in O(n) steps provided that there is enough bits in a word to store the

result.

|dom(t)| =
n
∏

i=1

|dom(xi)|

The domains of tuple variables can be enumerated using Algorithm 7. Assum-

ing the domain of all element variables have the same size, Algorithm 7 runs in

O(|dom(t)|) which is optimal.

As Sadler and Gervet [75] did for sets, we can add lexicographical bounds to

tuples in order to better express the values the domain contains. Let l and u be

these lexicographical bounds.

dom(t) = {t | t[i] ∈ dom(xi), l ≤ t ≤ u}

Let idx(v, x) be the number of values smaller than v in the domain of the integer

variable x. More formally, idx(v, x) = |{w ∈ dom(x) | w < v}|. Assuming idx(v, x)

New Propagators for the All-Different Constraint 79

Algorithm 7: Enumerate tuples of size n in lexicographical order. (Source:

Algorithm T, Knuth [42] p.2)

Initialize first tuple: aj ← min(xj), ∀j 1 ≤ j ≤ n

repeat
visit (a1, a2, . . . , an)

j ← n

while j > 0 and aj = max(dom(xj)) do
aj ← min(xj)

j ← j − 1

aj ← min({a ∈ dom(xj) | a > aj})
until j = 0

has a running time complexity of O(log(|dom(x)|)), the size of the domain can be

evaluated in O(n + log(|dom(t)|)) steps using the following equation:

|dom(t)| = 1 +

n
∑

i=1

(

(idx(u[i], xi)− idx(l[i], xi))

n
∏

j=i+1

|dom(xi)|
)

.

We enumerate the domain of tuple variables with lexicographical bounds simi-

larly as tuple variables without lexicographical bounds. We simply initialize Algo-

rithm 7 with tuple l and stop enumerating when tuple u is reached. This operation

is performed in O(|dom(t)|) steps using Algorithm 7.

4.4.4 The All-Different Constraint on Multi-Sets

Unlike sets, multi-sets allow multiple occurrences of the same element. We use

occ(v, S) to denote the number of occurrences of element v in multi-set S. An

element v belongs to a multi-set A if and only if its number of occurrences occ(v, A)

is greater than 0. We say that set A is contained in set B (A ⊆ B) if for all element v

we have occ(v, A) ≤ occ(v, B). The domain representation of multi-sets is generally

similar to the one for standard sets. We have a multi-set of essential elements lb and

80 Efficient Propagators for Global Constraints

a multi-set of allowed elements ub. Equation 4.14 gives the domain of a multi-set

and Equation 4.15 shows how to compute its size in O(|ub|) steps.

dom(Si) = {S | lb ⊆ S ⊆ ub} (4.14)

|dom(Si)| =
∏

v∈ub

(occ(v, ub)− occ(v, lb) + 1) (4.15)

Multisets can be represented by a vector where each element represents the

number of occurrences of an element in the multi-set. Of course, for the multi-set

to be in the domain, this number of occurrences must lie between occ(v, lb) and

occ(v, ub). Therefore a multi-set variable is equivalent to a tuple variable where the

domain of each element is given by the interval [occ(v, lb), occ(v, ub)]. Enumerating

the values in the domain is done as seen in Section 4.4.3. The same approach can

be used to introduce lexicographical bounds to multi-sets.

4.4.5 Indexing Domain Values

Propagators for the All-Different constraint, such as the one proposed by

Régin [67] (see Section 3.3.1), need to store information about some values appear-

ing in the variable domains. When values are integers, the simplest implementation

is to create a table T in which information related to value v is stored in entry T [v].

Algorithm 5 ensures that the propagator is called over a maximum of n variables

each having no more than n (possibly distinct) values in their domain. We there-

fore have a maximum of n2 values to consider. When these n2 values come from

a significantly greater set of values, the table T becomes sparse. In some cases,

it might not even be realistic to consider such a solution. To allow direct access

memory when accessing the information of a value, we need to map the n2 values

to an index in the interval [1, n2].

For this, we build an indexing tree able to index sets, multi-sets, or tuples. Each

node is associated to a sequence. The root of the tree is the empty sequence (∅). We

append an element to the current sequence by branching to a child of the current

node. There are at most n2 nodes corresponding to a value in a variable domain.

New Propagators for the All-Different Constraint 81

1

2

2

3

3

2

3

4

5

6

1

∅

{1}

{1, 2}

{1, 2, 3}

{2, 3}

{2}

Figure 4.7: Indexing tree representing the following domains: ∅ ⊆ S1 ⊆
{1, 2}, {1} ⊆ S2 ⊆ {1, 2}, {2} ⊆ S3 ⊆ {1, 2}, ∅ ⊆ S4 ⊆ {1}, {2} ⊆ S5 ⊆ {1, 2, 3}.

These nodes are labeled with integers from 1 to n2. Figure 4.7 shows the indexing

tree based on the domain of 5 set variables.

This simple data structure allows to index and retrieve in O(l) steps the number

associated to a sequence of length l.

4.4.6 Experiments

To test the efficiency and effectiveness of these generalizations to the propagator for

the All-Different constraint, we ran a number of experiments on a well known

problem from design theory. A latin square is an n × n table where cells can be

colored with n different colors. We use integers between 1 and n to identify the

n colors. A græco-latin square [45] is m latin squares A1, . . . , Am such that the

tuples 〈A1[i, j], . . . , Am[i, j]〉 are all distinct. For a survey about latin squares and

græco-latin squares, the reader is referred to [45]. The following tables represent a

græco-latin square for n = 4 and m = 2.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

3 4 1 2

1 2 3 4

2 1 4 3

4 3 2 1

82 Efficient Propagators for Global Constraints

We encode the problem using one tuple variable per cell. The problem has an

All-Different constraint on each row and each column. We add a redundant

0/1-Cardinality-Matrix constraint on each value as suggested by Régin [72]

to increase the pruning of the variable domains. We use two different encodings

for tuples: one is the tuple encoding where each element is an integer variable,

the other is the factored representation. We enforce bounds consistency on the

channeling constraints between the cell variables and the factored tuple variables.

As suggested in [72], our heuristic chooses the variable with the smallest domain

and we break ties on the variable that has the most bounded variables on its row

and column. We use the same implementation of the All-Different propagator

for both tuple encodings.

Table 4.6 and Figure 4.8 clearly illustrates that when tuples get longer, our

technique outperforms the factored representation of tuples. This is mainly due

to space requirements since the factored representation of long tuples requires too

much memory which eventually exceeds the amount of RAM available on the com-

puter. When this happens, the operating system uses the hard drive to store the

information which significantly slows down the process.

New Propagators for the All-Different Constraint 83

 0

 100

 200

 300

 400

 500

 600

 8 10 12 14 16 18 20

T
im

e
(s

)

Graeco-Latin Square Dimension

Time (s) to Find a Graeco-Latin Square

Factored m=3
Component m=3

Factored m=5
Component m=5

Factored m=6
Component m=6

Figure 4.8: Time in seconds to solve a græco-latin square with m different square

sizes. The data is extracted from Table 4.6. We see that for m ≥ 5, the element

encoding offers a better performance than the factored encoding.

84 Efficient Propagators for Global Constraints

Table 4.6: Time to solve a græco-latin square using factored and tuple variables

H
H

H
H

H
H

H
n

m
3 4 5 6

factored tuple factored tuple factored tuple factored tuple

8 0.48 0.23 0.57 0.35 4.51 0.40 56.48 1.08

9 0.33 0.49 0.31 0.85 1.77 0.94 23.09 2.39

10 0.58 0.91 0.56 1.57 3.44 1.78 52.30 4.36

11 1.05 1.62 1.04 2.97 7.33 3.23 124.95 7.69

12 1.76 2.80 1.79 5.59 13.70 6.04 263.28 13.61

13 2.86 4.69 2.85 9.00 23.96 9.74 493.04 22.80

14 4.37 7.03 4.17 14.34 38.95 15.19 33.79

15 6.88 10.62 6.56 22.18 69.89 23.63 50.23

16 10.11 15.41 9.54 32.52 110.08 34.55 73.60

17 14.21 21.48 13.82 45.35 174.18 47.89 102.98

18 20.41 30.55 19.13 64.87 255.76 68.46 146.21

19 28.28 42.12 25.01 91.45 364.58 95.99 204.45

20 38.31 56.10 34.35 122.30 540.06 136.43 274.29

Chapter 5

New Propagators for the Global

Cardinality Constraint

In this chapter, we present novel propagators [66, 64, 65] for the global cardinality

constraint (GCC). We recall the definition of the GCC.

Definition 5.1 (Global Cardinality Constraint) The global cardinality con-

straint GCC(x1, . . . , xn, l, u, D) holds if and only if for each value v in D, at least

lv and at most uv variables are assigned to v.

Propagating the constraint consists of removing inconsistent values from vari-

able domains. The following example illustrates the work that needs to be accom-

plished by a propagator.

Example 5.1 Consider the CSP with six variables x1, . . . , x6 with domains, dom(x1) =

[2, 2], dom(x2) = [1, 2], dom(x3) = [2, 3], dom(x4) = [2, 3], dom(x5) = [1, 4], and

dom(x6) = [3, 4] and a single global cardinality constraint GCC(x1, . . . , x6) with

bounds on the occurrences of values,

v 1 2 3 4

lv 1 1 1 2

uv 3 3 3 3.

85

86 Efficient Propagators for Global Constraints

Each value must be assigned to at least one variable except for value 4 that must

be assigned to at least two variables. Each value must be assigned to at most three

variables. Enforcing bounds consistency on the constraint reduces the domains

of the variables as follows: dom(x1) = [2, 2], dom(x2) = [1, 1], dom(x3) = [2, 3],

dom(x4) = [2, 3], dom(x5) = [4, 4], and dom(x6) = [4, 4].

In the following sections, we develop a general approach to propagate the GCC.

It consists of dividing the constraint into two simpler constraints. This strategy

will allow us to design algorithms for the bounds consistency, range consistency,

and domain consistency of the GCC. Moreover, we will study some extensions of

the global cardinality constraint and define the limit on these extensions.

A GCC can be decomposed into two constraints: A lower bound constraint

(lbc) which ensures that all values v ∈ D are assigned to at least lv variables, and

an upper bound constraint (ubc) which ensures that all values v ∈ D are assigned to

at most uv variables. We will show how to make both constraints locally (bounds

or domain) consistent and prove that this is sufficient to make a GCC locally

consistent.

5.1 The Upper Bound Constraint (ubc)

The ubc is a generalization of the All-Different constraint (in the All-Different

constraint uv = 1, for each value v). The algorithm for the bounds consistency of

the All-Different constraint presented in Section 4.2 is based on the concept of

Hall intervals (see Definition 3.1). The definition of a Hall interval can be general-

ized to sets by using the notion of maximal capacity. For S ⊆ D, let C(S) be the

number of variables whose domains are contained in S. The maximal capacity dSe
of a set S is the maximum number of variables that can be assigned to the values

in S; i.e., dSe =
∑

v∈S uv.

Definition 5.2 (Hall Set) A Hall set is a set H ⊆ D such that there are dHe
variables whose domains are contained in H; i.e., H is a Hall set if and only if

C(H) = dHe.

New Propagators for the Global Cardinality Constraint 87

The values in a Hall set are fully consumed by the variables that form the Hall

set and unavailable for all other variables. Clearly, a ubc is unsatisfiable if there is

a set S such that C(S) > dSe. We show that the absence of such a set is a sufficient

and necessary condition for a ubc to be satisfiable.

Lemma 5.1 A ubc is satisfiable if and only if for any set S ⊆ D, C(S) ≤ dSe.

Proof We reduce a ubc to an All-Different constraint. We first duplicate uv

times each value v in the domain of a variable, using different labels to represent the

same value. For example, the domain {1, 2} with u1 = 3 and u2 = 2 is represented

by {1a, 1b, 1c, 2a, 2b}. Clearly, the ubc is satisfiable if and only if its corresponding

All-Different constraint is satisfiable. In a ubc, the maximal capacity of a set

S is given by dSe; for the All-Different constraint, it is given by the cardinality

|S| of the set. Hall [28] proved that an All-Different constraint is satisfiable if

and only if for any set S, C(S) ≤ |S|. Thus, the result holds also for a ubc. 2

5.2 The Lower Bound Constraint (lbc)

Next we define some concepts that will be useful for constructing a propagator

for the lbc. Let I(S) be the number of variables whose domains intersect the set

S ⊆ D. The minimal capacity bSc of a set S is the minimum number of variables

that must be assigned to the values in S; i.e., bSc =
∑

v∈S lv.

Definition 5.3 (Failure set) A failure set is a set F ⊆ D such that there are

fewer variables whose domains intersect F than its minimal capacity; i.e., F is a

failure set if I(F) < bF c.

Definition 5.4 (Unstable set) An unstable set is a set U ⊆ D such that there

are the same number of variables whose domains intersect U as its minimal capacity;

i.e., U is an unstable set if I(U) = bUc.

Definition 5.5 (Stable set) A stable set is a set S ⊆ D such that there are more

variables whose domains are contained in S than its minimal capacity, and S does

88 Efficient Propagators for Global Constraints

not intersect any failure or unstable sets; i.e., S is a stable set if C(S) > bSc,
S ∩ U = ∅ and S ∩ F = ∅ for all unstable sets U and failure sets F .

In Example 5.1, the set {1, 4} is an unstable set since its lower capacity is 3 and

only three variable domains (namely dom(x2), dom(x5), and dom(x6)) intersect it.

The set {4} is also an unstable set and {2, 3} is a stable set. There are no failure

sets in the example but removing variable x2 would create the failure set {1, 4}.

Failure, unstable, and stable sets are the main tools to understand how to make

an lbc locally consistent. Failure sets determine if an lbc is satisfiable, unstable

sets indicate where the domains have to be pruned, and stable sets indicate which

domains do not have to be pruned because all of their values have supports.

Lemma 5.2 An lbc is satisfiable if and only if it does not have a failure set.

Proof To satisfy an lbc, we must associate at least lv different variables to each

value v ∈ D such that every variable is assigned a single value from its domain. For

each value v ∈ D, we construct lv identical sets T i
v for i = 1, . . . , lv that contain the

indices of the variables that have v in their domain; i.e., T i
v = {j | xj ∈ X ∧ v ∈

dom(xj)}. Let T be the set of all sets T i
v. To satisfy the lbc, it suffices to find a

complete set of distinct representatives (see Section 2.2.3). The variables that are

not selected as a representative can be instantiated to any arbitrary value in their

domain. From Hall’s marriage theorem, we know that such a set of representatives

exists if and only if the union of any k sets contains at least k elements. Formally

the problem is solvable if and only if |⋃T i
v∈T T i

v| ≥ |T | holds for any T ⊆ T .

Applying this theorem here, we have that an lbc is satisfiable if and only if for any

set S ⊆ D we have I(S) ≥ bSc. Hence, the absence of a failure set is a necessary

and sufficient condition for an lbc to be satisfiable. 2

Lemma 5.3 shows that a value in a variable domain that intersects an unstable

set has an interval/domain support only if the value belongs to an unstable set.

Lemma 5.3 A variable whose domain intersects an unstable set cannot be instan-

tiated to a value outside of this set.

New Propagators for the Global Cardinality Constraint 89

Proof Let U be an unstable set and x a variable whose domain intersects U . If x

is instantiated to a value that does not belong to U then U becomes a failure set

and the lbc is no longer satisfiable by Lemma 5.2. 2

Lemma 5.4 A variable whose domain is contained in a stable set can be instanti-

ated to any value in its domain.

Proof By definition, a stable set S does not intersect any unstable or failure set.

Thus, for any subset s of S, I(s) > bsc. If a variable whose domain is contained in

S is assigned to a value, the function I(s) will decrease by at most one and therefore

s will either stay a stable set or become an unstable set. In either case, no failure

set is created and the lbc is still satisfiable. 2

A satisfiable lbc has several interesting properties: (i) the union of two unstable

sets gives an unstable set, (ii) the union of two stable sets gives a stable set, and

(iii) since stable and unstable sets are disjoint, there exists a stable set S and an

unstable set U that form a bipartition of D. The bipartition property implies that

there are two types of variables: those whose domains are fully contained in a stable

set and those whose domains intersect an unstable set.

Lemma 5.5 If there are no failure sets in the problem, the union of two unstable

sets gives an unstable set.

Proof Let U1 and U2 be two unstable sets. We have that,

I(U1 ∪ U2) = I(U1) + I(U2)− I(U1 ∩ U2) (5.1)

= bU1c+ bU2c − I(U1 ∩ U2). (5.2)

Since there are no failure sets we have

I(U1 ∪ U2) ≥ bU1c+ bU2c − bU1 ∩ U2c (5.3)

I(U1 ∩ U2) ≥ bU1 ∩ U2c (5.4)

90 Efficient Propagators for Global Constraints

Substituting Inequality 5.4 in Equation 5.2 gives I(U1 ∪ U2) ≤ bU1c + bU2c −
bU1 ∩ U2c which is the reverse of Inequality 5.3. We therefore obtain the equality

I(U1 ∪ U2) = bU1 ∪ U2c. 2

Lemma 5.6 If there are no failure sets, there exists a bipartition 〈U, S〉 of D where

U is an unstable set and S is a stable set.

Proof Let U be the union of all unstable sets. By Lemma 5.5, U is also an unstable

set. Since there are no failure sets we have I(D) ≥ bDc. Suppose that I(D) = bDc,
then U = D and S = ∅. Now suppose that I(D) > bDc. We have that,

C(D − U) = |X| − I(U)

= |X| − bUc
> bDc − bUc
> bD − Uc.

The set S = D − U is disjoint from all unstable sets and contains more variables

than its minimal capacity. Therefore, S is a stable set. Thus there is always a

stable and an unstable set that form a bipartition of D 2

5.3 An Iterative Algorithm for Local Consistency

of the GCC

Suppose we have an algorithm A that makes the ubc locally consistent and suppose

that we have an algorithm B that makes the lbc locally consistent. To make a

GCC locally consistent, we can decompose it into an lbc and a ubc, run A to

prune the domains of the variables, then run B to further prune the domains. Since

the domains can potentially be pruned each time either algorithm is run, we run

alternately each algorithm until no more modifications occur. In principle, we might

need to repeat this process a large number of times. Surprisingly, only one iteration

suffices, as we show with Theorems 5.1, 5.2, and 5.3.

New Propagators for the Global Cardinality Constraint 91

The outline of the proof is as follows. We first prove that if a ubc is satisfiable

after running A, the ubc is still satisfiable after running B. We then prove that

the ubc is still locally consistent after running B, so there is no need for further

pruning.

Theorem 5.1 Let A be a propagator that makes the ubc bounds (domain) consis-

tent and let B be a propagator that makes the lbc bounds (domain) consistent. If

the GCC is satisfiable and B is run after A, B never creates a set s such that there

are more variables whose domains are contained in s than its maximal capacity dse.

Proof Since the GCC is satisfiable, there are no failure sets and there is an unstable

set U and a stable set S that form a bipartition of D. Algorithm B does not modify

the domains of the variables that belong to a stable set. Therefore we know that

for all s ⊆ S we have C(s) ≤ dse since the ubc is satisfiable according to A.

We will show that for any set E ⊆ U ∪ S we have C(E) ≤ dEe and therefore

the ubc is still satisfiable after running B. Assume, by way of contradiction, there

is a set E that exceeds its capacity; i.e., C(E) > dEe. We divide this set into two

subsets: let L = U ∩ E be the unstable values in E and F = S ∩ E be the stable

values in E. We also define R = U − E as the unstable values that do not belong

to E. We know that dF e ≥ C(F) since F is a subset of a stable set and we showed

that the property holds for any such a set. We also know that R is not a failure set

and U is an unstable set. Therefore we have I(R) ≥ bRc and bLc+bRc = I(L∪R).

dF e+ bLc + bRc ≤ dF e+ dLe + bRc
dF e+ I(L ∪R) < C(E) + bRc
dF e+ I(L ∪R) < |{x ∈ X | dom(x) ⊆ E ∧ dom(x) * F}|+ C(F) + bRc
dF e+ I(L ∪R) < |{x ∈ X | dom(x) ∩ L 6= ∅ ∧ dom(x) ∩ R = ∅}|+ C(F) + bRc
dF e+ I(R) < C(F) + bRc

dF e < C(F)

The last inequality is incompatible with the hypothesis hence the contradiction

hypothesis cannot be true. Notice that the proof holds for both bounds and domain

consistency. 2

92 Efficient Propagators for Global Constraints

The following definition will be useful to prove the next theorem.

Definition 5.6 A variable x ∈ X is consistent with a Hall set H if the following

holds. For bounds consistency, the domain of the variable must have either both or

neither bounds in H and for domain consistency, the domain of the variable must

be either fully contained in or completely disjoint from H.

Theorem 5.2 Let A be a propagator that makes the ubc bounds (domain) consis-

tent and let B be a propagator that makes the lbc bounds (domain) consistent. If

B is run after A, the ubc is still locally consistent after B is run.

Proof Suppose that A and B make the constraints locally consistent and neither

returns a failure. To prove that the ubc is still locally consistent, we have to show

that all variables are still consistent with all Hall sets (see Definition 5.6).

Since B did not return a failure, there is an unstable set U and a stable set S

that form a bipartition of D. Let H ⊆ D be a Hall set. We divide this Hall set into

two subsets: F = H ∩ S contains the values of H that belong to a stable set and

L = H ∩U contains the values of H that belong to an unstable set. We also define

R = U −L as the unstable values that do not belong to H. Using these three sets,

we will prove that all variables are consistent with H.

The unstable set U can be expressed as the union of L and R and therefore

we have bLc + bRc = I(L ∪ R). Similarly, H is the union of F and L and implies

dF e+ dLe = C(H) = |{x ∈ X | dom(x) ⊆ H ∧ dom(x) * F}|+ C(F). Therefore,

dF e+ bLc + bRc ≤ dF e+ dLe + bRc
dF e+ I(L ∪R) ≤ |{x ∈ X | dom(x) ⊆ H ∧ dom(x) * F}|+ C(F) + bRc
dF e+ I(L ∪R) ≤ |{x ∈ X | dom(x) ∩ L 6= ∅ ∧ dom(x) ∩ R = ∅}|+ C(F) + bRc
dF e+ I(R) ≤ C(F) + bRc

By Theorem 5.1 we obtain C(F) ≤ dF e and since R is not a failure set, we have

I(R) ≥ bRc. Using these two inequalities, we find that R is an unstable set i.e.

I(R) = bRc and F is a Hall set i.e. C(F) = dF e. Using this observation, we now

show that all variables whose domains are contained in S are consistent with H.

New Propagators for the Global Cardinality Constraint 93

The Hall set F is a subset of S and since algorithm B does not modify any variables

whose domains are contained in S, algorithm A already identified F as a Hall set

and made all variables consistent with it. Since the variables whose domains are

contained in S were not modified by B they are still consistent with F .

For bounds consistency, a variable whose domain intersects an unstable set

such as U and R must have both bounds of the domain in this unstable set. Since

U = L∪R, a variable whose domain intersects U must have both bounds in either

L or R and therefore be consistent with the Hall set H.

For domain consistency, a variable domain that intersects an unstable set such

as U and R must be fully contained in or disjoint from this unstable set. Since

U = L ∪ R, a variable whose domain intersects U must be fully contained in L or

R or disjoint from L and R and therefore be consistent with the Hall set H.

We have shown that any variable whose domain is either contained in S or

intersects U is consistent with H. Thus all variables are consistent with any Hall

set and the ubc is still locally consistent after running B. 2

Finally, we show that making the ubc and the lbc locally consistent is equiv-

alent to making the GCC locally consistent.

Theorem 5.3 A value v ∈ dom(x) has a support in a GCC if and only if it has

supports in the corresponding lbc and ubc.

Proof Clearly, if there is an assignment t that satisfies the GCC such that t[x] = v,

this tuple also satisfies the lbc and the ubc. To prove the converse, we consider a

value v ∈ dom(x) that has a support in the lbc and a (possibly different) support

in the ubc. We construct an assignment t such that t[x] = v that satisfies the

GCC and therefore prove that v ∈ dom(x) also has a support in the GCC. We

first instantiate the variable x to v. The lbc and ubc are still satisfiable since the

value has a support in both constraints. We now show how to instantiate the other

variables.

If there is an uninstantiated variable x whose domain does not intersect any

unstable set and is not contained in any Hall set, then the domain of x is necessarily

contained in a stable set. By Lemma 5.4 we can instantiate x to any value in its

94 Efficient Propagators for Global Constraints

domain and keep the lbc satisfiable. We therefore choose a solution of the ubc and

instantiate x to the same value as it is instantiated in this solution. This operation

can create new unstable sets or new Hall sets but keeps both the lbc and the ubc

satisfiable. For all variables that intersect an unstable set U , we choose a solution

of the lbc and assign the variables to the same values in this solution. We perform

the same operation for the variables whose domain is contained in a Hall set H

using a solution of the ubc. There will be exactly lv or uv variables assigned to

a value v depending if the value belongs to U or H, which in either case satisfies

both the lbc and ubc. We repeat the above until all variables are instantiated.

The constructed tuple t satisfies the lbc and the ubc simultaneously and therefore

also satisfies the GCC. 2

5.4 Bounds Consistency for the GCC

We showed in the previous section that a propagator for the lbc and a propagator

for the ubc are sufficient to enforce bounds or domain consistency on the GCC.

We present in this section new algorithms to enforce bounds consistency on the

ubc and the lbc. Combined together, these two propagators form a propagator

for the bounds consistency of the GCC.

5.4.1 The Upper Bound Constraint (ubc)

Finding an algorithm that makes a ubc bounds consistent is relatively straightfor-

ward as we already know of an algorithm for the All-Different constraint that

uses the concept of Hall intervals. If there is a variable whose domain is [a, b] and

there is a Hall interval [c, d] such that c ≤ a ≤ d < b holds, the algorithm will up-

date the domain of the variable to [d+1, b]. The algorithm introduced in Section 4.2

detects Hall intervals by checking if there are d− c+1 variables in an interval [c, d].

We can adapt this algorithm to a ubc without altering its complexity provided we

can compute the maximal capacity of an interval in constant time. To this end,

we use a partial sum data structure, implemented as an array A containing the

New Propagators for the Global Cardinality Constraint 95

partial sums of the maximal capacities A[i] =
∑i

j=min(D) uj. The maximal capacity

of an interval I ⊆ D can be computed by subtracting two elements in A since we

have dIe = A[max(I)]−A[min(I)− 1]. Initializing the array A takes O(D) time to

compute but this is done once and is reused for any future calls to the propagator.

The algorithm time complexity is O(t+ |X|) where t is the time required for sorting

the variable domains by lower and upper bounds.

5.4.2 The Lower Bound Constraint (lbc)

The Propagator

We now present a propagator for the lbc (see Figure 8) that shrinks the lower

bounds of the variable domains received as input. The upper bounds can be up-

dated symmetrically by a similar algorithm and consequently make the lbc bounds

consistent.

96 Efficient Propagators for Global Constraints

Algorithm 8: Bounds consistency algorithm for the lbc

Let PS be a union-find data structure over the elements in D;

Let Stable = ∅;
for v ∈ D do

associate lv empty buckets to the value v;

if lv > 0 then
mark v as a failure element;

D ← D ∪ {−∞,∞};
associate ∞ buckets to the values −∞ and ∞;

for xi ∈ X in nondecreasing order of max(dom(xi)) do
a← min(dom(xi));

b← max(dom(xi));

z ← min({v ∈ D | v ≥ a, a has an empty bucket});
if z > a then

union (PS, a, a + 1, . . . , min(b, z));

if z > b then
S ←findSet (PS, b);

Stable← Stable ∪ {S};
else

add a token in one of the empty buckets of z;

z ← min({v ∈ D | v ≥ a, a has an empty bucket});
NewMin[i]← min({v ∈ D | v ≥ a, v has a failure flag});
if z > b then

j ← max({v ∈ D | v ≤ b, v has an empty bucket});
reset the failure flag for all elements in (j, b];

if |{v ∈ D | v has a failure flag}| > 0 then
return Failure;

for xi ∈ X such that ∀S ∈ Stable, dom(xi) 6⊆ S do
dom(xi)← dom(xi)− [min(dom(xi)), NewMin[i]);

return Success;

New Propagators for the Global Cardinality Constraint 97

The initialization step assigns to each value v ∈ D exactly lv empty buckets

corresponding to the minimal capacity to be filled for v and sets a failure flag for

v which indicates if v belongs to a failure set. The union-find data structure PS

covers all values in D and contains potential stable sets. If the greatest element of

a set S ∈ PS is in a stable set then S is fully contained in this stable set. Stable

sets are stored in the variable Stable.

Our algorithm processes each variable xi ∈ X in nondecreasing order by upper

bound. As in the algorithm of Lipski et al. [50], it searches for the smallest value v ∈
dom(xi) that has an empty bucket and fills it in with a token. If v > min(dom(xi))

and v belongs to a stable set then the interval I = [min(dom(xi)), v] is contained

in this stable set. The algorithm regroups all values in I in its variable PS. If there

are no empty buckets in dom(xi) then max(dom(xi)) belongs to a stable set and so

do all the values that belong to the same set in PS.

The algorithm initially assumes that all values belong to a failure set. When

processing a variable xi, if an interval I = [a, max(dom(xi))] has no empty buckets

then it contains the domains of at least bIc variables and thus cannot be a failure

set. The algorithm unsets the failure flags for all values in I. If a value still has a

failure flag set after processing all the variables then the lbc is unsatisfiable.

To shrink the domains, the algorithm stores in NewMin[i] the smallest value

v ∈ dom(xi) with a failure flag. If dom(xi) intersected an unstable set U , v would

be the smallest value in dom(xi) ∩ U . If no values in dom(xi) have a failure flag,

xi belongs to a stable set and NewMin[i] remains undefined. After processing all

variables, the algorithm assigns the new lower bound NewMin to the variables

that are not contained in a stable set.

Example 5.2 Figure 5.1 shows a trace of the algorithm on the CSP introduced

in Example 5.1 at the beginning of this chapter. Initially, all buckets are empty

and all values are marked with a failure flag. Figure 5.1 shows the data structures

as the algorithm iterates through the variables. The empty circles represent the

empty buckets, the crossed circles represent the buckets containing a token, a letter

f symbolizes a failure flag, and the state of the variables PS and Stable are also

represented by the sets of values. Upon completion of the algorithm, the new

98 Efficient Propagators for Global Constraints

domains of the variables are: x1 ∈ [2, 2], x2 ∈ [1, 2], x3 ∈ [2, 3], x4 ∈ [2, 3], x5 ∈
[4, 4], and x6 ∈ [4, 4].

x1 = [2, 2] x2 = [1, 2]

−∞ 1f 2 3f 4f ∞
© © ⊗ © © ©
... © ...

PS {1} {2} {3} {4}
Stable

−∞ 1 2 3f 4f ∞
© ⊗ ⊗ © © ©
... © ...

PS {1} {2} {3} {4}
Stable

NewMin[1]← 2 NewMin[2]← 1

x3 = [2, 3] x4 = [2, 3]

−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ © ©
... © ...

PS {1} {2 3} {4}
Stable

−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ © ©
... © ...

PS {1} {2 3} {4}
Stable {2 3}

NewMin[3]← 3

x5 = [1, 4] x6 = [3, 4]

−∞ 1 2 3 4f ∞
© ⊗ ⊗ ⊗ ⊗ ©
... © ...

PS {1 2 3 4}
Stable {2 3}

−∞ 1 2 3 4 ∞
© ⊗ ⊗ ⊗ ⊗ ©
...

⊗ ...

PS {1 2 3 4}
Stable {2 3}

NewMin[5]← 4 NewMin[6]← 4

Figure 5.1: Trace of Algorithm 8

New Propagators for the Global Cardinality Constraint 99

Correctness

We must prove that the algorithm depicted in Figure 8 returns Success if and only

if the lbc is satisfiable.

During its execution, the algorithm constructs an assignment that satisfies the

lbc. If when processing variable xi a token is added to the bucket of value v, we

fix xi = v. Otherwise if no token is added to any bucket, then xj can be assigned

to any value in dom(xj). When the algorithm returns success, every bucket is filled

in with a token. This proves that our assignment satisfies the conditions imposed

by the lbc. Therefore, when the algorithm returns Success, the lbc is satisfiable.

We now want to prove the converse.

Suppose there exists a solution L. Let xi be the first variable processed by

our algorithm such that xi is assigned to v but v is assigned to xj in solution L.

Suppose that in solution L, xi is assigned to u. We know that max(xi) ≤ max(xj).

Therefore, there exists a solution L′ such that xi = v and xj = u. We replace L by

L′ and we continue the execution of the algorithm knowing that there still exists a

solution. We process all variables by swapping values as described until all variables

have been processed. At each iteration, we are always guaranteed that a solution

compatible with our assignments exists. Therefore, if there exists a solution, the

algorithm returns Success.

We now prove that a variable xi intersecting an unstable set U has its lower

bound shrunk to the value min(dom(xi) ∩ U). When processing a variable, we

suppose that its domain intersects an unstable set and will have to be shrunk. We

store in NewMin[i] the lower bound to which it has to be shrunk. Values having

their failure flag unset belong to a set S whose lower capacity is at most equal to the

number of variable domains contained in S. More formally, we have C(S) ≥ bSc.
If variable xi is assigned to a value in S, a subset of S containing this value would

become (or remain) a stable set. Clearly, if xi intersects an unstable set, it should

not be assigned to any value in S. This is why we fix NewMin[i] to the smallest

value in dom(xi) that has a failure flag. Therefore, it is sufficient to prove that the

algorithm properly detects variable domains intersecting unstable sets to conclude

the proof of correctness.

100 Efficient Propagators for Global Constraints

If all buckets associated to values in the domain of xi are filled in when processing

xi, we conclude that dom(xi) is contained in a stable set. In fact, xi is a variable

that can be assigned to any value in its domain. If we assign xi to v, the variable

that was assigned to v is now free to be assigned to any value in its domain which

in turn can be assigned to another value freeing the variable that was assigned to

this value and so on. The stable set starts at the smallest value that can be reached

by a free variable and finished at max(dom(xi)). The data structure PS allows

to quickly find the smallest value that can be reached by a free variable. Suppose

variable xj fills the bucket of value v for v > min(dom(xj)). We know that if value

v is taken by a free variable then xj becomes free and can be assigned to any value

in [min(xj), v]. We therefore unite these values in the data structure PS. When

we discover that max(dom(xi)) belongs to a stable set, we know that the whole set

in PS that contains max(dom(xi)) is a stable set. Once all stable sets have been

discovered and that no failure sets have been discovered, we conclude that every

value that does not belong to a stable set belongs to an unstable set. Therefore, if

a variable domain is not contained in a stable set, its lower bound must be shrunk

to NewMin[i].

Time Complexity Analysis

A näıve implementation of our algorithm has time complexity O(t+ |X| |D|), where

t is the complexity of sorting the intervals by upper bounds. We will show how to

improve the complexity to O(t + |X|).

To obtain a complexity independent of |D|, we consider the variables as semi-

open intervals where xi = [ai, bi) and define the set D′ as the union of the lower

bounds ai and the open upper bounds bi of each variable. The size of D′ is bounded

by 2 |X|. Let c and d be two consecutive values in D′ and let I = (c, d] be a semi-

open interval. We modify the algorithm to assign bIc buckets to the value d using a

partial sums data structure (see Section 5.4.1). We then run the algorithm as before

using the set D′ instead of D. This modification improves the time complexity to

O(t + |X|2).

To get linear complexity, we implement the buckets using a union-find data

New Propagators for the Global Cardinality Constraint 101

structure and an array of integers that stores the number of empty buckets associ-

ated to a value v. If all buckets of value v are filled in, the algorithm merges the

value v with the next element in D′. Requesting n times the next value with a free

bucket is a linear time operation using the interval union-find data structure [20].

The algorithm takes O(t + |X|) steps using the interval union-find for the failure

flags, the stable sets Stable, and the potential stable sets PS.

Although the interval union-find data structure gives the best theoretical time

complexity, we found that it did not result in the fastest code in practice in spite

of our best efforts to optimize the code. In our experiments (see Section 5.4.3), we

use instead the tree data structure described in Section 4.2 to obtain an algorithm

with O(t+|X| log |X|) time complexity. This tree data structure even offers slightly

better performance than the standard union-find data structure which runs in O(t+

|X|α(|X|)) where α is the inverse of a certain Ackerman function.

5.4.3 Experiments

We implemented our bounds consistency propagator for the GCC (denoted BC)

using the ILOG Solver C++ library, Version 4.2 [3]. By extending Puget’s idea [63]

for the All-Different constraint, in addition to enforcing bounds consistency,

we remove from the variable domains all values v that have been instantiated uv

times. We denote this new consistency that now allows holes in the domain by

BC+. We used Regin’s propagator [68] for domain consistency (denoted DC) that

is provided in the ILOG library. We also used a propagator distributed with ILOG

that enforces a consistency (denoted CC) equivalent to enforcing one GCC per

value v where lw = 0 and uw = ∞ for all w 6= v and lv and uv are unchanged for

value v (see [3, 34]).

We ran the algorithms on different benchmark problems. We used a 2.40 GHz

Pentium 4 with 1 GB of main memory. We averaged the running time of each

problem over 10 runs and 100 runs for random problems. We used the minimum

domain size variable ordering heuristic unless otherwise mentioned.

102 Efficient Propagators for Global Constraints

0

5

10

15

20

25

30

35

40

500 1000 1500 2000 2500 3000

tim
e

to
 fi

rs
t s

ol
ut

io
n

(s
ec

.)

number of variables (n)

DC
RC
VC
BC

Figure 5.2: Time (sec.) to first solution for Pathological problems.

Pathological Problem We first study the pathological problem introduced by

Puget [63] to study the worst case behavior of his propagator for the All-Different

constraint. In the pathological problem, we have 2n + 1 variables with domains

dom(xi) = [i − n, 0] for 0 ≤ i ≤ n and dom(xi) = [0, i − n] for n < i ≤ 2n. We

have lv = 0 and uv = 1 for every value. Figure 5.2 shows a strong improvement

compared to other propagators. We obtain similar results when generalizing with

uv = c.

Instruction Scheduling Problems We compared the propagators on some

scheduling problems involving multiple-issue pipelined processors. Following [82],

we have a set of n variables representing the execution times of tasks. For some

New Propagators for the Global Cardinality Constraint 103

Table 5.1: Time (sec.) to optimal solution for instruction scheduling problems;

(left) issue width = 2; (right) issue width = 2 + 2 = 4. A blank entry means the

problem was not solved within a 10 minute time bound.

n CC DC BC

69 0.01 0.12 0.00

70 0.00 0.07 0.00

111 0.03 0.75 0.01

211 0.51 9.24 0.07

214 0.60 9.29 0.09

216 2.67 124.07 0.31

220 5.09 285.91 0.52

690 1.34 493.15 1.67

856 471.16 3.84

1006 8.70

n CC DC BC

69 0.00 0.07 0.00

70 0.01 0.07 0.00

111 0.03 0.44 0.01

211 0.56 7.16 0.11

214 0.61 7.85 0.13

216 2.78 89.61 0.48

220 2.90 98.15 0.57

690 2.17 307.20 2.81

856

1006 307.00 14.44

pairs of variables (xi, xj), we have a latency constraint of the form xi ≥ xj + lij

where lij is a small integer. The issue width of a processor is the maximum number

of instructions that can be issued at each clock cycle. We scheduled instructions

for two different processors. One processor has an issue width of two for any kind

of instructions. The second processor has an issue width of four divided as follows:

an issue width of two for floating point instructions and an issue width of two for

integer instructions. A GCC over a set of instructions insures that the schedule

respects the issue width constraint. Table 5.1 shows results we obtained when

solving problems from the SPEC95 floating point, SPEC2000 floating point, and

MediaBench benchmarks. Our BC propagator outperforms the other propagators.

Car Sequencing Problem The car sequencing problem [3] occurs in the car

industry where cars on an assembly line must be sequenced in a way that machines

are not overloaded. The problem involves n variables, n values and equiprobable

configurations of 5 options. Approximately 4n GCC’s are posted on the variables.

104 Efficient Propagators for Global Constraints

Table 5.2: (left) Time (sec.) to first solution or to detect inconsistency for car

sequencing problems; (right) number of backtracks (fails).

n CC DC BC BC+

10 0.07 0.07 0.09 0.09

15 3.40 3.88 5.39 4.12

20 20.65 30.05 30.95 21.83

25 131.27 203.23 163.97 118.57

n CC DC BC BC+

10 437 321 460 429

15 13,849 9,609 19,958 13,565

20 55,657 52,581 105,436 55,580

25 255,690 250,042 520,519 255,653

Table 5.3: (left) Time (sec.) to first solution for sports league scheduling problems;

(right) number of backtracks (fails). A blank entry means the problem was not

solved within a 10 minute time bound.

n CC DC BC BC+

8 0.19 0.16 0.04 0.18

10 1.10 0.12 0.03 0.19

12 1.98 1.70 51.71 2.07

14 11.82 8.72 9.98

n CC DC BC BC+

8 1308 914 136 942

10 5767 428 54 689

12 6449 4399 149728 5356

14 33901 19584 22176

Table 5.2 shows that our BC+ propagators is almost as powerful as DC and stronger

than other propagators when n increases.

Sport League Scheduling Problem The sport league scheduling problem con-

sists of planning when sport leagues should meet to play a match. For this problem,

there are n2 variables, n values, and n/2 GCC’s. Table 5.3 shows that our propa-

gator is no more than 15% slower than the fastest propagator.

Random problems To study the asymptotic behavior of our algorithm, we gen-

erated and solved several random problems. The problems consists of a single GCC

over n variables. Each variable is given an initial domain [a, b] where a and b are

uniformly chosen in the interval [1, n
2
] such that a ≤ b. Since GCC is the only con-

straint, most of the run-time is spent in the propagator. We clearly see in Table 5.4

New Propagators for the Global Cardinality Constraint 105

n DC BC

100 0.02 0.01

200 0.23 0.02

400 2.55 0.08

800 26.14 0.33

1600 266.80 1.24

DC BC

n d/2 d 2d d/2 d 2d

100 0.00 0.01 0.33 0.00 0.00 0.00

200 0.00 0.07 4.81 0.00 0.01 0.01

400 0.01 0.60 74.88 0.00 0.03 0.04

800 0.03 4.58 0.01 0.15 0.16

1600 0.20 34.78 0.02 0.70 0.62

Table 5.4: Time (sec.) to first solution or to detect inconsistency for random

problems where the bounds on number of occurrences of each value were (left)

[0, 2]; (right) chosen uniformly at random from {[0, 1], [0, 2], [1, 1], [1, 2], [1, 3], [2,

2], [2, 3], [2, 4]}. A blank entry means some problems could not be solved within a

10 min. time bound.

the cubic behavior of the DC propagator and the almost linear behavior of our BC

propagator. The CC propagator is not shown in the table since it could not solve

some of the smallest problems under a threshold of 10 minutes.

Katriel and Thiel provided us with an implementation of their algorithm [39]

which we ran on the same problems presented above. We paid attention to elimi-

nating performance gains that would benefit the best implementation as opposed

to the fastest algorithm. To reduce dissimilarities in the implementation, we used

the same code for sorting the variables. We also disabled the code that prunes the

cardinality variables in Katriel and Thiel’s algorithm since our propagator does not

prune these variables. Our propagator was never slower when solving the Patho-

logical problem. In fact, we recorded a speedup of 75% on some instances. We

were never slower on the instruction scheduling problems and the car sequencing

problems with maximum recorded speedup of 13% and 26%. Katriel and Thiel’s

algorithm was never slower in either the sports league scheduling problem nor the

random problems, with a maximum speedups of 8% and 13%.

106 Efficient Propagators for Global Constraints

5.5 Range Consistency for the GCC

Enforcing range consistency consists of removing values in variable domains that

do not have an interval support. Since we are only interested in interval supports,

we assume without loss of generality that variable domains are represented with

intervals dom(xi) = [a, b].

We introduce an algorithm that achieves range consistency in O(t + |X| + N)

steps in the amortized sense where t is the time required to sort |X| variables by

lower and upper bounds and N is the number of values with a null lower capacity

lv. To obtain this complexity, we do an amortized running time analysis. Some

calls to the propagator can take up to O(|X|2 +N) instructions but will necessarily

be followed by fast calls requiring fewer instructions.

The first step of our algorithm is to make the variable domains bounds consistent

using the algorithm described in Section 5.4. We then study Hall intervals and

unstable sets in bounds consistent problems.

In order to better understand the distribution of Hall intervals, unstable sets,

and stable intervals over the domain D, we introduce the notion of characteristic

interval.

Definition 5.7 (Characteristic Interval) Given a CSP, a characteristic interval

I is an interval in D such that all variable domains have either both bounds in I or

both bounds outside of I and at least one variable domain has both bounds in I.

From the notion of characteristic interval follows the notion of basic character-

istic interval.

Definition 5.8 (Basic Characteristic Interval) Given a CSP, a basic charac-

teristic interval is a characteristic interval that cannot be expressed as the union of

two or more characteristic intervals.

A characteristic interval can always be expressed as the union of basic charac-

teristic intervals. We also observe the following property.

Lemma 5.7 Basic characteristic intervals are either disjoint or nested.

New Propagators for the Global Cardinality Constraint 107

Proof Suppose I1 = [a, b] and I2 = [c, d] are basic characteristic intervals such

that a ≤ c ≤ b ≤ d. Then no variable domain has its lower bound in [a, c) and its

upper bound in [c, b] since I2 is a characteristic interval. Then [a, c) and [c, b] are

two characteristic intervals which contradict the fact that I1 is a basic characteristic

interval. The argument also applies with intervals [c, b] and (b, d]. Therefore a basic

characteristic interval can only be fully contained in another characteristic interval

or be disjoint. 2

We then show how characteristic intervals can be used to make a problem range

consistent.

Lemma 5.8 In a bounds consistent problem, a basic Hall interval is a basic char-

acteristic interval.

Proof In a bounds consistent problem, no variables have one bound within a Hall

interval and the other bound outside of the Hall interval. Therefore every basic

Hall interval is a basic characteristic interval. 2

Definition 5.9 (Maximum Stable Interval) A maximum stable interval S is a

stable interval such that any other stable interval is either contained in S or disjoint

to S.

Lemma 5.9 In a bounds consistent problem, a maximum stable interval is a char-

acteristic interval.

Proof Lemma 5.6 states that in a bounds consistent problem, stable intervals and

unstable sets form a partition of the domain D. Therefore, either a variable domain

intersects an unstable set and has both bounds in this unstable set or it does not

intersect an unstable set and is fully contained in a stable interval. Consequently,

a maximum stable interval is a characteristic interval. 2

Lemma 5.10 Any unstable set can be expressed as the union and exclusion of basic

characteristic intervals

108 Efficient Propagators for Global Constraints

Proof Let U be an unstable set and I be the smallest interval that covers U .

Since any variable domain that intersects U has both bounds in U , then I is a

characteristic interval. Moreover, I − U forms a series of intervals that are in I

but not in U . A variable domain contained in I must have either both bounds

in an interval of I − U such that it does not intersect U or have both bounds in

U . Therefore the intervals of I ′ = I − U are characteristic intervals and U can be

expressed as U = I − I ′. 2

Example 5.3 shows how characteristic intervals appear in a problem.

Example 5.3 Consider the following variable domains subject to a GCC where

lv = 1 and uv = 2 for every value v.

dom(x1) = [2, 4] dom(x2) = [2, 5] dom(x3) = [3, 3]

dom(x4) = [3, 3] dom(x5) = [4, 9] dom(x6) = [5, 9]

dom(x7) = [6, 8] dom(x8) = [6, 8] dom(x9) = [6, 8]

dom(x10) = [7, 7] dom(x10) = [7, 7]

Notice that the variable domains are bounds consistent. We detect the following

characteristic intervals. The intervals [3, 3] and [7, 7] are Hall intervals. The interval

[6, 8] is a stable interval. The interval [2, 9] contains values belonging to an unstable

set. The unstable set can be computed as follows: U = [2, 9] − [3, 3] − [6, 8] =

{2, 4, 5, 9}.

5.5.1 Finding the Basic Characteristic Intervals

Using the properties of basic characteristic intervals, we propose a new algorithm

that makes a problem range consistent and has a time complexity of O(t + C|X|+
N |X|) where t is the time complexity for sorting n variables, C is the number of

basic characteristic intervals, and N is the number of values whose lower capacity

is null. We later show that under amortized analysis, our propagator has a time

complexity of O(t + |X|+ N). Our algorithm proceeds in four steps:

New Propagators for the Global Cardinality Constraint 109

1. Make the problem bounds consistent in O(t + |X|) steps (see Section 5.4).

2. Sort the variable domains by increasing lower bounds in O(t) steps.

3. Find the basic characteristic intervals in O(|X|) steps.

4. Prune the variable domains in O(C|X|+ N |X|) steps.

Steps 1 and 2 are not a concern since they can be implemented using the bounds

consistency algorithm described in Section 5.4. We focus our attention on Steps 3

and 4.

Step 3 of our algorithm finds the basic characteristic intervals. In order to

discover these intervals, we maintain a stack S of intervals that are potentially

basic characteristic intervals. We initialize the stack by pushing the infinite interval

[−∞,∞]. We then process each variable domain in ascending order of lower bound.

Let I be the current variable domain and I ′ the interval on top of the stack. If

the variable domain is contained in the interval on top of the stack (I ⊆ I ′), then

the variable domain could potentially be a characteristic interval and we push it

on the stack. If the variable domain I has its lower bound in the interval I ′ on

top of the stack and its upper bound outside of this interval, then neither I or I ′

can be characteristic intervals, although the interval I ∪ I ′ could potentially be a

characteristic interval. In this case, we pop I ′ off the stack and we assign I to be

I ∪ I ′. We repeat the operation until I is contained in I ′. Note that at any time,

the stack contains a set of nested intervals.

If we process a variable domain whose lower bound is greater than the upper

bound of the interval I ′ on the stack, then by construction of the stack, I ′ is a

basic characteristic interval. We pop this characteristic interval off the stack S.

We continue popping characteristic intervals off the stack until the current variable

domain intersects the interval on the stack. Each characteristic interval that the

algorithm finds is pushed on the stack Q and will be processed later.

Once all characteristic intervals have been pushed on the stack Q, the algorithm

prints basic characteristic intervals omitting to print characteristic intervals that

are stable intervals already included in another stable interval. The algorithm also

110 Efficient Propagators for Global Constraints

identifies the type of each characteristic interval: a Hall interval, a stable interval,

or an interval that contains values of an unstable set. This is done by maintaining

a counter c1 that keeps track of how many variable domains are contained in an

interval on the stack. Counter c2 is similar but only counts the first bAc variables

contained in each sub-characteristic interval A where bAc is the lower capacity

of the interval A. A characteristic interval I is a stable interval if c2 is greater

than bIc. A characteristic interval I contains values of an unstable set if c2 = bIc
and that I is not contained in any stable interval. Finally, an interval I is a Hall

interval if its counter c1 is equal to the upper capacity of the interval dIe. We ignore

characteristic intervals with c2 < bIc since those intervals are not used to define

Hall intervals, stable intervals or unstable sets.

New Propagators for the Global Cardinality Constraint 111

Algorithm 9: Printing the basic characteristic intervals in a bounds consis-

tent problem.

Input: X denotes the set of variable domains sorted by non-decreasing

lower bounds

Output: Prints the basic characteristic intervals and specifies if they are

Hall intervals, stable intervals or contain values of an unstable set

S ← empty stack, Q← empty stack

push(S, 〈[−∞,∞], 0, 0〉)
// Add a dummy variable domain forcing stack clearance at termination

X ← X ∪ [max(D) + 1, max(D) + 3]

for x ∈ X do

while max(top(S).interval) < min(dom(x)) do
〈I, c1, c2〉 ← pop(S)

push(Q, 〈I, c1, c2〉)
〈I ′, c′1, c

′
2〉 ← pop(S)

push(S, 〈I ′, c1 + c′1, c
′
2 + min(c2, bIc)〉)

I ← dom(x), c1 ← 1, c2 ← 1

while max(top(S).interval) ≤ max(I) do
〈I ′, c′1, c

′
2〉 ← pop(S)

I ← I ∪ I ′, c1 ← c1 + c′1, c2 ← c2 + c′2
push(S, 〈I, c1, c2〉)

stableCount← 0

pop(S) // S now only contains the infinite interval.

while Q 6= ∅ do
〈I, c1, c2〉 ← pop(Q)

while max(I) < min(top(S).interval) do
〈I ′, c′1, c

′
2〉 ← pop(S)

if c2 > bIc then stableCount← stableCount− 1

if dIe = c1 then print I is a Hall interval

else if stableCount = 0 then
if c2 > bIc then print I is a stable interval

else print I contains unstable values

if c2 > bIc then stableCount← stableCount + 1

push(S, 〈I, c1, c2〉)

112 Efficient Propagators for Global Constraints

The time complexity of Algorithm 9 is bounded by the calls to push and pop.

In the first part of the algorithm, a variable domain can be pushed on the stack

S, popped off S, and merged with another interval only once. Moreover, the lower

capacity bIc and upper capacity dIe of an interval I can be computed in constant

time using the partial sums data structure described in Section 5.4.1. A maximum

of |X| characteristic intervals are pushed on Q. In the second part of the algorithm,

each characteristic intervals is popped off Q only once and pushed and popped off

S only once as well. Algorithm 9 has therefore a time complexity of O(|X|).

Once the basic characteristic intervals are listed in non-increasing order of up-

per bounds, we can easily enforce range consistency on the variable domains. We

simultaneously iterate through the variable domains and the characteristic intervals

both sorted by non-increasing order of upper bounds. If a characteristic interval

is contained in a variable domain, this characteristic interval should be removed

from the variable domain. Moreover, variable domains that are only contained in

characteristic intervals containing values from an unstable set should remove from

their domains values whose lower capacity is null. The pruning process requires

O(C|X|+N |X|) steps where C is the number of characteristic intervals and N the

number of values with null lower capacity. We recall that the number of character-

istic intervals C is bounded by the number of variables |X|. This complexity can

be further improved as explained in the next section.

New Propagators for the Global Cardinality Constraint 113

Algorithm 10: Enforcing range consistency on the GCC.

Input: The variable domains sorted by non-increasing upper bound and the

characteristic intervals C returned by Algorithm 9 sorted by

non-increasing upper-bound

j ← 1 // Index of next characteristic interval to be processed

I ← [−∞,∞] // Current characteristic interval

V ← ∅ // Variables contained in current characteristic interval

T ← ∅ // Union of all variables on the stack

S ← empty stack // Stack of tuples 〈Interval, Variables〉
for xi ∈ X in non-increasing order of upper bounds do

if j < |C| ∧ dom(xi) ⊆ Cj then
push(S, 〈I, V 〉)
T ← T ∪ V

for xk ∈ T do1

dom(xk)← dom(xk)− Cj

I ← C

V ← ∅
j ← j + 1

while dom(xi) 6⊆ I do
T ← T − V

〈I, V 〉 ← pop(S)

// If interval I contains values from an unstable set

if unstable(I) then2

dom(xi)← dom(xi)− {v ∈ I | lv = 0}
V ← V ∪ {xi}

114 Efficient Propagators for Global Constraints

5.5.2 Dynamic Case

We want to maintain range consistency when a variable domain dom(xi) is modified

by the propagation of other constraints. Notice that if the bounds of dom(xi)

change, new Hall intervals or unstable sets can appear requiring other variable

domains to be pruned. We only need to prune the domains according to these new

Hall intervals and unstable sets.

We make the variable domains bounds consistent and find the characteristic

intervals as before in O(t+ |X|) steps. We compare the characteristic intervals with

those found in the previous computation and perform a linear scan to mark in linear

time all new characteristic intervals. Two cases can occur. A new characteristic

interval could appear or a characteristic interval I can be fragmented into multiple

characteristic intervals whose union is I.

We modify Algorithm 10 to become incremental as follows. Before executing

the for loop on line 1, we should test if Cj is a newly discovered interval. If Cj is

not a newly discovered interval or is a fragment of an already known characteristic

interval, the values in the variable domains have already been removed. There is no

need to execute this part of the code a second time. If the characteristic interval I

has already been processed in the if statement on line 2, there is no need to process

it a second time.

Based on these modifications, the new time complexity of Algorithm 10 is

O(max(1, C ′)|X| + N |X|′) where C ′ is the number of newly discovered charac-

teristic intervals and |X|′ is the number of variables affected by the if statement

on line 2.

We amortize the time complexity of Algorithm 9 and Algorithm 10 when run

k times (k ≥ |X|) on a branch of the search tree. Let Ci be the number of newly

discovered characteristic intervals during the ith execution. Since the number of

characteristic intervals is bounded by |X| we have
∑k

i Ci ≤ |X|. Let |X|i be the

number of variables processed in the if statement on line 2 during the ith iteration.

Since each variable is processed only once we have
∑k

i |X|i ≤ |X|. The amortized

analysis is as follows:

New Propagators for the Global Cardinality Constraint 115

1

k

k
∑

i

[O(t + |X|) + O(max(1, Ci)|X|+ N |X|i)] =
1

k
O(kt + k|X|+ k|X|+ N |X|)

= O(t + |X|+ N)

Therefore, the algorithm maintains range consistency of the GCC in O(t+|X|+
N) steps where t is the time required to sort |X| variables and N is the number

of values whose lower capacity lv is null. Notice that if lv > 0 for all values, we

obtain the same complexity as the algorithm for bounds consistency of the GCC

proposed in Section 5.4. Moreover, if lv = 0 for all values, there is no possibility

for the existence of an unstable set and therefore the if statement on line 2 in

Algorithm 10 is never executed. We therefore obtain an amortized complexity of

O(t + |X|). Once more, this is the same time complexity as the algorithm we

proposed for the bounds consistency of the GCC.

5.5.3 Experiments

We tested our propagator for the range consistency of the GCC on the sport

tournament scheduling problem (see problem 26 in CSPLib [25]). This problem

consists of planning when sport leagues should meet to play a match. A feasible

solution is a grid with n−1 columns representing n−1 weeks and n
2

rows representing

as many periods. In each cell, there is an unordered pair of teams representing a

match. Each team must appear in each column. Each team must appear at least

once and a most twice on each row. Each of the n(n−1)
2

possible pairs must appear

once in the grid.

We compared our propagator with those provided in the ILog library [3] and

our propagators for bounds consistency presented in Section 5.4. We denote by

Basic GCC the propagator provided in ILog with the IlcBasic parameter and by

DC the propagator in ILog achieving domain consistency. BC is the propagator

for bounds consistency presented in Section 5.4. BC+ is the same propagator that,

in addition to achieving bounds consistency, removes from the domains the value

v when v has already been assigned to uv variables. We denote by Basic + BC

116 Efficient Propagators for Global Constraints

n Basic GCC DC BC BC+ Basic + BC Range

6 0.01 0.01 0.01 0.01 0.01 0.01

8 0.56 0.48 0.10 0.49 0.40 0.60

10 3.05 0.37 0.08 0.54 0.40 0.64

12 5.80 5.09 145.31 5.86 5.97 7.22

14 34.17 25.85 28.39 28.76 35.30

Table 5.5: Time (s) to find the first solution to the sport tournament scheduling

problem with n teams. Empty entries represent problems that could not be solved

within a 10 minute threshold.

n Basic GCC DC BC BC+ Basic + BC Range

6 5 5 5 5 5 5

8 1308 914 136 942 932 944

10 5767 428 54 689 441 678

12 6449 4399 149728 5356 4980 5372

14 33901 19584 22176 20172 22147

Table 5.6: Number of backtracks in the search tree before reaching the first solution

to the sport tournament scheduling problem with n teams. Empty entries represent

problems that could not be solved within a 10 minute threshold.

the combination of the propagator provided in ILog with the IlcBasic parameter

and our propagator achieving bounds consistency. Finally, we denote by Range our

propagator achieving range consistency presented in this section.

Table 5.5 reports the time to solve the sport tournament scheduling problem.

Table 5.6 reports the number of backtracks that occurred during the search. We

see that even though our propagator does not outperform the propagator achieving

domain consistency (DC), it remains competitive.

New Propagators for the Global Cardinality Constraint 117

5.6 Domain Consistency for the GCC

Régin [68] showed how to enforce domain consistency on GCC in O(|X|2|D|) steps

(see Section 3.3.2). For the special case of the all-different constraint, the same

problem can be solved in O(|X|1.5|D|) steps (see Section 3.3.1). In this section we

propose an algorithm for domain consistency on the GCC that runs in O(|X|1.5|D|)
time and therefore is as efficient as the algorithm for domain consistency on the

all-different constraint.

Our approach is similar to the one used by Régin [67] for propagating the all-

different constraint except that our algorithm proceeds in two passes. The first

pass makes the ubc domain consistent and the second pass makes the lbc domain

consistent. As shown in Theorem 5.2 in Section 5.3, this suffices to make the GCC

domain consistent.

5.6.1 Matching in a Graph

For the ubc and lbc problems, we will need to construct a special graph. Following

Régin [67], let G(〈X, D〉 , E) be an undirected bipartite graph such that nodes on

the left represent variables and nodes at the right represent values. There is an

edge (xi, v) in E if and only if the value v is in the domain dom(xi) of the variable.

Let c(n) be the capacity associated to node n such that c(xi) = 1 for all variable-

nodes xi ∈ X and c(v) is an arbitrary non-negative value for all value-nodes v in

D. A generalized matching [39, 40] M in graph G is a subset of the edges E such

that no more than c(n) edges in M are adjacent to node n. We are interested in

finding a generalized matching M with maximal cardinality. We present a algorithm

that computes this generalized matching M . Our algorithm exploites the same

properties of the graph as the algorithm presented by Even and Tarjan [18]. Both

algorithms have a worst running time complexity of O(
√

|X||E|).

In a generalized matching M , a free node is a node n adjacent to less than

c(v) edges in M . We presented in Section 2.2.2 the Hopcroft-Karp algorithm which

computes a maximum matching in O(
√

|X||E|) steps when c(n) = 1 for every node

n. We generalize the algorithm to obtain the same complexity when c(v) ≥ 0 for

118 Efficient Propagators for Global Constraints

the value-nodes and c(xi) = 1 for variable-nodes. This is precisely the case that

occurs with GCC.

The Hopcroft-Karp algorithm starts with an initial empty matching M = ∅
which is improved at each iteration by finding a set of disjoint shortest augmenting

paths. An iteration that finds a set of augmenting paths proceeds in two steps.

The first step consists of performing a breadth-first search (BFS) on the residual

graph GM starting with the free variable-nodes. The breadth-first search generates

a forest of nodes such that nodes at level i are at distance i from a free node. This

distance is minimal by construction of the BFS. Let m be the smallest level that

contains a free value-node. For each node n at level i < m, we assign a list L(n) of

nodes adjacent to node n that are at level i +1. We set L(n) = ∅ for every node at

level m or higher.

The second step of the algorithm uses a stack to perform a depth-first search

(DFS). The DFS starts from a free variable-node and is only allowed to branch from

a node n to a node in L(n). When the algorithm branches from node n1 to n2, it

deletes n2 from L(n1). If the DFS reaches a free value-node, the algorithm marks

this node as non-free, clears the stack, and pushes a new free variable-node that has

not been visited onto the stack. This DFS generates a forest of trees whose roots

are free variable-nodes. If a tree also contains a free value-node, then the path from

the root to this free-value node is an augmenting path. Changing in the residual

graph GM the orientation of all edges that lie on the augmenting paths generates

a matching of greater cardinality.

In our case, to find a matching when the capacities of value-nodes c(v) are non-

negative, we construct the duplicated graph G′ where value-nodes v are duplicated

c(v) times and the capacity of each node is set to 1. Clearly, a matching in G′

corresponds to a matching in G and can be found by the Hopcroft-Karp algorithm.

We can simulate a trace of the Hopcroft-Karp algorithm run on graph G′ by directly

using graph G. We simply let the DFS visit c(n) − degM(n) times a free-node n

where degM(n) is the number of edges in M adjacent to node n. This simulates the

visit of the free duplicated nodes of node n in G. Even if we allow multiple visits

of a same node, we maintain the constraint that an edge cannot be traversed more

than once in the DFS. The running time complexity for a DFS is still bounded by

New Propagators for the Global Cardinality Constraint 119

the number of edges O(|X||D|) where |D| is the number of value nodes.

Hopcroft and Karp proved that if s is the cardinality of a maximum cardinality

matching, then O(
√

s) iterations are sufficient to find this maximum cardinality

matching. In our case, s is bounded by |X|, and the complexity of each BFS and

DFS is bounded by the number of edges in GM i.e. O(|X||D|). The total complexity

is therefore O(|X|1.5|D|). We will run this algorithm twice, first with c(v) = uv to

obtain a matching Mu and then with c(v) = lv to obtain a matching Ml.

5.6.2 Pruning the Domains

Using the algorithm described in the previous section, we compute a matching Mu

in graph G such that capacities of variable-nodes are set to c(xi) = 1 and capacities

of value-nodes are set to c(v) = uv. A matching Mu clearly corresponds to an

assignment that satisfies the ubc if it has cardinality |X| i.e. if each variable is

assigned to a value.

Consider now the same graph G where capacities of variable-nodes are c(xi) = 1

but capacities of value-nodes are set to c(v) = lv. A maximum matching Ml of

cardinality |Ml| =
∑

lv represents a partial solution that satisfies the lbc. Variables

that are not assigned to a value can in fact be assigned to any value in their domain

and still satisfy the lbc.

Pruning the domains consists of finding the edges that cannot be part of a

matching. From flow theory, we know that an edge can be part of a matching if

and only if it belongs to a strongly connected component or lies on a path starting

from or leading to a free node (see Theorem 2.3 in Section 2.2.2).

Régin’s algorithm prunes the domains by finding all strongly connected com-

ponents and flagging all edges that lie on a path starting or finishing at a free

node. This can be done in O(|X||D|) using DFS as described in [80]. As shown

in Section 5.3, pruning the domains for the ubc and then pruning the domains

for the lbc is sufficient to prune the domains for the GCC. Therefore, detecting

edges that cannot be part of matching Mu and matching Ml is sufficient to enforce

domain consistency on GCC.

120 Efficient Propagators for Global Constraints

5.6.3 Dynamic Case

If during the propagation process another constraint removes a value from a domain,

we would like to efficiently reintroduce domain consistency over ubc and lbc.

Régin [67] describes how to maintain a maximum matching under edge deletion

and maintain domain consistency in O(δ|X||D|) where δ is the number of deleted

edges (see Section 3.3.1). His algorithm can also be used on both graphs Mu and

Ml to maintain domain consistency in O(δ|X||D|) steps.

5.7 The EXT-GCC Constraint

As mentioned in Section 3.5.3, the EXT-GCC constraint is a GCC where lower

bounds lv and upper bounds uv are replaced by variables. The expression

EXT-GCC([xi, . . . , xn], [C1, . . . , Cm], D) is satisfied if and only if for every value

v ∈ D we have |{i ∈ [1, n] | xi = v}| = Cv. Katriel and Thiel [40] describe how

to enforce bounds consistency on all variables. We show in Section 5.7.1 how to

enforce domain consistency on variables xi, 1 ≤ i ≤ n and bounds consistency on

cardinality variables Ci for 1 ≤ i ≤ m. We then show in Section 5.7.3 that enforcing

domain consistency on all variables is NP-Hard.

5.7.1 Mixed Consistency

Pruning the cardinality variables Cv seems like a natural operation to apply to

the GCC. To give a simple example, if variable dom(Cv) = [0, 100] constrains

the value v to be assigned to at most 100 variables while there are less than 50

variables involved in the problem, it is clear that dom(Cv) can be reduced to at

least interval dom(Cv) = [0, 50]. We will show in the next two sections how to

shrink the cardinality variable domains.

New Propagators for the Global Cardinality Constraint 121

Growing the Lower Bounds

Let G be the value graph where node capacities are set to c(xi) = 1 for variable-

nodes and c(a) = max(dom(Ca)) for value-nodes. For a specific value v, we want to

find the smallest value min(Cv) such that there exists a matching M of cardinality

|X| that satisfies the capacity constraints degM(v) = min(dom(Cv)).

We construct a maximum cardinality matching Mu that satisfies the capac-

ity constraints of G. For each matched value v (i.e. for each value v such that

degMu
(v) > 0), we create a graph Gv and a matching M v

u that are respectively a

copy of the graph G and the matching M v
u in which we remove all edges adjacent

to value-node v. The partial matching M v
u can be transformed into a maximum

cardinality matching by repeatedly finding an augmenting path using a DFS in the

residual graph and applying this path to M v
u . This is done in O(degMu

(v)|X||D|)
steps. Let |M v

u | be the cardinality of the maximum matching.

Lemma 5.11 Let G be the value graph and Gv be the value graph where all edges

adjacent to v are removed. Let Mu be a maximum matching of cardinality |X| in
G and let M v

u be maximum matching in Gv. The number of edges in Mu adjacent

to v must be at least |Mu| − |Mv
u |.

Proof If by removing all edges connected to value-node v in graph G the cardinality

of a maximum matching in G drops from |Mu| to |M v
u | then at least |Mu| − |Mv

u |
edges in Mu were adjacent to value-node v and could not be replaced by other

edges. Therefore value-node v is required to be adjacent to |Mu| − |Mv
u | edges in

Mu in order to obtain a matching of cardinality |X|. 2

Since Mu is a maximum matching, we have
∑

v degMu
(v) = |X| and therefore

the time required to prune all cardinality lower bounds for all values is

O

(

∑

v

degMu
(v)|X||D|

)

= O(|X|2|D|).

122 Efficient Propagators for Global Constraints

Pruning Upper Bounds

We wish to know what is the maximum number of variables that can be assigned

to a value v without violating the lbc; i.e. how many variables can be assigned

to value v while other values w ∈ D are still assigned to at least min(dom(Cw))

variables. We set the capacity of the value nodes to min(dom(Cv)) and compute

the maximum matching Ml. The cardinality of matching Ml might be less than the

number of variables |X|. Consider the residual graph GMl
. If there exists a path

from a free variable-node to the value-node v then there exists a matching M ′
l that

has one more variable assigned to v than matching Ml and that still satisfies the

lbc.

Lemma 5.12 Given a value graph G and a maximum cardinality matching Ml,

the number of edge-disjoint paths in GMl
from free variable-nodes to value-node v

can be computed in O(|X|2.67) steps.

Proof We first observe that a value-node in GMl
that is not adjacent to any edge in

Ml cannot reach a variable-node (by definition of a residual graph). These nodes,

with the exception of node v, cannot lead to a path from a free variable-node to

node v. We therefore create a graph Gv
Ml

by removing from GMl
all nodes that

are not adjacent to an edge in Ml except for node v. To the graph Gv
Ml

, we add a

special node s called the source node and we add edges from s to all free-variable

nodes. Since there are at most |X| matched variable-nodes, we obtain a graph of

at most 2|X|+ 1 nodes and O(|X|2) edges.

The number of edge-disjoint paths from the free variable-nodes to value-node v

is equal to the maximum flow between s and v. A maximum flow in a directed bipar-

tite graph where edge capacities are all one can be computed in O(min{n 2

3 m, m
3

2})
where n is the number of nodes and m the number of edges (see Theorem 8.1 in [4]).

We assume that |X| ≥ |D|, which is the case when lv > 0 for all value v. Since, in

the worst case, we have n = |X|+ |D| and m = |X||D|, we obtain a complexity of

O(|X|2.67). 2

Observe that the maximum number of variables that can be assigned to value

v is equal to the number of edges adjacent to v in Ml plus the number of edge-

New Propagators for the Global Cardinality Constraint 123

disjoint paths between the free-nodes and node v. Indeed, each path p can be used

to create a matching M ′
l = Ml ⊕ p with cardinality |Ml|+ 1 and where the number

of edges adjacent to v is also greater by one. We compute the number of such

edge-disjoint paths via a flow problem. This allows us to update the new upper

bounds max(dom(Cv)) of each value. According to Lemma 5.12, this operation can

be done in O(|D||X|2.67) steps.

5.7.2 Bounding the Cardinality Variables

As shown in previous sections, pruning the cardinality variables can be an expensive

task requiring as many as O(|D||X|2.67) steps in the worst case. We show in this

section a special case that allows us to detect in time O(|X||D|) when the cardinality

variables lv and uv should be pruned to the same value (lv = uv).

Consider the residual graph GMu
. If there is no path from value-node n leading

to a free node then it is impossible to construct a maximum cardinality matching

that has one less edge adjacent to value-node n. Therefore we can set l′v = uv.

The same applies to the residual graph GMl
: if no free node can reach a value-

node n, then all maximum matchings must have lv edges assigned to value v and

therefore we can set u′
v = lv.

In both cases, we can determine values whose cardinality variables lv and uv can

be bounded to the same value using a simple DFS that only requires O(|X||D|)
steps. This technique is equivalent and has the same running time complexity as

Régin’s technique for the Cardinality-Matrix constraint [72].

5.7.3 Domain Consistency is NP-Hard

Recall that the constraint EXT-GCC([x1, . . . , xn], [K1, . . . , Km], D) is satisfied if

and only if for each value v ∈ D, the number of variables assigned to v is equal to

Kv. We show that this problem is equivalent to finding a generalized matching in

a certain bipartite graph G. The variables form the left-nodes and the values the

right-nodes in G. There is an edge between node xi and value v if v ∈ dom(xi). A

124 Efficient Propagators for Global Constraints

generalized matching M is a subset of the edges of G such that each left-node is

adjacent to exactly one edge in M and each value-node v is adjacent to k edges in

M such that k ∈ dom(Kv). Clearly, there is a one-to-one correspondence between

finding a solution satisfying the EXT-GCC and finding a generalized matching.

We now prove that finding such a generalized matching is NP-Hard by reduction

to the SAT problem.

Consider a 3-SAT problem with a list of variables X = {X1, . . .Xn}, a list of

literals L = {xi,¬xi | Xi ∈ X} and a list of clauses C = {C1, . . . Cm} where Ci ⊆ L
are the set of literals of the clause. We want to assign the value true or false to the

literals in L such that all clauses have at least one literal assigned to true.

From the SAT problem, we construct the bipartite graph G = 〈L ∪R, E〉 as

follows. For each literal lj in a clause Ci, we create one left-node S(Ci, lj) ∈ L and

one right-node d(Ci, lj) ∈ R. For each clause Ci we create a left-node Ci ∈ L and

for each variable Xi we create another left-node Xi ∈ L. Finally, we add to the

graph a right-node li ∈ R for each literal li.

We connect the left-nodes in L to the right-nodes in R as follows. We start with

an empty set of edges E = ∅. For each clause Ci and each literal lj ∈ Ci, we add the

edges (Ci, d(Ci, lj)), (S(Ci, lj), d(Ci, lj)) and (S(Ci, lj), lj). For each variable xi ∈ X

we add the edges (Xi, xi) and (Xi,¬xi). Finally, we add two values in the domain

of the K variables as follows: dom(Kd(Ci,lj)) = {0, 1} and dom(Kli) = {0, ki + 1}
where ki is equal to the number of clauses containing the literal li or more formally

ki = |{Cj ∈ C | li ∈ Cj}|. Figure 5.3 shows the part of graph G that is related to

variable Xi.

New Propagators for the Global Cardinality Constraint 125

C1

C2

C3

C4

true

false

Xi

This edge may or may not belong
to a matching if xi is true. It
cannot be part of the matching
if xi is false.

Belongs to the match-
ing if xi is true.

Belongs to the match-
ing if xi is false

Clauses that
contain Xi

Clauses that
contain ¬Xi

Kd(C1,Xi) ∈ {0, 1}

Kd(C,Xi) ∈ {0, 1}

KXi
∈ {0, 3}

K
¬Xi

∈ {0, 3}

Kd(C3,¬Xi) ∈ {0, 1}

Kd(C4,¬Xi) ∈ {0, 1}

S(C1, Xi)

S(C2, Xi)

S(C3,¬Xi)

S(C4,¬Xi)

Edges connected to
the nodes d(C4, Xj)
for j 6= i

All or no edges
must be matched
to theses nodes

There must be 0
or 1 edge adjacent
to this node in the
matching.

Figure 5.3: Part of graph G related to variable Xi.

126 Efficient Propagators for Global Constraints

The intuition of the reduction is simple. A generalized matching in G corre-

sponds to a solution to the SAT problem. If (Xi, xi) ∈ M then xi = true and if

(Xi,¬xi) ∈ M then xi = false. All clause nodes Ci must be matched to another

node. They can only be matched with an edge (Ci, d(Ci, lj)) if lj = true.

Lemma 5.13 Let G be the graph described above and let li be a literal in {xi,¬xi}.
The edge (Xi, li) belongs to a generalized matching M in graph G if and only if the

edge (S(Cj, li), li) belongs to M for all clauses Cj.

Proof The nodes S(Cj, li) ∈ E and the node Xi are the only nodes connected to

node li. Since we have K(li) = {0, ki +1} and ki +1 is equal to the number of nodes

connected to li, either all edges adjacent to li belong to M or no edges adjacent

to li belong to M . Therefore for all nodes S(Cj, li) we have (Xi, li) ∈ M ⇐⇒
S(Cj, li) ∈M . 2

Lemma 5.14 Let G be the graph described above and let lj be a literal in {xj,¬xj}.
If the edge (Ci, d(Ci, lj)) belongs to a generalized matching M of the graph G then

(Xj, lj) also belongs to this generalized matching.

Proof Suppose the edge (Ci, d(Ci, lj)) belongs to the generalized matching M .

Since the cardinality of node d(Ci, lj) is {0, 1} and edge (Ci, d(Ci, lj)) is adjacent

to this node, no more edges in M can be adjacent to node (Ci, d(Ci, lj)). Therefore

node S(Ci, lj) has no other choice to be matched with node lj. By Lemma 5.13 we

obtain that (Xj, lj) belongs to M . 2

Lemma 5.15 The SAT instance is satisfiable if and only if there exists a general-

ized matching M in the corresponding graph G.

Proof (⇒) Suppose SAT is satisfiable, we construct a matching by pointing each

node Ci to a node d(Ci, li) such that literal li is true in the SAT solution. Other

left-nodes in L are matched according to Lemma 5.14 and Lemma 5.13.

(⇐) Consider a generalized matching M . For all variables Xi ∈ X, we have

either the edge (Xi, xi) or (Xi,¬xi) in M . We say that literal li is true if the edge

(Xi, li) belongs to M and false if the edge does not belong to M . For all clauses

New Propagators for the Global Cardinality Constraint 127

Ci, we have an edge (Ci, d(Ci, lj)) in M for some lj ∈ {xj,¬xj}. This implies by

Lemma 5.14 that lj is true and therefore clause Ci is satisfied. Therefore all clauses

are satisfied by the variable assignments given by the edges (Xi, li) 2

Lemma 5.15 shows that determining the satisfiability of extended-GCC is NP-

complete and therefore enforcing domain consistency on the extended-GCC is NP-

hard.

5.8 Universality

At some point in the search process, a constraint can become universal. In other

words, this constraint no longer constrains the search space.

Definition 5.10 A constraint C is universal for a problem if any tuple t ∈ dom(x1)×
. . .× dom(xn) satisfies the constraint C.

We study under what conditions a given GCC behaves like the universal con-

straint. We give an algorithm that tests in constant time if the lbc or the ubc are

universal. Recall that the set of solutions satisfying the GCC is the intersection of

the set of solutions satisfying the lbc and the set of solutions satisfying the ubc. If

both the lbc and the ubc are universal, then the GCC is universal. This implies

there is no need to run a propagator on the GCC since we know that all values

have a support. In other words, as far as the GCC is concerned, every assignment

from now on is valid. The universality test speeds up the propagation by avoiding

unnecessary calls to the GCC propagator. Our result holds for domain, range, and

bounds consistency.

5.8.1 Universality of the Lower Bound Constraint

Lemma 5.16 The lbc is universal for a problem if and only if for each value

v ∈ D there exists at least lv variables x such that dom(x) = {v}.

128 Efficient Propagators for Global Constraints

Proof (⇐=) If for each value v ∈ D there are lv variables x such that dom(x) = {v}
then it is clear that any variable assignment satisfies the lbc.

(=⇒) Suppose for a lbc problem there is a value v ∈ D such that there are less

than lv variables whose domain only contains value v. Therefore, an assignment

where all variables that are not bounded to v are assigned to a value other than

v would not satisfy the lbc. This proves that lbc is not universal under this

assumption. 2

The following algorithm verifies if the lbc is universal in O(|X|+ |D|) steps:

1. Create a vector t such that t[v] = lv for all v ∈ D.

2. For all domains that contain only one value v, decrement t[v] by one.

3. The lbc is universal if and only if no elements in t are positive.

We can easily make the algorithm dynamic under the modification of variable

domains. We keep a counter c that indicates the number of positive elements in

vector t. Each time a variable gets bounded to a single value v, we decrement t[v]

by one. If t[v] reaches the value zero, we decrement c by one. The lbc becomes

universal when c reaches zero. Using this strategy, each time a variable domain is

pruned, we can check in constant time if the lbc becomes universal.

5.8.2 Universality of the Upper Bound Constraint

Lemma 5.17 The ubc is universal for a problem if and only if for each value

v ∈ D there exists at most uv variable domains that contain v.

Proof (⇐=) Trivially, if for each value v ∈ D there are uv or fewer variable domains

that contain v, there is no assignment that could violate the ubc and therefore the

ubc is universal.

(=⇒) Suppose there is a value v such that more than uv variable domains

contain v. If we assign all these variables to the value v, we obtain an assignment

that does not satisfy the ubc. 2

New Propagators for the Global Cardinality Constraint 129

To test the universality of the ubc, we create a vector a such that a[v] = I({v})−
uv. According to Lemma 5.17, the ubc is universal if and only if no elements of a

are positive. Such a vector might be slow to update when variable domains change.

In order to perform faster update operations, we represent the vector a by a vector

t whose first element is equal to −umin(D) and whose following elements is given

by the difference between uv−1 and uv. More formally, we initialize t as follows:

t[min(D)] ← −umin(D) and t[v] ← uv−1 − uv for min(D) < v ≤ max(D). We first

assume that variable domains are initially intervals. This restriction will later be

removed. For each variable xi ∈ X, we increment the value of t[min(dom(xi))] by

one and decrement t[max(dom(xi)) + 1] by one. Let i be an index initialized to

value min(D). At all time, we maintain the following invariant.

a[v] = I({v})− uv =
v
∑

j=i

t[j] (5.5)

Index i divides the domain of values D in two sets: the values v smaller than i

which are not contained in more than uv variable domains and other values which

can be contained in any number of variable domains. We maintain the index i

to hold the highest possible value that satisfies this invariant. If index i reaches

a value greater than max(D) then all values v in D are contained in less than uv

variable domains and therefore the ubc is universal. Algorithm 11 increases index

i to the first value v that is contained in more than uv domains. The algorithm

also updates vector t such that Equation 5.5 is verified for all values greater than

or equal to i.

Suppose a variable domain gets pruned in such a way that all values in interval

[a, b] are removed. To maintain the invariant given by Equation 5.5 for values

greater than or equal to i, we update our vector t by removing 1 from element

t[max(a, i)] and adding one to element t[max(b + 1, i)]. We then run Algorithm 11

to increase index i. If i > max(D) then the ubc is universal since no value is

contained in more domains than its maximal capacity.

Initializing vector t and increasing iterator i until i > max(D) requires O(|X|+
|D|) steps. Updating the data structure when a variable domain changes requires

130 Efficient Propagators for Global Constraints

Algorithm 11: Algorithm used for testing the universality of the ubc. It

increases index i to the smallest value v ∈ D contained in more than uv

domains. The algorithm also modifies vector t to validate Equation 5.5 when

v ≥ i.

while (i ≤ max(D)) and (t[i] ≤ 0) do
i← i + 1 ;

if i ≤ max(D) then
t[i]← t[i] + t[i− 1];

constant time plus the time to move index i. Index i can only be increased until

it reaches value max(D). Therefore, checking universality each time an interval of

values is removed from a variable domain is achieved in amortized constant time.

5.9 The Global Cardinality Constraint on Non

Integer Variables

In Section 4.4, we show how the All-Different constraint propagator can be

adapted for non integer variables such as set, multiset, or tuple variables. The

GCC can be adapted for such variables as well.

When dealing with GCC on integer variables, we express the lower capacity

and the upper capacity of a value v with the constants lv and uv that are in fact

entries in vector l and u. In turn, when working with large domains, these look-up

tables could require too much memory. We therefore assume that the lower and

upper capacity of each value are given by a function instead of a constraint. For

instance, the constant functions bvc = 0 and dve = 1 define the All-Different

constraint. In order to be feasible, the following restrictions apply:
∑

vbvc ≤ n

and
∑

vdve ≥ n. For efficiency reasons, we assume that the values L whose lower

capacity is positive are known, i.e. L = {v | bvc > 0} is known.

We need an equivalent to Lemma 4.6 to determine which variables have a large

domain. The following Lemma provides the required result for the GCC.

New Propagators for the Global Cardinality Constraint 131

Lemma 5.18 Let F be a set of variables whose domains are not contained in any

Hall set and assume dve ≥ k holds for all value v. If xi 6∈ F is a variable whose

domain contains more than bn−|F |
k
c values, then dom(xi) is not contained in any

Hall set.

Proof The largest Hall set can contain the domain of at most n−|F | variables and

therefore has at most bn−|F |
k
c values. If |dom(xi)| > bn−|F |

k
c, then dom(xi) cannot

be contained in any Hall set. 2

As we did before, we divide the GCC into two constraints: the lower bound

constraint (lbc) and the upper bound constraint (ubc).

The upper bound constraint is similar to the All-Different constraint. Up to

dve variables can be assigned to a value v instead of only 1 with the All-Different

constraint. Lemma 5.18 suggests to modify Line 1 of Algorithm 5 by testing if

|dom(xi)| > |X|−|F |
k

before inserting variable xi in set F instead of testing |dom(xi)| >
n−|F |. The rest of the propagation for the ubc is the same as the All-Different

constraint.

The lower bound constraint can also be easily handled when variable domains

are large. Consider the set L of values whose lower capacity is positive, i.e. L =

{v | bvc > 0}. In order for the lower bound constraint to be satisfiable over n

variables, the cardinality of L must be bounded by n. The values not in L can be

assigned to a variable only if all values v in L have been assigned to at least bvc
variables. Since all values not in L are symmetric, we can replace them by a single

value p such that bpc = 0. We now obtain a problem where each variable domain is

bounded by n+1 values. We can apply a propagator for the lower bound constraint

on this new problem. Notice that if the lower bound constraint propagator removes

p from a variable domain, it implies by symmetry that all values not in L should be

removed from this variable domain. Therefore, we can enforce domain consistency

on the GCC in O(|X|2.5 + E) time where E is the time necessary to enumerate

the variable domains. Time E depends on the nature of the domains, whether

they are sets, tuples, multi-sets, include cardinality constraints, or lexicographical

constraints as discussed in Sections 4.4.2, 4.4.3, and 4.4.4.

Chapter 6

The Inter-Distance Constraint

6.1 Introduction

The cumulative scheduling problem with one resource of capacity C consists of a set

of tasks T1, . . . , Tn to which we associate four integer variables: a release time ri, a

deadline di, a processing time pi and a capacity requirement ci. Each task Ti must

start at time ti such that ri ≤ ti ≤ di − pi. Let Ω(t) be the set of tasks in process

at time t, i.e. the tasks Ti such that ti ≤ t ≤ ti + pi. We have the resource capacity

constraint
∑

Ti∈Ω(t) ci ≤ C. This problem is NP-Hard [22] even in the case where

C = 1 which we call, in this particular case, the disjunctive scheduling problem.

Edge finders [13, 55] have largely been used to solve scheduling problems. This

technique reduces the intervals [ri, di] by detecting time zones that must be allocated

to a subset of the tasks making these zones unavailable for other tasks. The goal

is to increase release times and reduce deadlines without eliminating any feasible

solution. The problem is said to be bounds consistent when intervals [ri, di] have

been fully shrunk, i.e. when there exists at least one feasible schedule in which

task Ti starts on time ri and at least one feasible schedule in which task Ti finishes

on time di. It is NP-Hard to make a scheduling problem bounds consistent, even

in the disjunctive case. For this reason, edge finders try to reduce, in polynomial

time, the size of the intervals without necessarily achieving bounds consistency.

133

134 Efficient Propagators for Global Constraints

A backtracking search assigns starting times to tasks and uses the edge finder to

reduce the size of the search tree.

We study the disjunctive scheduling problem when all tasks have the same

processing time pi = p. This problem can be solved in polynomial time [23]

but traditional algorithms only return one solution that generally does not sat-

isfy the side constraints. These side constraints can even make the problem NP-

Hard. Constraint programming can be used to encode such problems. A single

Inter-Distance constraint can encode the disjunctive scheduling problem. This

constraint ensures that starting times are pairwise distant by at least p units of

time.

Artiouchine and Baptiste [5] recently proposed an O(n3) propagator that en-

forces bounds consistency on the Inter-Distance constraint. By achieving bounds

consistency, their propagator prunes the search space better than edge finding algo-

rithms resulting in smaller choice points in the backtracking search and an improved

time performance. We propose in this work a quadratic propagator that is faster

both in theory and in practice, even for small instances.

Throughout this chapter, we will consider the set [a, b] as the interval of integer

values between a and b inclusively. If a > b, then the interval [a, b] is empty. We

nevertheless say that the lower bound of the interval is min([a, b]) = a and the

upper bound is max([a, b]) = b as for non-empty intervals.

We first present some notions about how bounds consistency can be enforced

on the Inter-Distance constraint. We then explain how the computation can

be simplified. Based on this simplification, we present our algorithm and a data

structure that ensures the quadratic behaviour of our propagator. Finally, we

present some experiments proving the efficiency of our propagator.

6.2 The Inter-Distance Constraint

Régin [69] first introduced the Inter-Distance constraint. In this constraint, the

expression Inter-Distance([X1, . . . , Xn], p) holds if and only if |Xi−Xj| ≥ p for

all i 6= j. When p = 1, the Inter-Distance specializes into an All-Different

The Inter-Distance Constraint 135

constraint [67, 54, 51]. Régin [67] showed that a single global constraint, in many

cases, causes more domain reductions than the n(n−1)
2

equivalent binary constraints.

This observation also applies to the Inter-Distance constraint which is the gen-

eral case. Artiouchine and Baptiste provided the first propagator for bounds con-

sistency of the Inter-Distance constraint. The running time complexity of this

propagator is O(n3).

We use the following problem as a running example.

Example 6.1 Consider a problem with n = 3 tasks T1, T2, and T3 with processing

time p = 6 and the following release times and deadlines.

r1 = 2 r2 = 10 r3 = 4

d1 = 12 d2 = 20 d3 = 21

After propagating the constraint Inter-Distance([T1, T2, T3], p), we obtain the

following release times and deadlines.

r1 = 2 r2 = 14 r3 = 8

d1 = 8 d2 = 20 d3 = 14

Here, task T1 must finish before or at time 8 in order to allow tasks T2 and T3 to

meet their deadlines. Task T2 cannot start before time 14 since the two other tasks

are not completed before this time. Finally, task T3 must be executed between tasks

T1 and T2 forcing its release time to be increased and its deadline to be reduced.

Garey et al. [23] designed an algorithm that finds a solution satisfying the

Inter-Distance constraint in O(n logn) steps. Their algorithm proceeds in two

phases. In the first phase, the algorithm computes a set of regions F in which

no tasks are allowed to start. We call these regions the forbidden regions. Their

number is bounded by the number of tasks n. Once these forbidden regions are

computed, the second phase uses a greedy strategy to schedule the tasks.

Artiouchine and Baptiste as well as Garey et al. use two basic functions as

main pillars of their algorithm. Let ect(F, r, q) be the earliest completion time of

136 Efficient Propagators for Global Constraints

a schedule of q tasks starting at or after time r with no task starting within a

forbidden region in the set of forbidden regions F . Symmetrically, let lst(F, d, q) be

the latest starting time of a schedule of q tasks finishing at or before time d with no

task ever starting in a forbidden region in F . Computing ect(F, r, q) and lst(F, d, q)

can be done in O(q) steps using the following recurrences where ect(F, r, 0) = r and

lst(F, d, 0) = d.

ect(F, r, q) = min{t 6∈ F | t ≥ ect(F, r, q − 1)}+ p (6.1)

lst(F, d, q) = max{t 6∈ F | t ≤ lst(F, d, q − 1)− p} (6.2)

Using these two functions, Artiouchine and Baptiste describe two types of ad-

justment intervals necessary and sufficient to maintain bounds consistency on the

Inter-Distance constraint. We first define ∆(r, d) to be the set of tasks whose

release times and deadlines are contained in the interval [r, d]. An internal ad-

justment interval is an interval in which no task is allowed to start. The set of

internal adjustment intervals is a superset of the forbidden regions F . Theorem 6.1

formally characterizes the internal adjustment intervals. Intuitively, the more there

are tasks that need to be scheduled between time r and time d, the more the inter-

nal adjustment intervals will be large. We define the following internal adjustment

intervals.

Ir,d,q = [lst(, d, q + 1) + 1, ect(F, r, |∆(r, d)| − q)− 1] (6.3)

Theorem 6.1 (Artiouchine and Baptiste [5]) Given two time points r, d, and

an integer 0 ≤ q < |∆(r, d)|, no task can start in the interval Ir,d,q with endpoints

lst(F, d, q + 1) + 1 and ect(F, r, |∆(r, d)| − q)− 1.

Proof Suppose that job i starts at time t < ect(F, r, |∆(r, d)| − q) in a feasible

schedule for some 0 ≤ q < |∆(r, d)|. According to the definition of ect, at most

|∆(r, d)| − q − 1 jobs can finish at or before t. Therefore at least q + 1 jobs must

start after time t. Consequently t ≤ lst(F, d, q + 1). Therefore, no tasks can start

in the interval [lst(F, d, q + 1) + 1, ect(F, r, |∆(r, d)| − q)− 1]. 2

The Inter-Distance Constraint 137

The external adjustment intervals are intervals in which a subset of the tasks

are not allowed to start. They are formally characterized in Equation 6.4.

Er,d,q = [lst(, d, q + 2) + 1, ect(F, r, |∆(r, d)| − q)− 1] (6.4)

Theorem 6.2 (Artiouchine and Baptiste[5]) Given two time points r, d and

an integer 0 ≤ q < |∆(r, d)|, a task i 6∈ ∆(r, d) cannot start in the interval Er,d,q

with endpoints lst(F, d, q + 2) + 1 and ect(F, r, |∆(r, d)| − q)− 1.

Proof Suppose that job i 6∈ ∆(r, d) starts at time t < ect(F, r, |∆(r, d)| − q) in a

feasible schedule for some 0 ≤ q < |∆(r, d)|. According to the definition of ect, at

most |∆(r, d)|−q−1 jobs finish before or at time t. Therefore at least q+1 jobs, in

addition to job i, finish after t which implies t ≤ lst(F, d, q+2). Therefore, jobs not

in ∆(r, d) cannot start in the interval [lst(F, d, q +2)+1, ect(F, r, |∆(r, d)|− q)−1].

2

Notice that the external adjustment intervals form a superset of the internal

adjustment intervals. This forces the tasks that can be scheduled outside the time

interval [r, d] to leave some time zones free for the tasks that must be scheduled

inside the interval [r, d].

Table 6.1 shows the internal and external adjustment intervals from Exam-

ple 6.1.

Artiouchine and Baptiste formally proved that the internal and external adjust-

ment intervals are necessary and sufficient to enforce bounds consistency on the

Inter-Distance constraint.

6.3 Towards a Quadratic Propagator

Internal and external adjustment intervals in the worst case may be computed with

up to n possible release times r, n possible deadlines d and produce O(n) adjustment

intervals each. Therefore, O(n3) adjustment intervals could be checked in the worst

case, hence the cubic time complexity of the Artiouchine-Baptiste propagator.

138 Efficient Propagators for Global Constraints

Internal Adjustment Intervals

ri\dj 12 20 21

2 {[7, 7]} {[9, 7], [15, 13]} {[3, 7], [9, 13], [16, 19]}
4 ∅ {[15, 9]} {[9, 9], [16, 15]}
10 ∅ {[15, 15]} {[16, 15]}

External Adjustment Intervals

ri\dj 12 20 21

2 {[−3, 7]} {[3, 7], [9, 13]} {[−3, 7], [3, 13], [9, 19]}
4 ∅ {[9, 9]} {[3, 9], [9, 15]}
10 ∅ {[9, 15]} {[9, 15]}

Table 6.1: Internal and external adjustment intervals generated by a pair of time

points (ri, dj) from Example 6.1. Intervals are written in decreasing order with

respect to parameter q. The forbidden regions are F = {[−3, 1], [3, 3], [9, 9]}.

In reality, the union of all internal and external adjustment intervals consists of

a maximum of O(n2) disjoint intervals. It is therefore possible to ignore intervals

that are subsets of already discovered intervals in order to achieve a quadratic

complexity. To avoid computing redundant adjustment intervals, we introduce the

notion of dominance between two pairs of time points. When a pair of time points

dominates another pair, the adjustment regions of the dominant pair contain some

adjustment regions of the other pair.

Definition 6.1 (Dominance) A pair of time points (ri, dj) dominates a pair

of time points (rk, dl) if we have min(Iri,dj ,q) ≤ min(Irk,dl,q) and max(Iri,dj ,q) ≥
max(Irk,dl,q) for all 0 ≤ q < min(|∆(ri, dj)|, |∆(rk, dl)|). We write (ri, dj) � (rk, dl).

Notice that we usually have |∆(ri, dj)| 6= |∆(rk, dl)|. The definition of domi-

nance only applies for q below min(|∆(ri, dj)|, |∆(rk, dl)|). Also, for a fixed deadline

d, the dominance operator (≺) is transitive, i.e. if (ri, d) ≺ (rj, d) and (rj, d) ≺
(rk, d) hold, then (ri, d) ≺ (rk, d) holds. In Example 6.1 we have (2, 21) � (4, 21).

The following lemmas describe a property of the ect and lst functions that will

allow us to efficiently decide if a pair of time points dominates another one.

The Inter-Distance Constraint 139

Lemma 6.1 If ect(F, ri, q1) ≤ ect(F, rj, q2) then ect(F, ri, q1+k) ≤ ect(F, rj, q2+k)

for any k, q1, q2 ≥ 0.

Proof The proof is by induction on k. The base case k = 0 is trivial. We prove

for k = 1. We know that ect(F, ri, q1) ≤ ect(F, rj, q2). We have ect(F, ri, q1 + 1) =

ect(F, ri, q1)+ p+ si where si is a (potentially null) shift caused by the (potentially

empty) forbidden region Fi = [ect(F, ri, q1), ect(F, ri, q1) + si] ⊆ F . Similarly we

have ect(F, rj, q2 + 1) = ect(F, rj, q2) + p + sj where sj is the shift caused by the

forbidden region Fj = [ect(F, rj, q2), ect(F, rj, q2) + sj] ⊆ F . If si is large enough

to obtain ect(F, ri, q1 + 1) ≥ ect(F, rj, q2 + 1), then we have Fj ⊆ Fi. Since both

forbidden regions intersect, both functions are shifted to the same value and we

obtain ect(F, ri, q1 + 1) = ect(F, rj, q2 + 1) which completes the case for k = 1.

For the induction step, suppose that the lemma holds for k − 1. We have

ect(F, ri, q1 + k) = ect(F, ri, q1 + k − 1) + p + si where si is a (potentially null)

shift caused by the (potentially empty) forbidden region Fi = [ect(F, ri, q1 + k −
1), ect(F, ri, q1+k−1)+si] ⊆ F . Similarly we have ect(F, rj, q2+k) = ect(F, rj, q2+

k−1)+p+sj where sj is the shift caused by the forbidden region Fj = [ect(F, rj, q2+

k−1), ect(F, rj, q2+k−1)+sj] ⊆ F . If si is large enough to obtain ect(F, ri, q1+k) ≥
ect(F, rj, q2 + k), then we have Fj ⊆ Fi. Since both forbidden regions intersect,

both functions are shifted to the same value and we obtain ect(F, ri, q1 + k) =

ect(F, rj, q2 + k) which completes the induction step. 2

Lemma 6.2 If lst(F, di, q1) ≤ lst(F, dj, q2) then lst(F, di, q1+k) ≤ lst(F, dj, q2+k)

for any k, q1, q2 ≥ 0.

Proof Symmetric to the proof of Lemma 6.1. 2

We now describe three different situations in which a pair of time points domi-

nates another one. The first case is described in Lemma 6.3.

Lemma 6.3 Let (r, di) and (r, dj) be the two pairs of time points such that di < dj

and k = |∆(r, di)| = |∆(r, dj)|. Then (r, di) � (r, dj).

140 Efficient Propagators for Global Constraints

Proof We have lst(F, di, 0) < lst(F, dj, 0) and by Lemma 6.2, lst(F, di, q + 1) ≤
lst(F, dj, q + 1). This implies min(Ir,di,q) ≤ min(Ir,dj ,q) for any 0 ≤ q < k and since

we have max(Ir,di,q) = max(Ir,dj ,q) we have (r, di) � (r, dj). 2

From Lemma 6.3 we conclude that (10, 20) � (10, 21) in Example 6.1. Similarly,

we have the following Lemma.

Lemma 6.4 Let (ri, d) and (rj, d) be two the pairs of time points such that ri < rj

and k = |∆(ri, d)| = |∆(rj, d)|. Then (ri, d) ≺ (rj, d).

Proof We have ect(F, ri, 0) < ect(F, rj, 0) and by Lemma 6.1 ect(F, ri, k − q) ≤
lst(F, rj, k− q). This implies max(Iri,d,q) ≤ max(Irj ,d,q) for any 0 ≤ q < k and since

we have min(Iri,d,q) = min(Irj ,d,q) we have (ri, d) ≺ (rj, d). 2

In Example 6.1, Lemma 6.4 detects (4, 20) ≺ (10, 20). We show a last case

where a pair of time points dominates another one.

Lemma 6.5 Let (ri, d) and (rj, d) be two pairs of time points such that |∆(ri, d)| =
|∆(rj, d)|+ k and ect(F, ri, k) ≤ ect(F, rj, 0). Then (rj, d) � (ri, d).

Proof Clearly, for 0 ≤ q < |∆(rj, d)|, the internal adjustment intervals Iri,d,q and

Irj ,d,q share the same lower bound. For the upper bounds, we have the following:

max(Iri,d,q) = ect(F, ri, |∆(ri, d)| − q)− 1

= ect(F, ri, |∆(rj, d)|+ k − q))− 1 and by Lemma 6.1

≤ ect(F, rj, |∆(rj, d)| − q)− 1

≤ max(Irj ,d,q)

Therefore we have (rj, d) � (ri, d). 2

In Example 6.1, we have (10, 20) � (2, 20) from Lemma 6.5. There might be

other conditions under which we can conclude that a pair of time points is tighter

than another one but this remains an open question. The cases stated in Lemma 6.3,

6.4, and 6.5 are sufficient for our purposes.

The Inter-Distance Constraint 141

Lemma 6.5 is crucial to obtaining a quadratic algorithm. Consider a deadline

d and a sequence of release times r1 < r2 < . . . < rk such that (r1, d) ≺ (r2, d) ≺
. . . ≺ (rk, d). There can be up to O(n2) internal adjustment intervals associated

to these pairs of time points. Nevertheless, the union of all O(n2) intervals can

be given by the union of only O(n) intervals. We first notice that the following

intervals all share the same lower bound. The union of the intervals is therefore

equal to the interval whose upper bound is the greatest.

j
⋃

i=1

Iri,d,q = [min(Irj ,d,q), max
1≤i≤j

max(Iri,d,q)]

= [min(Irj ,d,q), max(Irj ,d,q)]

= Irj ,d,q

Using this observation, we compute the union of all adjustment intervals formed

by the pairs (r1, d), . . . , (rk, d) using the following equation (to simplify notation,

we let |∆(rk+1, d)| = 0 since rk+1 is undefined).

k
⋃

i=1

|∆(ri,d)|−1
⋃

q=0

Iri,d,q =

k
⋃

i=1

|∆(ri,d)|−1
⋃

q=|∆(ri+1,d)|

Iri,d,q (6.5)

Notice that the left hand side of Equation 6.5 has O(n2) intervals while the

right hand side has only O(n) intervals. Indeed, the number of intervals to be

united is given by
∑k

i=1(|∆(ri, d)| − |∆(ri+1, d)|). The telescopic series simplifies to

|∆(r1, d)| − |∆(rk+1, d)| = |∆(r1, d)|.

In Example 6.1 since we have (2, 20) ≺ (10, 20) we obtain the following:

(I2,20,0 ∪ I2,20,1) ∪ (I10,20,0) = I2,20,1 ∪ I10,20,0

= [9, 7] ∪ [15, 15]

= [15, 15]

142 Efficient Propagators for Global Constraints

6.4 A Quadratic Propagator

6.4.1 General Scheme

The idea behind the algorithm is the following. We process each deadline in in-

creasing order. If two deadlines di and dj are equal and their associated release

times satisfy rj ≤ ri, we process both deadlines at the same time but use i as a

reference. For every deadline di, we compute the longest sequence of release times

rx1
< rx2

< . . . < rxk
such that (rx1

, di) ≺ (rx2
, di) ≺ . . . ≺ (rxk

, di). Using this se-

quence and Equation 6.5, we compute the union of all internal adjustment intervals

generated by the pairs of time points whose deadline is di. To build the sequence,

we iterate through all release times in non-decreasing order. Two sub-cases can

occur where we can safely skip a release time rj.

Case 1 (dj > di): Suppose that the deadline dj associated to rj has not been

processed yet, i.e. dj > di. For such a release time rj, we choose the smallest

release time rk whose deadline has already been processed and such that rk > rj.

Two cases can occur: if such a rk exists, then |∆(rj, di)| = |∆(rk, di)| since both

intervals [rj, di] and [rk, di] contain the same processed variables and no unprocessed

variables. Lemma 6.4 ensures that (rk, di) � (rj, di). All adjustment intervals from

(rj, di) will be taken into account when iterating through rk. If no such rk exists,

there are no processed variables whose domain is contained in the interval [rj, di] and

no unprocessed variables either. Therefore we have ∆(rj, di) = ∅ and no adjustment

intervals are associated to the pair (rj, di). In either case, the pair (rj, di) can be

ignored.

Case 2 (rj > ri): A release time rj greater than ri can also be safely ignored.

Let dl be the deadline processed before di. Since |∆(rj, di)| = |∆(rj, dl)| Lemma 6.3

insures that we have (rj, dl) � (rj, di) and adjustment intervals from (rj, di) have

already been taken into account when processing dl.

Suppose while processing di we find the subsequence (rj, di) ≺ (rk, di), then

we add to the set Ui the tuples (j, q) for |∆(rj, di)| ≤ q < |∆(rk, di)|. Each tuple

The Inter-Distance Constraint 143

(j, q) ∈ Ui will be later used to create the adjustment intervals Irj ,di,q and Erj ,di,q.

These intervals are the ones appearing on the right hand side of Equation 6.5.

Algorithm 12: Enforcing bounds consistency on the Inter-Distance con-

straint. We assume that the forbidden regions F have already been computed

and that release times are sorted such that ri ≤ ri+1 and ri = ri+1 ⇒ di ≤ di+1.

Let D be the set of deadlines sorted in increasing order. If two deadlines are

equal, exclude from D the one whose associated release time is the smallest.

P ← ∅, A← ∅, Ui ← ∅, ∀ 1 ≤ i ≤ n

for di ∈ D do
P ← P ∪ {j | dj = di}
l ← min(P)

for j ∈ P ∩ [l, i] do
a← |∆(rj, di)|
b← |∆(rl, di)|
if ect(F, rl, b− a) < rj then

Ui ← Ui ∪ {(l, q) | a ≤ q < b}
l ← j;

Ui ← Ui ∪ {(l, q) | 0 ≤ q < |∆(rl, di)|}
for (j, q) ∈ Ui do A← A ∪ Irj ,di,q1

for all deadlines di in non-decreasing order do

r′i ← min{t 6∈ A | t ≥ ri}2

if di ∈ D then

for (j, q) ∈ Ui do A← A ∪ Erj ,di,q3

∀i, ri ← r′i

Algorithm 12 prunes the release times. Notice that variables are indexed in

non-decreasing order of release times. Should two tasks share the same release

time, the task with the smallest deadline has the smallest index. Following [63],

one can prune the upper bounds by creating the symmetric problem where task T ′
i

has release time r′i = −di and deadline d′
i = −ri. Algorithm 12 can then prune

the lower bounds in the symmetric problem, which prunes the upper bounds in the

144 Efficient Propagators for Global Constraints

original problem.

We assume that the forbidden regions F have already been computed in O(n log n)

time (see [23]) and that release times are sorted such that ri ≤ ri+1 and ri =

ri+1 ⇒ di ≤ di+1. The function lst(F, di, q) can be implemented with a table L

where lst(F, ri, q) = L[i][q]. Such a table requires O(n2) steps to initialize and

supports function evaluation in constant time. We use a similar table to evaluate

ect(F, r, q). The function |∆(rj, di)| can trivially be computed in O(n) steps. The

function |∆(rj+1, di)| can later be computed in O(1). The running time complexity

of Algorithm 12 is O(n2) provided that Lines 1, 2, and 3 have time complexity

O(n). The next section describes how the adjustment data structure A can meet

these requirements.

6.4.2 Keeping Track of Adjustment Intervals

To guarantee a quadratic running time, we must carefully design the data structure

A that contains the adjustment intervals. We use a doubly-linked list containing

all adjustment intervals sorted by lower bounds, including empty intervals. Each

interval Iri,dj ,q has a pointer next(Iri,dj ,q) and previous(Iri,dj ,q) pointing to the next

and previous intervals in the list. The first interval has its previous pointer un-

defined as the last interval has its next pointer undefined. Each interval has also

a pointer nextQ(Iri ,dj ,q) pointing to Irk,dj ,q+1 where rk and ri might be equal. If

the interval Irk,dj ,q+1 does not exist, the pointer is undefined. The data structure

initially contains an empty interval with lower bound −∞ used as a sentinel.

We implement Line 1 of Algorithm 12 as follows. We insert the intervals in

decreasing order of lower bounds. Since we processes variables by increasing dead-

lines, the lower bound of Irj ,di,0 is larger or equal to any lower bound inserted in A

and is therefore inserted at the end of the linked list.

Suppose we have inserted the interval I1 = Irj ,di,q and we now want to insert the

interval I2 = Irk,di,q+1. Algorithm 13 computes the insertion point in the linked list.

The algorithm follows the previous pointers starting from I1 until it either finds the

insertion point or finds an interval whose nextQ pointer is assigned. In the later

case, the algorithm follows the nextQ pointer to finally follow the next pointers until

The Inter-Distance Constraint 145

the insertion point is reached. When following the nextQ(I) pointer, the algorithm

necessarily goes to or beyond the insertion point since we have min(I) < min(I1)

and by Lemma 6.2 we have min(nextQ(I)) ≤ min(I2).

Algorithm 13: Computing the insertion point of Irj ,di,q+1 provided that

Irj ,di,q has already been inserted.

I ← previous(Irj ,di,q)

I2 ← Irj ,di,q+1

while nextQ(I) is undefined ∧min(I) > min(I2) do
I = previous(I)

if min(I) > min(I2) then
I ← nextQ(I)

while min(next(I)) < min(I2) do
I ← next(I)

Insert I2 after I

We show that Algorithm 13 inserts a sequence of O(n) intervals in the linked

list A in O(n) steps. There is a maximum of n intervals in A whose nextQ pointer

is undefined, therefore the first while loop runs in O(n) time. Let I4 be an interval

explored by the second while loop. The interval I4 lies between nextQ(I) and the

insertion point. By Lemma 6.2, if an interval I3 was pointing to I4 with its nextQ

pointer, the interval I3 would lie between I and I1. Since I3 6= I, we conclude that

no intervals point to I4 with its nextQ pointer. There is a maximum of n such

intervals. The second while loop runs in O(n). We therefore showed that Line 1

can be implemented in O(n) steps. Since min(Eri,dj ,q) = min(Irk,dj ,q+1), Line 3

can be implemented by simply changing the upper bounds of internal adjustment

intervals that were already inserted in A.

Line 2 of Algorithm 12 can be implemented in O(α(n)) steps where α is the

inverse of Ackermann’s function. We create a union-find data structure S with

elements from 1 to n. For each element i, we associate a time ti initially set to

ri and a pointer pi initially unassigned. When inserting adjustment intervals in A

in decreasing order of lower bounds, we simultaneously iterate in decreasing order

the sets in S. If an interval I is inserted such that ti ∈ I, we set ti to max(I) + 1.

146 Efficient Propagators for Global Constraints

We then follow the next pointers from I to check if other intervals intersect ti. If

ti becomes greater or equal to ti+1, we merge the set in S containing i with the

set containing i + 1. The pointer pi is used to keep track of the last interval I

tested with ti in order to not check twice a same interval. When executing Line 2

of Algorithm 12, we simply retrieve from S the set s containing i and return tj

where j = max(s).

6.5 Experiments

We implemented our algorithm using the ILog Solver C++ library, Version 4.2 [3].

The library already provides a propagator for the Inter-Distance constraint

called IlcAllMinDistance and offers two levels of consistency, namely IlcBasic and

IlcExtended. We also implemented the Artiouchine-Baptiste propagator [5]. All

experiments were run on a Pentium III 900 MHz with 256 Mb of memory. All

reported times are averaged over 10 runs.

6.5.1 Scalability Test

In order to test the scalability of our propagator, we first consider a scheduling

problem with a single Inter-Distance constraint over n tasks whose release times

are ri = 0 and deadlines are di = np for all tasks. This problem has a trivial

solution and is solved without backtracking. We clearly see on Figure 6.1 that our

propagator has a quadratic behaviour while the Artiouchine-Baptiste propagator

has a cubic behaviour. This observation is supported by the study of the third and

second derivative. The first and second derivative of the time function associated

to the Artiouchine-Baptiste algorithm increases with n while the third derivative

remains constant. This suggests that our implementation runs in O(n3) steps. The

first derivative of the time function associated to our algorithm increases with n

while the second derivative is constant. This suggests that our implementation of

our algorithm runs in O(n2) steps.

The Inter-Distance Constraint 147

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

T
im

e
(s

)

n

Scalability Test

Artiouchine-Baptiste
Our propagator

Figure 6.1: Running time of the Artiouchine-Baptiste propagator (O(n3)) and our

propagator (O(n2)) in function of the number of tasks. For this scalability test, we

set all release times to ri = 0 and deadlines to di = 6n.

6.5.2 Runway Scheduling Problem

We then study the runway scheduling problem [6]. In this problem, n airplanes

have certain time intervals in which they can land. Airplane number i has si

time intervals [r1
i , d

1
i], . . . , [r

si

i , dsi

i]. Following [5], we create for each airplane a

variable ti with domain [r1
i , d

si

i] representing the landing time and a variable ci

with domain [1, si] representing the landing time interval. We have the constraints

ci ≥ k ⇐⇒ ti ≥ rk
i and ci ≤ k ⇐⇒ ti ≤ dk

i . Finally, we have the constraint

Inter-Distance([t1, . . . , tn], p) that ensures a gap of p between each landing. For

security reasons, we want to maximize the time p between each landing. We first

solve the problem with p = 1 and double the value of p until the problem becomes

unfeasible. Suppose the problem becomes unfeasible for the first time at p = 2x.

We perform a binary search in [x, 2x) to find the greatest p satisfying the problem.

Using the same benchmark as [5], we obtain the running times listed in Table 6.2

on random runway problems. For problems with 90 airplanes, we obtain savings

148 Efficient Propagators for Global Constraints

n # Our solution A.-B. IlcBasic IlcExt.

15 1 0.09 0.16

15 40 0.07 0.12 19.27 64.32

30 54 0.42 1.65

45 20 0.59 3.40

60 40 2.38 18.72

75 30 4.04 37.67

90 10 5.64 60.84

Table 6.2: Time in seconds to solve some representative problems from the bench-

mark. n is the number of variables. # is the problem number in the benchmark.

Blank entries represent problems that remained unsolved after 2 minutes of com-

putation.

of an order of magnitude. Some propagators could not solve all problems within 2

minutes. All problems that could be solved with the propagators provided in ILog

could also be solved by the Artiouchine-Baptiste propagator. All problems solved

by the Artiouchine-Baptiste propagator could be solved at greater speed by our

propagator.

We then consider the runway problem where all intervals have the same length

(see Table 6.3). In these problems, ILog propagators were unable to solve problems

in less than two minutes. We obtain an improvement over the Artiouchine-Baptiste

propagator proportional to n. This observation is compatible with the running time

complexities of the algorithms.

6.6 Conclusion

We presented a new propagator achieving bound consistency for the Inter-Distance

constraint. The running time complexity of O(n2) improves by a factor of n the pre-

vious best known propagator. This theoretical improvement gives practical savings

in scheduling problems.

It is still an open problem whether there exists an O(n log n) propagator for

the Inter-Distance constraint achieving bound consistency. It would also be

interesting to study how the constraint could be generalized for the cumulative

The Inter-Distance Constraint 149

n a b c d Our solution A.-B. Fails

20 10 10 5 6 0.11 0.25 28

20 10 10 5 6 0.09 0.17 4

30 8 15 3 6 3.40 14.26 2111

40 7 10 5 6 0.95 4.74 183

50 10 10 5 6 0.72 4.23 5

50 10 10 5 6 0.63 3.81 27

55 7 10 5 6 1.03 6.68 16

60 8 15 3 6 1.27 9.46 11

20 10 10 5 6 0.09 0.29 34

20 8 6 3 6 0.09 0.19 13

40 10 20 3 6 0.70 3.54 67

40 7 10 5 6 0.47 2.14 19

50 10 10 5 6 3.99 26.66 435

50 8 6 3 6 0.83 5.26 35

55 8 15 3 6 0.89 6.19 16

60 8 15 3 6 1.18 8.95 25

60 8 15 3 6 1.64 12.54 44

Table 6.3: Time in seconds to solve the runway problems where landing time in-

tervals have size a, the gap between landing time intervals is of size b, and where

c ≤ si ≤ d holds.

scheduling problem. For some optimization problems, it would be convenient to

consider p as a constrained variable on which we could enforce bound consistency.

Chapter 7

Conclusion

The design of new constraint propagators constitutes the main contribution of

this thesis. We presented a new propagator for the bounds consistency of the

All-Different constraint with linear worst case complexity. This propagator

outperforms previous propagators achieving the same consistency. We also pre-

sented the first propagator with amortized linear time complexity achieving range

consistency.

Our research about the GCC offers a better understanding of the mathematical

theory behind this constraint. We showed how the GCC can be divided into two

simpler constraints without hindering propagation. Based on this, we provided a

propagator for the bounds consistency of the GCC with linear time complexity.

We showed that range consistency can be enforced in amortized linear complexity

as well. We improved the time complexity for enforcing domain consistency from

O(|X|2|D|) to O(|X|1.5|D|). We showed how the universality of GCC can be effi-

ciently tested. Finally, we proved that it is NP-Hard to enforce domain consistency

on EXT-GCC.

We explored a generalization of the All-Different constraint called the

Inter-Distance constraint. We designed a new propagator with quadratic run-

ning time complexity that outperforms both in theory and in practice previous

propagators.

Many problems concerning the constraints studied in this thesis remain open.

151

152 Efficient Propagators for Global Constraints

Generally, combining two constraints together often results in a better filtering of

the variable domains. Régin [71] study the combination of a GCC with an Among

constraint. Beldiceanu and Carlsson [7] study an All-Different constraint where

variables are also subject to a Min and a Max constraint. It would be interesting

to determine which constraints often occur with the All-Different constraint

or the GCC and how the combination of these two constraints can strengthen the

propagation.

Three main problems concerning the Inter-Distance constraint still remain

to be solved. Is there an O(n log n) propagator that enforces bounds consistency for

this constraint? How can we generalize the Inter-Distance constraint to solve

the cumulative scheduling problem. How can we make p a constrained variable

whose domain is pruned by the propagator?

The propagators presented in this thesis can be used on a large variety of com-

binatorial problems. Several of these propagators have already been integrated in

open-source and commercial constraint programming libraries.

Bibliography

[1] ECLiPSe User Manual Release 5.3, 2002.

[2] Gecode Reference Documentation. http://www.gecode.org/, version 0.9.0 edi-

tion, November 2005.

[3] ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Networks Flows, Theory,

Algorithms, and Applications. Prentice Hall, 1993.

[5] K. Artiouchine and P. Baptiste. Inter-distance constraint: An extension of

the all-different constraint for scheduling equal length jobs. In Proceedings

of the 11th International Conference on Principles and Practice of Constraint

Programming, pages 62–76, 2005.

[6] K. Artiouchine, P. Baptiste, and C. Dürr. Runway scheduling with holding

loop. In Proceedings of Second International Workshop on Discrete Optimiza-

tion Methods in Production and Logistics, pages 96–101, 2004.

[7] N. Beldiceanu and M. Carlsson. A cumulative model for a pattern sequence

problem. In Proceedings of Constraint Modelling Challenge 2005, pages 14–20,

2005.

[8] N. Beldiceanu, M. Carlsson, and J.-A. Rampon. Global constraint catalog.

Technical Report T2005:08, Swedish Institute of Computer Science, August

2005.

153

154 Efficient Propagators for Global Constraints

[9] N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Math-

ematical Computer Modelling, 20(12):97–123, 1994.

[10] C. Berge. Two theorems in graph theory. In Proceedings of the National

Academy of Sciences of the United States of America, number 43, pages 842–

844, 1957.

[11] C. Berge. Graphes and Hypergraphes. Dunod, Paris, 1970.

[12] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla.

The Ciao Prolog System. The Computational logic, Languages, Implementa-

tion, and Parallelism (CLIP) Group, August 2004.

[13] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop

problem. European Journal of Operation Rsearch, 78:146–161, 1994.

[14] C. W. Choi, W. Harvey, J. Ho-Man Lee, and P. J. Stuckey. Finite domain

bounds consistency revisited. Technical Report cs.AI/0412021, arXiv.org,

2004.

[15] A. Colmerauer and P. Roussel. History of Programming Languages, chapter

The Birth of Prolog. ACM Press/Addison-Wesley, 1996.

[16] R. Debruyne and C. Bessiere. Some practicable filtering techniques for the

constraint satisfaction problem. In Proceedings of the 15th International Joint

Conference on Artificial Intelligence (IJCAI 97), pages 412–417, 1997. Nagoya,

Japan.

[17] M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The constraint

logic programming language chip. In Proceedings of the International Confer-

ence on Fifth Generation Computer Systems, pages 693–702, Tokyo, Japan,

1988.

[18] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM

Journal on Computing, 4:507–518, 1975.

[19] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,

1962.

Bibliography 155

[20] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of

disjoint set union. In Proceedings of the fifteenth annual ACM symposium on

Theory of computing, pages 246–251, 1983.

[21] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set

union problems. ACM Computing Surveys, 23(3):319–344, 1991.

[22] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the

theory of NP-completeness. New York : W. H. Freeman, 1979.

[23] M.R. Garey, D.S. Johnson, B.B. Simons, and R.E. Tarjan. Scheduling unit-

time tasks with arbitrary release times and deadlines. SIAM Journal on Com-

puting, 10(2):256–269, 1981.

[24] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An empirical

study of dynamic variable ordering heuristics for the constraint satisfaction

problem. In Principles and Practice of Constraint Programming, pages 179–

193, 1996.

[25] I.P. Gent and T. Walsh. Csplib: a benchmark library for constraints. Technical

report, APES-09-1999, 1999. Available from http://www.csplib.org/.

[26] C. Gervet. Set Intervals in Constraint Logic Programming: Definition and

Implementation of a Language. PhD thesis, Université de Franche-Comté,

France, 1995.

[27] C. Gervet. Interval propagation to reason about sets: Definition and imple-

mentation of a practical language. Constraints Journal, 1(3):191–244, 1997.

[28] P. Hall. On representatives of subsets. Journal of the London Mathematical

Society, pages 26–30, 1935.

[29] Y. Hamadi. Disolver: the Distributed Constraint Solver. Microsoft Research,

version 2.0 edition, March 2005.

[30] E. Hebrard. Mistral, 2006. http://www.cse.unsw.edu.au/~ehebrard/ mis-

tral/doxygen/html/index.html.

156 Efficient Propagators for Global Constraints

[31] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT

Press, January 1999.

[32] P. Van Hentenryck, L. Michel, L. Perron, and J.-C. Régin. Constraint pro-

gramming in OPL. In Proceedings of the First International Conference on

Principles and Practice of Declarative Programming, pages 98–116, 1999.

[33] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and

evaluation of the constraint language cc(fd). Journal of Logic Programming,

37(1–3):139–164, Oct-Dec 1998.

[34] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction using

constraint logic programming. Artificial Intelligence, 58:113–159, 1992.

[35] C. E. Hewitt. Planner: A language for proving theorems in robots. In Proceed-

ings of the 1rst International Conference on Artificiel Intelligence (IJCAI-69),

pages 265–301, 1969.

[36] J. Hopcroft and R. Karp. A n
5

2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal of Computing, (2):225–231, 1973.

[37] J. Hopcroft and J. Ullman. Set merging algorithms. In SIAM Journal on

Computing, 2(4):294–303, 1973.

[38] Intelligent Systems Laboratory, Swedish Institute of Computer Science.

SICStus Prolog User’s Manual, release 3.12.3 edition, October 2005.

[39] I. Katriel and S. Thiel. Fast bound consistency for the global cardinality

constraint. In Proceedings of the 9th International Conference on Principles

and Practice of Constraint Programming (CP 2003), pages 437–451, 2003.

LNCS 2833.

[40] I. Katriel and S. Thiel. Complete bound consistency for the global cardinality

constraint. Constraints, 10(3):191–217, 2005.

[41] D. Knuth. Volume 4 of the art of computer programming, pre-fascicle 3a: Gen-

erating all combinations. http://www-cs-faculty.stanford.edu/˜knuth/, 2005.

Bibliography 157

[42] D. Knuth. Volume 4 of the art of computer programming, pre-fascicle 3a:

Generating all n-tuples. http://www-cs-faculty.stanford.edu/˜knuth/, 2005.

[43] Koalog. An overview of Koalog Constraint Solver, 2005. http://koalog.com/.

[44] F. Laburthe and N. Jussien. Choco, 2004. http://choco.sourceforge.net/.

[45] C. F. Laywine and G. L. Mullen. Discrete mathematics using Latin squares.

Wiley-IEEE, 1998.

[46] M. Leconte. A bounds-based reduction scheme for constraints of difference. In

Proceedings of the Constraint-96 International Workshop on Constraint-Based

Reasoning, pages 19–28, 1996.

[47] C. Lee, M. Potkonjak, and W. Manginoe-Smith. Mediabench: a tool for eval-

uating and synthesizing multimedia and communications. In Proceedings of

International Symposium on Microarchitecture, pages 330–335, 1997.

[48] H. Levesque. Planning with loops. In Proceedings of the 19th International

Joint Conference on Artificial Intelligence (IJCAI-05), pages 509–515, 2005.

[49] O. Lhomme. Consistency techniques for numeric csps. In Proceedings of

the 18th International Joint Conference on Artificial Intelligence (IJCAI-03),

pages 232–238, 1993.

[50] W. Lipski and F. P. Preparata. Efficient algorithms for finding maximum

matchings in convex bipartite graphs and related problems. Acta Informatica,

15:329–346, 1981.

[51] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple

algorithm for bounds consistency of the alldifferent constraint. In Proceedings

of the 18th International Joint Conference on Artificial Intelligence (IJCAI-

03), pages 245–250, 2003.

[52] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

165(2):165–185, 1977.

158 Efficient Propagators for Global Constraints

[53] A. M. Malik, J. McInnes, and P. van Beek. Optimal basic block instruction

scheduling for multiple-issue processors using constraint programming. Tech-

nical Report CS-2005-19, School of Computr Science, University of Waterloo,

2005.

[54] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the

sortedness and the alldifferent constraint. Sixth International Conference on

Principles and Practice of Constraint Programming, 2000.

[55] L. Mercier and P. Van Hentenryck. Edge finding for cumulative scheduling.

Submitted for publication, 2005.

[56] R. E. Miller and J. W. Thatcher, editors. Complexity of Computer Computa-

tions. Plenum Press, New York - London, 1972.

[57] T. Müller and M. Müller. Finite set constraints in Oz. In François Bry,

Burkhard Freitag, and Dietmar Seipel, editors, Workshop Logische Program-

mierung, pages 104–115. Technische Universität München, September 1997.

[58] M. Paterson. Unpublished report. University of Warwick, Coventry, Great

Britain.

[59] J. Petersen. Die theorie der regulären graphen. Acta Mathematica, 15:193–220,

1891.

[60] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-

constrained problems. In Proceedings of the Seventh International Conference

on Principles and Practice of Constraint Programming, pages 451–463, 2001.

[61] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge

University Press, 1992.

[62] J.-F. Puget. Finite set intervals. In Proceedings of Workshop on Set Con-

straints, 1996.

Bibliography 159

[63] J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In

Proceedings of the 15th National Conference on Artificiel Intelligence (AAAI-

98) and the 10th Conference on Innovation Applications of Artificial Intelli-

gence (IAAI-98), pages 359–366, 1998.

[64] C.-G. Quimper, A. Golynski, A. López-Ortiz, and P. van Beek. An efficient

bounds consistency algorithm for the global cardinality constraint. Constraint

Journal, 10:115–135, 2005.

[65] C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved

algorithms for the global cardinality constraint. In Proceedings of the 10th In-

ternational Conference on Principles and Practice of Constraint Programming,

pages 542–556, September 2004.

[66] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S. B. Sadjad.

An efficient bounds consistency algorithm for the global cardinality constraint.

In Proceedings of the 9th International Conference on Principles and Practice

of Constraint Programming (CP 2003), pages 600–614, 2003. LNCS 2833.

[67] J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In

Proceedings of the 11th National Conference on Artificiel Intelligence (AAAI-

94), pages 362–367, 1994.

[68] J.-C. Régin. Generalized arc consistency for global cardinality constraint. In

Proceedings of the Eighth Annual Conference on Innovative Applications of

Artificial Intelligence, pages 209–215, 1996.

[69] J.-C. Régin. The global minimum distance constraint. Technical report, ILOG,

1997.

[70] J.-C. Régin. Cost-based arc consistency for global cardinality constraints. Con-

straints, 7(3–4):387–405, 2002.

[71] J.-C. Régin. Combination of among and cardinality constraints. In CP-AI-

OR’05, pages 288–303, 2005.

160 Efficient Propagators for Global Constraints

[72] J.-C. Régin and C. P. Gomes. The cardinality matrix constraint. In Proceedings

of the 10th International Conference on Principles and Practice of Constraint

Programming, pages 572–587, 2004.

[73] P. Van Roy. Logic programming in Oz with Mozart. In Danny De Schreye, edi-

tor, International Conference on Logic Programming, pages 38–51, Las Cruces,

NM, USA, November 1999. The MIT Press.

[74] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint

satisfaction. In PPCP ’94: Proceedings of the Second International Workshop

on Principles and Practice of Constraint Programming, pages 10–20, 1994.

[75] A. Sadler and C. Gervet. Hybrid set domains to strengthen constraint propa-

gation and reduce symmetries. In Proceedings of the 10th International Con-

ference on Principles and Practice of Constraint Programming, pages 604–618,

2004.

[76] C. Schulte and P. J. Stuckey. When do bounds and domain propagation lead

to the same search space. In Proceedings of the Third International Conference

on Principles and Practice of Declarative Programming, pages 115–126, 2001.

[77] B. M. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied

constraints to model non-binary problems. In Proceedings of the Seventeenth

National Conference on Artificial Intelligence, pages 182–187, 2000.

[78] K. Stergiou and T. Walsh. The difference all-difference makes. In Proceedings

of the Sixteenth International Joint Conference on Artificial Intelligence, pages

414–419, 1999.

[79] M. E. Stickel. A prolog technology theorem prover: Implementation by an

extended prolog compiler. In Processing of the 8th International Conference on

Automated Deduction, pages 573–587. Springer-Verlag New York, Inc., 1986.

[80] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

of Computing, 1:146–160, 1972.

Bibliography 161

[81] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.

Journal of the ACM, 31(2):245–281, 1984.

[82] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue

processors with arbitrary latencies. In Proceedings of the Seventh International

Conference on Principles and Practice of Constraint Programming, pages 625–

639, 2001.

[83] W. J. van Hoeve. A hyper-arc consistency algorithm for the soft alldifferent

constraint. In Proceedings of the 10th International Conference on Principles

and Practice of Constraint Programming, pages 679–689, 2004.

[84] W. J. van Hoeve. The alldifferent constraint: a systematic overview.

Submitted manuscript. Available from http://www.cs.cornell.edu/ vanho-

eve/papers/alldiff.pdf, 2005.

[85] W. J. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming (soft-

ening global constraints). In 6th International Workshop on Preferences and

Soft Constraints (held in conjunction with CP 2004), 2004.

[86] T. Walsh. Depth-bounded discrepancy search. In Proceedings of the 15th

International Joint Conference on Artificial Intelligence (IJCAI 97), pages

1388–1395, 1997.

[87] T. Walsh. Consistency and propagation with multiset constraints: A formal

viewpoint. In F. Rossi, editor, Proceedings of the 9th International Conference

on Principles and Practice of Constraint Programming, pages 724–738, 2003.

[88] N.-F. Zhou. B-Prolog User’s Manual (Version 6.7), Prolog, Agent, and Con-

straint Programming. Afany Software, CUNY, Kyutech, March 1995.

Index

alternating cycle, 15

alternating path, 15

assignment, 19

assignment problem, 12

augmenting path, 11

basic characteristic interval, 106

basic Hall interval, 61

binary constraint, 20

Cardinality Matrix Constraint, 42

characteristic interval, 106

consistency

domain consistency, 21

bounds consistency, 21

local consistency, 23

range consistency, 21

constraint, 19

constraint logic programming, 18

Constraint programming, 19

constraint propagation, 24

Constraint Satisfaction Problem, 19

constraint satisfaction problem, 19

Convex bipartite graph, 39

Cost-GCC, 41

CSP, 19

domain, 19

extended global cardinality constraint,

41

failure set, 87

feasible flow, 10

flow, 10

flow value, 10

free edge, 12

free node, 12, 117

generalized matching, 117

global cardinality constraint, 26

global constraint, 20

græco-latin square, 81

Hall interval, 36

Hall set, 71, 86

latin square, 81

Local Consistency, 24

Logic programming, 17

lower bound, 35

matched edge, 12

matched node, 12

matching, 12

maximum matching, 12

maximal, 86

maximum flow, 10

163

164 Efficient Propagators for Global Constraints

maximum matching, 12

maximum stable interval, 107

propagation, 24

propagator, 23

reference trees, 49

residual graph

of a flow, 10

of a matching, 14

scope, 19

sink, 10

Soft Constraints, 42

Soft-Alldifferent, 42

solution, 19

source, 10

stable set, 87

support, 20

domain support, 21

interval support, 21

unary constraint, 20

universal, 127

unstable set, 87

upper bound, 35

value-graph, 30

variable, 19

	Introduction
	Theoretical Background
	Introduction
	Graph Theory
	Network Flows
	Matchings
	Hall's Marriage Theorem

	Constraint Programming
	Historical Background
	General Concepts
	Consistencies
	Propagation
	Constraints

	Existing Propagators for the All-Different and GCC Constraints
	Introduction
	Binary Constraints
	Domain Consistency
	All-Different
	GCC

	Range Consistency
	Bounds Consistency
	Puget's Propagator
	Mehlhorn and Thiel's Propagator
	Katriel and Thiel's Propagator

	Variations on the Problem

	New Propagators for the All-Different Constraint
	Introduction
	Bounds Consistency for the All-Different Constraint
	Time Complexity Analysis
	Experiments

	Range Consistency for the All-Different Constraint
	Basic Hall Intervals
	A New Algorithm for Range Consistency
	Experiments

	The All-Different Constraint on Non Integer Variables
	Beyond Integer Variables
	The All-Different Constraint on Sets
	The All-Different Constraint on Tuples
	The All-Different Constraint on Multi-Sets
	Indexing Domain Values
	Experiments

	New Propagators for the Global Cardinality Constraint
	The Upper Bound Constraint (ubc)
	The Lower Bound Constraint (lbc)
	An Iterative Algorithm for Local Consistency of the GCC
	Bounds Consistency for the GCC
	The Upper Bound Constraint (ubc)
	The Lower Bound Constraint (lbc)
	Experiments

	Range Consistency for the GCC
	Finding the Basic Characteristic Intervals
	Dynamic Case
	Experiments

	Domain Consistency for the GCC
	Matching in a Graph
	Pruning the Domains
	Dynamic Case

	The EXT-GCC Constraint
	Mixed Consistency
	Bounding the Cardinality Variables
	Domain Consistency is NP-Hard

	Universality
	Universality of the Lower Bound Constraint
	Universality of the Upper Bound Constraint

	The Global Cardinality Constraint on Non Integer Variables

	The Inter-Distance Constraint
	Introduction
	The Inter-Distance Constraint
	Towards a Quadratic Propagator
	A Quadratic Propagator
	General Scheme
	Keeping Track of Adjustment Intervals

	Experiments
	Scalability Test
	Runway Scheduling Problem

	Conclusion

	Conclusion

