
ar
X

iv
:2

31
2.

08
99

0v
1

 [
cs

.A
I]

 1
4

D
ec

 2
02

3

Proving Conjectures Acquired

by Composing Multiple Biases

Jovial Cheukam-Ngouonou1, 2, 4, Ramiz Gindullin1, 2,

Nicolas Beldiceanu1, 2, Rémi Douence1, 2, 3, Claude-Guy Quimper4

1IMT Atlantique, Nantes, France
2LS2N, Nantes, France,
3INRIA, Nantes, France,

4Université Laval, Quebec City, Canada

Abstract

We present the proofs of the conjectures mentioned in the paper pub-
lished in the proceedings of the 2024 AAAI conference [1], and discovered
by the decomposition methods presented in the same paper.

1 Introduction

Four conjectures on Digraphs are described and proved in Section 2. Then, in
Section 3, we present a conjecture for Rooted Trees and prove it.

2 Proving Four Conjectures on Digraphs Found

Using Decomposition Methods

This section presents four conjectures on Digraphs where every vertex is ad-
jacent to at least an arc.

Notations The expression (cond ?x : y) denotes x if condition cond holds, y
otherwise. We also introduce the notation [e] defined as (e ? 1 : 0).

Conjecture 1 Conj. (1) provides a sharp lower bound on the number of con-
nected components c of a digraph wrt its number of vertices v, the greatest
number of vertices c inside a connected component, and the smallest number of
vertices s in a strongly connected component (scc).

c ≥ ⌈v/c⌉+ [¬((2 · s ≤ c) ∨ (s ≥ (v mod c = 0 ? c : v mod c))] (1)

1

http://arxiv.org/abs/2312.08990v1

Conjecture 2 Conj. (2) gives a sharp lower bound c of a digraph wrt its number
of scc s, and the c and s characteristics introduced in Conj. (1).

c ≥

⌈

s

⌊c/s⌋

⌉

(2)

Conjecture 3 Conj. (3) depicts a sharp lower bound on the maximum number
of vertices s inside an scc of a digraph wrt the s and s characteristics previously
introduced.

s ≥

⌈

(v = s ? v : v − s) / (s− 1 + [s = 1])

⌉

(3)

Conjecture 4 Conj. (4) depicts a sharp lower bound on the maximum number
of vertices c inside a connected component of a digraph wrt c (the smallest num-
ber of vertices inside a connected component) and the v, c and s characteristics
previously introduced.

c ≥

(

v = c · c ? c : max (s, ⌈(v − c)/(c− 1)⌉)

)

(4)

We now give the proofs for the correctness of the four bounds (1)–(4). Al-
though we do not prove that these bounds are sharp, we show for each proof by
case that each case can indeed be reached by at least one example. Most of the
proofs go along this line.

• First, we “unfold” the conjecture, i.e. we remove all its explicit or implicit
conditions to create a conjecture whose cases are mutually disjoint. Each
case consists of a precondition, and a corresponding simplified version
of the conjecture assuming the precondition holds. The term implicit
condition refers to a condition derived from the simplification of a min
(resp. max) term by assuming which part is smaller (resp. greater) than
the other part.

• Second, we usually prove by contradiction each case separately.

Tables (1), (2), and (3) resp. show the cases attached to Conj. (1), (3), and (4).
For each case, the last column of tables 1, 2, and 3 gives an example of a digraph
that reaches the corresponding bound. Note that, Conj. (2) has a single case
and does not require to partition the formula.

Proof of Conj. (1). We associate three conditions ① v mod c = 0, ②

s ≥ (v mod c = 0 ? c : v mod c), ③ 2 · s ≤ c to Conj. (1) and combine
them in a systematic way to produce a set of seven mutually incompatible cases
where the formula can be simplified as shown in Table 1. Note that the case
① ∧ ② ∧ ③ is not feasible. We now prove each of the seven incompatible cases
by contradiction.

2

Proof by contradiction of case ① ∧ ② ∧ ¬③ and case ① ∧ ¬② ∧ ③: For all
digraphs we have c · c ≥ v. But the negation of Conj. (1), namely c < ⌊v/c⌋,
implies that c · c < v, a contradiction, as the implication assumes that x <
⌊y/z⌋ ⇒ x · z < y.
Proof by contradiction of cases ¬①∧②∧③, ¬①∧②∧¬③, and ¬①∧¬②∧③:
For any digraph we have that c · c ≥ v, which implies that c ≥ ⌊v/c⌋. From
the negation of Conj. (1) we get c < ⌊v/c⌋+ 1, that is c ≤ ⌊v/c⌋. So finally we
have c = ⌊v/c⌋, and the corresponding maximum number of vertices is ⌊v/c⌋ · c,
which is strictly less than v = ⌊v/c⌋ · c + v mod c as, from the hypothesis ¬①,
we have v mod c > 0.
Proof by contradiction of case ① ∧ ¬② ∧ ¬③: We derive from the negation
of Conj. (1) a lower bound and an upper bound on the number of vertices v and
show that the lower bound exceeds the upper bound.
[Computing of a lower bound of v] By simplifying the negation of the
conjecture, namely c < ⌊v/c⌋ + 1, we obtain c ≤ ⌊v/c⌋, which implies that
c · c ≤ v.
[Computing of an upper bound of v] From ¬③ we have that each connected
component contains exactly one scc. One of these connected components has size
s, while let |ci| denote the size of each of the remaining connected components

(with i ∈ [1, c− 1]). Consequently the total number of vertices is s+
∑c−1

i=1
|ci|,

which is less than or equal to s+ (c− 1) · c.
[Deriving a contradiction] We showed that v ∈ [c · c, s + (c − 1) · c]. Hence
we should have c · c ≤ s+ (c − 1) · c. But ① implies that ¬② can be simplified
as s < c, which leads to the fact that the upper bound s+ (c− 1) · c is strictly
less than c · c, a contradiction.
Proof by contradiction of case ¬① ∧ ¬② ∧ ¬③: For any digraph we have
that c · c ≥ v. Moreover, v can be decomposed wrt c in the following way v =
⌊v/c⌋·c+v mod c. This leads to the following inequality c·c ≥ ⌊v/c⌋·c+v mod c,
which can be rewritten as c ≥ ⌊v/c⌋+(v mod c)/c. From ¬①, i.e. v mod c > 0,
and therefore c > ⌊v/c⌋, i.e. c ≥ ⌊v/c⌋ + 1. By considering the negation of
Conj. (1) we obtain c = ⌊v/c⌋+ 1, and the corresponding maximum number of
vertices is ⌊v/c⌋ · c+s, as one of the connected components must have s vertices
since, from hypothesis ¬③ each connected component contains exactly one scc.
From hypothesis ¬②, ⌊v/c⌋ · c+ s is strictly less than v = ⌊v/c⌋ · c+ v mod c, a
contradiction. �

Proof of Conj. (2). First, observe that the maximum number of scc
within a same connected component is ⌊c/s⌋. Second, as we have to dispatch
s scc in the connected components of the digraph, and as each connected com-
ponent contains at most ⌊c/s⌋ scc, we obtain the bound given by Conj. (2),
namely ⌈s/⌊c/s⌋⌉. �

Proof of Conj. (3). The proof is done by decomposing a digraph as a
partition of scc. In Table 2, we associate the two conditions ④ v = s, ⑤ s = 1 to
Conj. (3) and combine them in a systematic way to produce a set of mutually

3

incompatible cases where the formula can be simplified. Note that cases ④∧¬⑤

and ¬④ ∧ ⑤ are absent as they are not feasible.
Case ④ ∧ ⑤: This case is obvious as Condition ⑤ indicates that the digraph
has just one scc, meaning that it also corresponds to the largest and smallest
scc.
Case ¬④∧¬⑤: Now, as s > 1, let si be the number of vertices of the i-th scc of
the digraph (with i ∈ [1, s− 1]. We have

∑s−1

i=1
s ≥

∑s−1

i=1
si, which is equivalent

to s · (s − 1) ≥ v − s. Therefore s ≥ (v − s)/(s − 1), and as s ∈ N we obtain
s ≥ ⌈(v − s)/(s− 1)⌉. �

Proof of Conj. (4). The proof is done by decomposing a digraph as a
partition of connected components. We associate the following two conditions ⑥

v = c · c, ⑦ s ≥ ⌈(v − c)/(c− 1)⌉ to Conj. (4) and combine them in a systematic
way to produce a set of mutually incompatible cases where the formula can be
simplified, as shown in Table 3.
[Case ⑥∧ (⑦∨¬⑦)] As condition ⑥ indicates that every connected component
of the digraph has the size of the smallest connected component, it implies that
c = c.
[Cases ¬⑥ ∧ ⑦ and ¬⑥ ∧ ¬⑦] Let |ci| denotes the number of vertices of the
i-th connected component of a digraph (with i ∈ [1, c]). First note that for

all digraphs, as
∑c−1

i=1
c ≥

∑c−1

i=1
|ci|, we have c · (c − 1) ≥ v − c. And because

¬⑥ implies that c > 1, we have then c ≥ ⌈(v − c)/(c− 1)⌉. Therefore, as for
all digraphs we also have c ≥ s, we derive that c ≥ max (s, ⌈(v − c)/(c− 1)⌉),
which proves the two cases ¬⑥ ∧ ⑦ and ¬⑥ ∧ ¬⑦. �

3 Proving a Conjecture on Rooted Trees Found

Using Decomposition Methods

We give a conjecture about the Rooted Tree combinatorial object. As this
proof will also use the Partition combinatorial object, we start by introducing
the object Partition.

Consider the Partition combinatorial object, where each instance is a se-
quence S of integers identified by the following characteristics: n the sequence
length, nval the number of distinct values in S, m (resp. m) the number of
occurrences of the least (resp. most) frequent integer in S, m the difference
m−m.

Example 1 We have the Partition instance S = [1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4],
where the values of characteristics are n = 11, nval = 4,m = 1,m = 6,m = 5.

A Rooted Tree is an acyclic digraph where the unique vertex that has no
outgoing arc is called the root, and where a leaf is a vertex with no incoming
arc. An instance of a rooted tree T is identified by the following characteristics:
n the number of vertices of T , ℓ the number of leaves of T , d (resp. d) the

4

Cond. ① Cond. ② Cond. ③ simplified bound for c witness parameters

① ② ¬③ ⌊v/ c⌋ .







v = 1

c = 1

s = 1

c = 1

① ¬② ③ ⌊v/ c⌋ .
.







v = 2

c = 2

s = 1

c = 1

① ¬② ¬③ ⌊v/ c⌋+ 1 .
.
.





v = 9

c = 3

s = 2

c = 4

.

.
.
.

.

.

¬① ② ③ ⌊v/ c⌋+ 1 .
.







v = 3

c = 2

s = 1

c = 2.

¬① ② ¬③ ⌊v/ c⌋+ 1 .
.
.





v = 5

c = 3

s = 2

c = 2

.

.

¬① ¬② ③ ⌊v/ c⌋+ 1 .
.
.





v = 5

c = 3

s = 1

c = 2

.

.

¬① ¬② ¬③ ⌊v/ c⌋+ 2 .
.
. .

.







v = 14

c = 5

s = 3

c = 4

.

.

.

.

.

.

.

.

.

Table 1: Simplified versions of Conj. (1) wrt conditions ①, ② and ③

Cond. ④ Cond. ⑤ simplified bound for s witness parameters

④ ⑤ v .v = 1 s = 1 s = 1 s = 1

¬④ ¬⑤ ⌈(v − s)/(s− 1)⌉ . .v = 2 s = 2 s = 1 s = 1

Table 2: Simplified versions of Conj. (3) wrt conditions ④ and ⑤

minimum (resp. maximum) number of successors of the vertices of T . Conj. (5)
gives a sharp lower and upper bound on ℓ wrt n, d, and d.











d = 0 ⇒ ℓ = 1

d > 0 ⇒ ℓ ∈

[⌈

n · d+ d− d− n+ 1

d

⌉

,

⌊

n · d+ d− d− n+ 1

d

⌋]

(5)

Proof of Conj. (5). The first case is obvious as d = 0 means that the
tree has just one vertex.

To prove the second case d > 0, we first prove two conjectures of the Par-

tition object. We then represent a Rooted Tree as a Partition object and
finally derive from that representation the Conj. (5).

For the Partition object, let oi be the number of occurrences of the i-th
integer in S, and np the length of S. We have np = m +

∑nval−1

i=1
oi =

5

Cond. ⑥ Cond. ⑦ simplified bound for c witness parameters

⑥ ⑦∨¬⑦ c .

{

v = 1 c = 1

c = 1 s = 1
c = 1

¬⑥ ⑦ s .
. .{

v = 5 c = 1

c = 3 s = 3
c = 3.

.

¬⑥ ¬⑦ ⌈(v − c)/(c− 1)⌉ .
.{

v = 3 c = 1

c = 2 s = 1
c = 2.

Table 3: Simplified versions of Conj. (4) wrt conditions ⑥ and ⑦

m + m +
∑

nval−1

i=1
oi ≥ m + nval · m. And as nval ∈ N, we obtain the in-

equality nval ≤
⌊

np−m

m

⌋

, the first true conjecture found in the context of the

Partition object. We also have np = m +
∑

nval

i=2
oi = m − m +

∑

nval

i=2
oi ≤

nval ·m−m, which leads to the second true conjecture of the Partition object
nval ≥⌈(np +m)/m⌉.

Now we represent a Rooted Tree as a vector S ′ of n−1 components where
∀j ∈ [1;n− 1], the j-th component S ′[j] is the father of the vertex j when the
root is the vertex j = 0. This configuration shows that a Rooted Tree is a
Partition object where nval = n − ℓ, np = n − 1,m = d and m = d. As an
illustration, the following Rooted Tree

1 0 4

2 3 5

6

is represented by the Partition object S ′ = [0, 0, 2, 0, 3, 3] as we have S ′[1] =
S ′[2] = S ′[4] = 0,S ′[3] = 2,S ′[5] = S ′[6] = 3. So by applying the two bounds of
nval which was proven earlier, we have

⌈(np +m)/m⌉ ≤ nval ≤ ⌊(np −m)/m⌋ ⇔

⌈

(n− 1 + (d− d))/d
⌉

≤ n− ℓ ≤
⌊

(n− 1− (d− d))/d
⌋

⇔

n−
⌊

(n− 1− (d− d))/d
⌋

≤ ℓ ≤ n−
⌈

(n− 1 + (d− d))/d
⌉

⇔

⌈

n− (n− 1− (d− d))/d
⌉

≤ ℓ ≤
⌊

n− (n− 1 + (d− d))/d
⌋

which leads to the Conj. (5). �

4 Conclusion

In this report, five conjectures found by the decomposition methods introduced
in [1] were proved. Namely, four conjectures on Digraphs and one on Rooted

6

Trees. To deal with the complexity of those conjectures, various methods were
used. The method used to prove conjectures on Digraphs is enumerating all
the corresponding disjoint and simple cases of the conjectures and prove each
simple case by contradiction or deduction. The conjecture on Rooted Trees

was proved by using some properties of partitioned sets.

References

[1] Ramiz Gindullin, Nicolas Beldiceanu, Jovial Cheukam-Ngouonou, Rémi
Douence, and Claude-Guy Quimper. Composing Biases by Using CP to
Decompose Minimal Functional Dependencies for Acquiring Complex For-
mulae. Proceedings of the 38th Annual AAAI Conference on Artificial Intel-
ligence, 2024.

7

	Introduction
	Proving Four Conjectures on Digraphs Found Using Decomposition Methods
	Proving a Conjecture on Rooted Trees Found Using Decomposition Methods
	Conclusion

