University of

Waterloo
PR

Global Grammar Constraints

CLAUDE-GUY QUIMPER” AND TOBY WALSH?
“University of Waterloo, Canada, cqui nper @wat er | 0o. ca

NATIONAL
ICT AUSTRALIA

LIMITED

@ "NICTA and UNSW, Sydney, Australia, t oby. wal sh@i ct a. com au

ABSTRACT

We consider global constraints over a sequence of vari-
ables which restrict the values assigned to be a string
within a given language defined by a grammar or au-
tomaton. Such constraints are useful in a wide range
of scheduling, rostering and sequencing problems. For
regular languages, we gave a simple encoding into
ternary constraints that can be used to enforce GAC in
time linear in the number of variables. We study a num-
ber of extensions including regular languages speci-
fied by non-deterministic automata, and soft and cyclic
versions of the global constraint. For context-free lan-
guages, we give two propagators which enforce GAC
based on the CYK and Earley parsers.

1 Introduction

Consider a language £ , we want to maintain GAC on
the constraint.

X1Xy... X, €L

We propose some propagators specialized for two dif-
ferent classes of languages.

1. Regular languages

2. Context-free languages

2 Regular Languages

2.1 Regular Languages

Regular languages are those accepted by an automaton.
An automaton is fully defined by an alphabet %, a set
of states (), an initial state ¢y € (), a set of final states
F C @, and a transition table § C Q x 3 x Q.

A: <E,Q,QO,F,(5>

The following automaton ensures that an employee
works for a maximum of three consecutive shifts. A se-
quence of three consecutive shifts must be followed by
two periods of break.

2.2 Decomposition

One can decompose the REGULAR constraint into
ternary constraints. Similarly to Beldiceanu et al.
for DFAs with counters, we declare the variables
Q1, - .., Qu41 subject to the following constraints.

Q1= qo QieqQ Qn €F

(Qi, Xi, Qiy1) €0

The constraint graph is Berge-acyclic. Enforcing GAC
on the individual ternary constraints achieves GAC on
the original REGULAR constraint.

2.3 Running Time Analysis

One can propagate the TABLE constraint in O(|4|) steps
resulting in an overall time complexity of O(n|d|).

2.4 Advantages of the Decomposition

1. The REGULAR constraint can be implemented with
n simple and well studied TABLE constraints.

2. The propagation is incremental.

3. The time complexity is the same as the propagator
based on dynamic programming [Pesant 04].

4. We have access to the state variables. This can be
useful, to specify objective functions (e.g. number
of triple shifts).

2.5 NFA vs DFA

A theoretical observation suggests that DFAs have
smaller transition tables.

Maximum number of transitions
DFA QX
NFA Q*s

However, any DFA specifying the following regular ex-
pression has at least 2* states while a NFA only requires
O(k) states.

a*(ble)*e(ble)*ta*

Conclusion: DFAs are not necessarily faster to propa-
gate. The only factor that affects the running time com-
plexity is the size of the transition table §.

3 Context-Free Grammars

3.1 Definition

A context-free grammar is a set of productions whose
left-hand side is a single non-terminal symbol. For
instance, the following productions generate the lan-
guage of arithmetic expressions such as (12 — 6) x 7.

S — N
O— +[—[x]/

S—>(S) S — SOS
N —- NN N—>O|1|...‘9

3.2 CYK-Style Propagator

This bottom-up GAC propagator is based on the CYK
parser. First, we convert the grammar in its Chomsky
form.

S — AB
F—0S F— ON

B — NC N — NN
A—(C —)
O—+|—|x| S—=0/1]...]9

S — SF S — NF
B — SC
S — NN

N —0[1]...]9

We then fill in a pyramid where each block contains the
non-terminals producing the sequence at its basis.

B,N,S
N.S |B,F,N,5]
N.S | F.N.5 | BN, S |
[NS JO,ANS[] NS | CN,5 |

Domains: {3} {+,(,2} {1} {4,)}

We filter out the non-terminals that do not contribute to
the production of the non-terminal S at the summit.

Domains: {3}

Time and space complexity: O(|G|n?) where |G| is the
size of the grammar and n the number of variables.

3.3 Earley-Style Parser

This top-down GAC propagator iterates through
the variables from left to right. The tuple
(S — AbCeD,p,i,S) indicates that the production
S — AbC generates the sequence X,,,..., X;_; using
the supports in S.

1. If v € dom(Xj;), tuples of the form
(w—...ev...,p,1,S) produce
(w—...ve....pi+1,SU{X; =v}).

2. Tuples of the form (v — ...ev...,p,i,S) produce
(v — ow,i,1,() for every rule v — w € G.

3. In presence of (u—wve p,i,S), tuples of
the form (w—...eu...,q¢,p,T) produce
(w—...ue...,q,i,SUT).

After processing all variables, the tuple
(s — ue,0,n 4+ 1,5) contains the set S of supports.

Time and space complexity: O(|G|n?®) where |G| is the
size of the grammar and n the number of variables.

4 Experiments

n |Z| |Q] Pesant’s Ternary encoding
REGULAR of REGULAR
25 5 20 0.003 0.003
40 0.005 0.005
80 0.008 0.004
20 0.010 0.006
40 0.017 0.009
80 0.028 0.014
20 0.020 0.008
40 0.040 0.014
80 0.081 0.023
20 0.005 0.004
40 0.010 0.009
80 0.017 0.009
20 0.021 0.013
40 0.036 0.016
80 0.063 0.030
20 0.040 0.018
40 0.081 0.029
80 0.166 0.046

Table 1. Time in seconds to find a sequence satisfying
a randomly generated automaton either using Pesant’s
propagator for the REGULAR constraint or a ternary en-
coding using the TABLE constraint

Time to Propagate the CFG Constraint
0.8 .

CY K-Stlyle Propagatér
0.16 Early-Style Propagator

0.14
0.12

0.1
0.08
0.06
0.04

1 1 1 1
20 40 60 80
Percentage of instantiated variables

Figure 1. Time in seconds to enforce GAC on a
Context-Free Grammar constraint of 30 variables in
which the first p percents of the variables are ground.
When p = 100%, the problem degenerates to parsing a
sequence.

8 Conclusion

e We now have an easy and efficient way to imple-
ment the REGULAR constraint with both DFAs and
NFAs.

e We have two GAC propagators for the Context-
Free Grammar Constraint.

