
Linear-Time Filtering Algorithms for the Disjunctive
Constraint

Hamed Fahimi, Claude-Guy Quimper
Université Laval

Department of Computer science and Software engineering
hamed.fahimi.1@ulaval.ca , claude-guy.quimper@ift.ulaval.ca

Abstract
We present three new filtering algorithms for the
DISJUNCTIVE constraint that all have a linear
running time complexity in the number of tasks. The
first algorithm filters the tasks according to the rules
of the time tabling. The second algorithm performs an
overload check that could also be used for the
CUMULATIVE constraint. The third algorithm
enforces the rules of detectable precedences. We
introduce the new data structure time line for the last
two algorithms. The time line provides some constant
time operations that were previously implemented in
logarithmic time by the Θ-tree data structure.
Experiments show that these new algorithms are
competitive even for a small number of tasks and
outperform existing algorithms as the number of tasks
increases.

Overload check

Strategy of the algorithm: The tasks are scheduled
in non-decreasing order of the latest completion times
with the time line. If after scheduling a task i, the
earliest completion time is greater than lcti, then the
overload check fails.

Example
In the previous example, the overload check fails if
lct3 = 13.	

Experiments
Here are the tables of our experiments on the benchmarks
for the open-shop problem and job-shop problem with n jobs
and m tasks per job. The numbers indicate the ratio of the
cumulative number of backtracks performed by our
algorithms and the number of backtracks performed by the
state-of-the-art algorithms. A ratio greater than 1 means
that, within 10 minutes of computations, the state-of-the-
art algorithms explore a larger portion of the search tree.

Time-tabling
This rule exploits the fact that a task i must execute
within its compulsory part [lsti , ecti), if lsti < ecti.
Consequently, if there exists a task i with lsti < ecti
and there exists a task j that satisfies ectj > lsti, then j
has to execute after i.

Strategy of the algorithm: The algorithm sorts the
tasks in non-decreasing order of the processing times.
While iterating through the sorted tasks, it jumps over
the tasks which have compulsory parts and schedules
at the earliest possible time point. Afterwards, the
union find merges the traversed compulsory parts.
This operation reduces the number of jumps and leads
to a linear time running after processing all the tasks.	

	

Example	

Conclusion
Thanks to the constant time operation of the Union-Find data
structure, we designed the new time line data structure, to
speed up filtering algorithms for the Disjunctive constraint.

We came up with three faster algorithms to filter the
disjunctive constraint. The following table exhibits the
results.

After scheduling, the capacities decrease. Once a
capacity between two time points equals null, the
corresponding time points are merged by the Union-
Find and the earliest completion time is computed in
constant time. 	

	

Example	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

The earliest completion time is computed in constant
time with 28-14 = 14.	

	

Disjunctive constraint
Let I = {A1,…,An} be a set of tasks with unknown
starting times si, and known processing times pi. The
constraint DISJUNCTIVE([s1,…,sn]) is satisfied, if
for all pairs of tasks i and j (i ≠ j)	

 si + pi ≤ sj or sj + pj ≤ si 	

1	

 4	

 5	

 28	

1	

 4	

 5	

1	

 4	

 5	

28	

4	

 5	

 28	

 {1} → {4} → {5} → {28}
3	

 1	

 23	

 {1} → {4} → {5} → {28}
3	

 1	

 21	

 {1} → {4} → {5} → {28}
0	

 0	

 19	

 {1, 4, 5} → {28}

19	

 {1, 4, 5} → {28}

14	

19	

1	

Detectable Precedences
	

	

	

1	

 4	

 5	

 14	

13	

Algorithm	

 Previous
complexity	

Improved	

complexity	

	

Time-Tabling	

 O(n log(n))

(Ouellet &
Quimper)	

O(n)	

(Fahimi &
Quimper)	

Overload
check	

O(n log(n))���
(Vilím)	

	

O(n)	

(Fahimi &
Quimper)	

Detectable
precedences	

O(n log(n))���
(Vilím)	

	

O(n)	

(Fahimi &
Quimper)	

Job-shop problem	

This rule does not filter the search space. Rather, it
detects an inconsistency and triggers a backtrack
during the search process. 	

0	

 1	

 6	

 15	

 19	

A2
A3

A1

2	

1	

 4	

 10	

 14	

Compulsory(A1)	

 Compulsory(A2)	

4	

 10	

 14	

1	

Merged(Compulsory(A1), Compulsory(A2))

The time line data structure
Time line is a line with markers for important time
points. These time points are the release times of the
tasks and one time point that is late enough. Between
each two consecutive time points, there is a capacity
that denotes the amount of time that the resource is
available through. Initially, the capacities are equal to
the difference between the consecutive time points.
The tasks are scheduled one by one. Adding a task
runs in constant time.
	

	

This technique consists of finding the following set for
a task i:

Once this set is fully detected, one can delay the
earliest starting time of i up to ectΩi .

Open-shop problem	

Strategy of the algorithm: We introduced a new
algorithm to enforce the rule of detectable
precedences. The algorithm simultaneously iterates
over all the tasks i in non-decreasing order of ecti and
on all the tasks k in non-decreasing order of lstk, finds
the detectable precedences and filters the domains at
the end of iterating through i.

28	

