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ABSTRACT: Tactical supply-chain planning consists of deciding the amount of products produced, consumed, 
stored or transported for each period of a given time frame with a precise objective to optimize. Many mathematical 
models have been proposed but most of the time they do not exploit decision makers intuition and preferences. Mixed-
Initiative Systems (MIS) aim to solve problems in a different way, coordinating the interaction of intelligent automated 
agents and humans. MIS were developed for discrete combinatorial optimization but recently, a novel MIS approach 
has been proposed for problems showing a linear structure, like tactical supply-chain optimization. This approach 
allows a decision maker to explore a space of optimal solutions. In this paper, this scheme is improved in order to allow 
a user to explore near-optimal solutions as well. Furthermore, instead of interacting with lowly evocative bar charts, the 
decision maker uses the strongly visual map-based LogiLab user interface which allows him to view/modify in real time 
the flow between businesses of a forest-products supply chain. 
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1 INTRODUCTION 

Operation planning requires profound knowledge, solid 
experience, acute instinct, and sufficient information. 
While computers excel in treating large amounts of 
information, they often lack the knowledge and 
experience of human managers (Klau et al., 2010). This 
has led some researchers to propose Mixed-Initiative 
Systems (MIS) that promote the interaction of a human 
decision maker with an automated computing agent. 
(Allen, 1999; Hearst, 1999) 

Classical Mixed-Initiative Systems were developed for 
discrete combinatorial optimization. Recently, Hamel et 
al. (2012) proposed a MIS approach (Hamel’s method) 
for linear problems like supply chain tactical 
optimization. Within Hamel’s approach, the system pre-
computes a set of optimal solutions and the user can 
explore the solution space by interacting with bar charts 
showing the current solution. Following each variable 
modification requested by the user, the system re-
computes and displays in real time a new optimal 
solution. 

In this paper, this scheme is improved in order to allow 
the user to explore near-optimal solutions as well. 
Furthermore, instead of interacting with bar charts, the 
decision maker uses the map-based LogiLab user 
interface which allows him to view and modify in real 
time the flow between businesses of a forest-products 
supply chain. The user also has the option of editing 

solutions using aggregated results (e.g. annual flows), or 
detailed results (e.g. flows per period). 

The remainder of the paper is organized as follows. 
Section 2 presents preliminary notions on supply chain 
optimization, Mixed-Initiative Systems (MIS), and 
Hamel’s method for interactive flow optimization. 
Section 3 presents the LogiLab forest-products tactical 
supply-chain optimization system. We propose some 
modifications to its graphical user interface that allow 
using it as an MIS exploiting Hamel’s method. Then, in 
Section 4, we expand Hamel’s methods in order to allow 
the user to explore an expended set of (near-optimal) 
solutions. Section 6 presents a proof of concepts together 
with experimental results for a forest-products supply 
chain. Section 7 concludes the paper. 

2 PRELIMINARY NOTIONS 

2.1 Supply Chain Optimization (SCO) 

Supply chains are formed by a set of business units 
where processes consume resources to generate products. 
Resources can be local to the business units, like the 
hours that can be worked, or products of other processes, 
which can occur in other business units. They also 
include external resource suppliers and clients. 
Generally, products must be transported between 
business units.  
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Tactical supply-chain planning consists of computing the 
amount of products produced, consumed, stored or 
transported for each period of a given time frame with a 
precise objective to optimize. Common objectives are 
costs minimization or profit maximization. 

Such problems can easily be modeled using a linear 
programming model. They can be solved using well-
known algorithms, like the Dantzig (1955) simplex 
algorithm. 

Tactical supply-chain planning is a very important 
concern in the forest-products industry. This industry is 
facing divergent product flows (Haartveit et al., 2004). A 
single business unit produces many products at the same 
time from a single piece of raw material. This leads to an 
important interdependency between business units (e.g. 
forest operations supply many different types of 
industries at the same time, a sawmill supplies lumber to 
remanufacturing plants as well as chips to paper mills, 
etc.). Many mathematical models have been proposed 
(Jerbi et al., 2012; Singer and Donoso, 2007) but most of 
the time they do not exploit decision makers’ intuition 
and preferences. 

2.2 Mixed-Initiative Systems (MIS) 

In order to complete a complex task, one may gather 
multiple specialists of different trades relevant to the 
problem at hand. It is quite difficult to model preferences 
of many decision makers. They are often unaware of 
their own preferences before seeing a solution that 
violates them. Mixed-initiative systems aim to solve 
problems in a different way, coordinating the interaction 
of intelligent automated agents and humans (Hearst, 
1999). 

Involving humans in the search for an optimal solution 
provides multiple benefits. Humans generally 
outperform computers in visual perception and strategic 
thinking. They can also justify and improve solutions in 
which they participate, and they can implement their 
preferences and knowledge of the real world without 
complex and sometimes near-impossible mathematical 
modeling. Finally, human participation generates a 
stronger trust in the produced solution (Klau et al., 
2010). 

Most MIS-related research targets discrete combinatorial 
optimization problems such as timetabling (Kun and 
Havens, 2005), space mission planning and scheduling 
(Ai-Chang et al., 2004; Bresina and Morris, 2006, 2007), 
air traffic control (Guiost et al., 2004), military 
applications (Lenor et al., 2000; Linegang et al., 2003), 
etc. 

2.3 MIS for linear optimization 

Hamel et al. (2012) proposed an MIS approach for linear 
optimization. The system allows the user to visualize an 

implicit sub-space of optimal solutions for a given set of 
variables. The user can interactively increase or decrease 
the value of a variable and the system reacts by 
computing and displaying, in real time, the new sub-
space of optimal solutions (Figure 1). 

Figure 1. MIS concept applied to linear programming 
(Adapted from Hamel et al. 2012) 

The system works as follows. It uses a classical linear 
programming solver to compute an optimal solution to a 
problem P. Once the optimal objective value is known, it 
searches for other optimal solutions by creating a new 
instance of the problem, called P’, by adding a constraint 
forcing the objective value to be equal to the optimal 
value found for P. The space of feasible solutions of P’ 
is therefore equivalent to the space of optimal solutions 
of P. For each of the n variables xi displayed to the user, 
the system searches for a solution  that minimizes xi 
and a solution  that maximizes xi while preserving the 
optimality of the solutions. These 2n computations can 
be performed in parallel using a supercomputer.  

Then, one can display on the chart (see  

Figure 2) the range of optimality for each variable xi (the 
minimum and maximum values the variable can take in 
an optimal solution).  

 

Figure 2. An optimal solution showing the range of 
optimality for the main decision variables 

A chart like the one depicted in  

Figure 2 allows the user to see the flexibility (range of 
optimality) he has for any of the variables of interest. He 
can thus change the value of a variable within the 
optimality zone of that variable, for example by dragging 
up or down the top of a bar in the chart. Upon the 
modification of a variable, the system adjusts the value 
taken by the other variables such that the solution 
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remains feasible and optimal. Normally, this operation 
would require a lengthy complete re-optimization of the 
problem. However, we know that it is possible to 
compute a new optimal solution by generating a convex 
combination of the optimal solutions obtained from the 
previous section. To find a solution with a given variable 
assigned to a specific value, it is sufficient to compute a 
new convex combination of extreme solutions. 

This can be done in real time and it allows instantly 
refreshing the chart and displaying the impact of the user 
modification on the other variables. The user can thus 
navigate through the solution space, successively 
modifying several variables until a suitable solution is 
found. 

Figure 3 illustrates this idea for a small problem with 
two variables. The gray polygon represents the set of 
convex combinations formed by optimal solutions 
minimizing and optimizing each of the variables1.  

 

Figure 3. Available optimal zone using convex 
combinations 

When the user modifies a variable, the system not only 
looks at any point in the sub-space such that the 
modified variable takes the desired value, but it also 
looks for a solution such that the other variables move as 
little as possible so that the overall system appears to be 
stable. Given a solution x, a variable xi, and a value v, 
finding a new solution x′  where i ix v x′ = ≠  while 
changing as little as possible the values of the other 
variables is an optimization problem.  

Since we aim to have the human agent to interact in real-
time with the system, responsiveness was an important 

                                                           

1 This example (Figure 3) also shows that there could be optimal 
solutions (in white) not covered by this sub-space (in gray). This is 
why we say that the user navigates in a space (formed by convex 
combination of our extreme solutions) that is in reality a sub-space of 
the optimal solutions. 

criterion, Hamel’s method looks for a solution in the 
convex hull of the 2n precomputed solutions 

1 1, , , ,n ns s s s , a much smaller problem than the original 
one.  Hamel proposed what he called the triangular 
heuristic. First, it determines if the user asked for the 
variable xi to be increased (v > xi) or decreased (v < xi). If 
the variable is increased, he computes the unique convex 
combination between the current solution x and  that 
intersects the hyperplane . If the variable is 
decreased, he computes the unique convex combination 
between the current solution x and  that intersects the 
plane . In other words, if the decision maker 
increases xi, he sets 

 

where 

. 

If the decider decreases the variable xi, he sets 

 

where 

. 

 

Figure 4. An example of the triangular method 

In the next sections, we explain how Hamel’s method 
can be adapted to allow the user to explore an expanded 
set of (near-optimal) solutions. We also show how we 
adapted the user interface in order to allow the user to 
interact with flows on a map instead of bar charts. 

3 PROPOSED GRAPHICAL USER INTERFACE 
(GUI) FOR INTERACTIVE SUPPLY CHAIN 
TACTICAL OPTIMIZATION 

The FORAC Research Consortium developed a software 
named LogiLab to optimize and display the design and 
planning of forest-products supply chains. The 
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mathematical optimization model used by LogiLab is 
described by Jerbi et al. (2012).  

Since LogiLab’s data presentation is strongly evocative 
and natural for planners (See figure 5), we decided to use 
it as a basis for our interactive system. In the original 
LogiLab, the products flows from one business unit to 
another are presented by arcs connecting the 
corresponding nodes. The thickness of each arc is 
proportional to the volume of products that flows from 
its origin to its destination. 

As we now want to display the “range of optimality” of 
each individual variable, we proposed replacing each arc 
by a “pipe”. According to this metaphor, the diameter of 
the pipe represents the maximum value the flow variable 
can take. The colored part of the pipe represents the 
current level of goods that flows through the pipe (i.e. 
value of the variable in the current optimal solution). To 
represent the minimal value that allows for the solution 
to be optimal, the bottom part of the flow in the pipe is 
displayed with a darker color (see Figure 6). 

The simplest and most intuitive way to allow the user to 
interact with the flows (in order for him to adjust the 
value of a variable) is simply to allow him to click on the 
pipe and then drag the mouse within the range of 
optimality. However, most flows tend to be too small to 

enable proper manipulation. Therefore, when the user 
rolls the cursor over a flow, an enlarged cross-section 
appears and allows easier manipulations (see Figure 4). 

In the original LogiLab, the percentage of the total 
capacity of a business unit used is displayed using a 
rectangle similar to a progression bar (look at the colored 
rectangle under each icon in Figure 5). 

We added visualization of the range of optimality data 
for these variables using a color code similar to what we 
proposed for the flow variables. 

Figure 6 presents the graphical user interface integrating 
those concepts. It presents an interaction scenario: (1) 
The user rolls over a flow; the zoom bubble (that 
resembles the cross-section of a pipe) appears and the 
user is allowed (2) to set a new value for this flow 
variable. Finally (3), the system updates in real time the 
value of the other variables, thus computing a feasible 
solution that is still optimal. 

1. approcher le curseur 2. cliquer dur la ligne noire 3.Glisser à la valeur désiréeFigure 4. Interaction with flows within  
the proposed system 

Figure 5. LogiLab graphical user interface 
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Figure 6. Proposed graphical user interface for interactive supply chain tactical optimization 

 

(2) 

(3) 

(1) 
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4 INTRODUCING OPTIMALITY TOLERANCE 
(GAP) INTO HAMEL’S METHOD 

Hamel’s original method, even coupled to our new 
graphical user interface, only allows exploring optimal 
solutions. However, decision makers may be interested 
in exploring near-optimal solutions too (as the data used 
to model the problem are often rough estimates, it would 
be pointless to exclude solutions that decrease profit by 
only a few dollars). 

The first (naive) approach we tried to modify Hamel’s 
approach was the following. When computing solutions 
minimizing/maximizing a given variable, we tolerate a 
gap between the new solution’s profit and the optimal 
solution of the original problem. 

However, this approach does not work very well when 
using the triangular heuristic. Interaction with the system 
revealed frequent cases where adjusting a variable to 
values within the optimal space would return a near-
optimal solution while some existing optimal solutions 
would clearly be a better choice. We aim to explain the 
cause of this behavior and to propose another approach. 

With the triangular heuristic, as the values of the 
variables are interpolated between two solutions, so are 
the profit values associated to these solutions. Therefore, 
if one solution is optimal but not the other, unless the 
weight of the optimal solution is 0 and the weight of the 
non-optimal solution is 1, then the solution resulting 
from the combination of these solutions will not be 
optimal.  

This was not an issue with Hamel’s original method 
where all solutions were optimal. However, with the 
modified approach, we combine non-optimal solutions. 
This result is that the system (1) returns a non-optimal 
solution as soon as a variable is modified towards an 
extreme value associated with a non-optimal solution 
even if the target value is within the optimal range for 
that variable (see Figure 7) and (2) once a non-optimal 
solution is reached, the system does not return an 
optimal solution unless a variable is set to an extreme 
value associated with an optimal solution. 

This behavior is explained in Figure 7. In this example, 
the green area is the real optimal solution space. The 
yellow area shows how this space expands when we 
tolerate an optimality gap. In this example, we suppose 
the system first displays the solution for which y  is 
maximized and then the user asks to gradually decrease 
x . As soon as x  starts to decrease, the triangular 
heuristic gets a sub-optimal solution as it interpolates 

between y and x . This is a pity as it is clear that for 
some values for x  we could still have an optimal 
(green) solution. 

 

Figure 7. Behavior of Hamel’s original Triangular 
heuristic when provided with a solution space  

with optimality gap 

The situation is even worse for the following reason. 
Suppose we use a solver (e.g. the simplex method) to 
find a solution minimizing/maximizing a given variable, 
with the constraint that the profit of the network should 
be at least 95% of the profit of the original optimal 
solution. The simplex could return a solution 
minimizing/maximizing the variable that has a profit of 
95% even if there exists another solution where the 
variable takes the exact same value while showing a 
profit of 100%. 

To palliate this situation, we propose a multi-stage 
approach in the next subsection. 

4.1.1 Proposed multi-stage approach 

We want the system to return an optimal solution 
whenever possible. To achieve this, we need two pairs of 
solutions for each variable ix  the user is interested to 
modify. As in Hamel’s original method, one pair of 

solutions { },i ix x  minimizing/maximizing the variable 

value while preserving optimality  and another pair 

{ },i ix x  minimizing/maximizing the variable value 

obtained when the optimality constraint is relaxed 
(according to some gap specified by the user). 

We also modified the triangular heuristic to interpolate 

using tolerated extreme points ix  and ix only when 

necessary.  
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This behavior is illustrated in Figure 8. In this example, 
we suppose the system first displays the solution for 
which y  is maximized. Then the user asks to gradually 
decrease x . As long as x  is greater than the value it has 

in solution x , we interpolate between the solutions y  

and x  and the solution is  still optimal. Past that point, 

we interpolate between the solutions x  and x . 

 

Figure 8. Behavior of the multi-stage approach 

5 PROOF OF CONCEPT 

In this section, the proposed multi-stage approach is 
compared to the original Hamel method and to the 
Hamel method with tolerance. 

We consider a small linear optimization problem (wood 
flow supply chain) that we model with LogiLab. This 
problem is graphicly represented in Figure 6. Logs are 
harvested from a forest and can either be transformed 
into paper or pellets. Both products cost the same to 
produce and generate the same income per log. Paper 
demand is below production capacity, implying that a 
minimal amount of pellets must be produced to 
maximize the profit. We suppose a planning horizon of 3 
periods and we have a total of 37 variables. 

Using the Hamel’s original approach, the range of 
optimality of the variables is rather small. 

The decision maker now wants to interactively 
explore/discover near optimal solutions (max gap. 5 %) 
that best meet his preferences. Introducing tolerance 
should allow decreasing pellet production, and/or reduce 
forest harvesting volumes. 

Using the Hamel with gap tolerance approach, variables 
should provide a wider range of optimality (thanks to the 
allowed 5 % gap) but most manipulation of a variable by 
the user should lead to non-optimal solutions (even 

though variables are manipulated within  their range of 
optimality).  

With the multi-stage approach, we should have the same 
range of optimality for the variables, but a small 
modification to these variables should lead to optimal 
solutions. 

In the following experiment, we formally compare the 
approaches according to these criteria: (1) range of 
optimality of the variables, and (2) the optimality of the 
solutions that are computed after a modification to a 
variable. 

For each method, we computed the range of optimality 
of each variable. Then, for each variable, we 
incremented/decremented the variable and measured the 
gap between the new solution and the original one. 

Figure 9 shows how the range of optimality of individual 
variables are extended (in comparison to the original 
Hamel method) when we allow a 5 % gap (results are the 
same for Hamel with gap tolerance and the multi-state 
approaches).  We see no increase for 16 variables, a 5% 
increase for 6 variables (including of course the 
objective-function “profit” variable) and a 15% increase 
for 15 other variables.  
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Figure 9. Increase of the range of optimality of the 
individual variables when provided with a 5% gap on the 

solution objective function 

 

The ill effects of the Hamel with tolerance gap approach 
appeared as expected. Out of the 72 “extreme” solutions, 

( x and x  minimizing/maximizing the 36 manipulable 
variables), 52 were non-optimal.  

Except for the pellet production and the forest harvesting 
variables, even small modification to a variable leads to 
a sub-optimal solution (in which pellet production and 
forest harvesting decrease). Consequently, the system 
gives the users the false impression they cannot modify 
these variables without altering optimality. 
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Using the multi-stage approach, out of the 144 solutions 

corrresponding to , , ,x x x x , only 20 were sub-optimal 

(they correspond to the situations where x x<  or 

x x> ). All other manipulations of a variable in the 

range between x  and x  lead to optimal solution. This 
can be verified for any variable but we report results for 
one specific variable in Figure 10. For the purpose of our 
demonstration, we selected a variable that has some 
range of optimality even when the optimality gap is zero.  

The blue curve shows that using the original Hamel 
method, we can modify the variable from x  to x  and 

from x  to x  and the new computed solution is always 
optimal.  

Using the Hamel method with gap tolerance (in red) we 
leave the optimality region as soon as we move from x  

toward x .   

With the multi-stage approach (in green), the solution is 

optimal between x  and x . We leave optimality only if 

we go below x  toward x , which is the expected 
behavior. A similar behavior is shown when we move 

back to x . 
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Figure 10. Comparison of optimality of returned  
solutions during interaction. For this variable, the 

solutions for x  and x  were identical, this is why x  
does not appear in the chart. 

6 CONCLUSION 

Interactive linear optimization with human 
implication in a Mixed-Initiative System offers 
promising possibilities. Previous research has produced 
interesting results for the linear optimization problem. 
We deemed it appropriate to pursue this research through 
improvement of the mechanism by introducing 
optimality tolerance. 

We proposed a new user interface for interactive 
supply chain optimization based on the LogiLab 
graphical user interface, a software developed for supply 
chain optimization in the forest-products industry. 

We presented an experimentation that illustrates 
how the user experience of the decision makers and the 
solution space he can explore in real time can be 
expanded using the proposed approaches.  
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