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Abstract. This paper furthers the recent investigation of search heuris-
tics based on solution counting information, by proposing and evaluat-
ing algorithms to compute solution densities of variable-value pairs in
knapsack constraints. Given a domain consistent constraint, our first
algorithm is inspired from what was proposed for regular language mem-
bership constraints. Given a bounds consistent constraint, our second
algorithm draws from discrete uniform distributions. Experiments on
several problems reveal that simple search heuristics built from the in-
formation obtained by these algorithms can be very effective.

1 Introduction

Recent work on search heuristics using information about the number of solu-
tions of constraints has shown encouraging results to solve constraint satisfaction
problems [4,8]. Working at the level of individual constraints, it asks not only
whether there exists a solution in which variable x takes value d, which corre-
sponds to the familiar concept of consistency, but also how many of the solutions
feature that particular assignment. Such an approach requires efficient ways to
answer that question for each type of constraint commonly found in constraint
programs. This paper examines knapsack constraints, present in many problems.

The knapsack(x, c, �, u) constraint holds if

� ≤ cx ≤ u

where c = (c1, c2, . . . , cn) is an integer row vector, x is a column vector of finite
domain variables (x1, x2, . . . , xn)T with xi ∈ Di, and � and u are integers. To
be interpreted as a knapsack, the integer values involved (including those in the
finite domains) are non negative. We will come back to this restriction in Section
5. We assume that l and u are finite as they can always be set to the smallest
and largest value that cx can take.

To prepare us to manipulate information on the number of solutions of knap-
sack constraints, we recall some definitions and notation from [4,8].

Definition 1 (solution count). Given a constraint γ(x1, . . . , xk) and respec-
tive finite domains Di 1≤i≤k, let #γ(x1, . . . , xk) denote the number of solutions
of constraint γ, called its solution count.
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Definition 2 (solution density). Given a constraint γ(x1, . . . , xk), respective
finite domains Di 1≤i≤k, a variable xi in the scope of γ, and a value d ∈ Di, we
will call

σ(xi, d, γ) =
#γ(x1, . . . , xi−1, d, xi+1, . . . , xk)

#γ(x1, . . . , xk)

the solution density of pair (xi, d) in γ. It measures how often a certain assign-
ment is part of a solution.

In the rest of the paper, Section 2 presents the counting algorithm for knapsack
constraints on which domain consistency is enforced, Section 3 presents another
counting algorithm for bounds consistent knapsack constraints, and Section 4
reports several experiments. Final comments are given in Section 5.

2 Counting with Domain Consistent Knapsacks

In [6], Trick proposes a filtering algorithm for knapsack constraints that relies
on a graph whose structure is very similar to that of the regular constraint
[3]. He notes that every path in that graph corresponds to a solution and that
counting the number of solutions is easily obtained through a recursion without
the need to enumerate these solutions. Not surprisingly then, the computation
of solution counts and solution densities for knapsack constraints follows quite
directly from the work on the regular constraint.

We start from the reduced graph described in [6], which is a layered directed
graph G(V, A) with a vertex vi,b ∈ V for 1 ≤ i ≤ n and 0 ≤ b ≤ u whenever

∀ j ∈ [1, i], ∃ dj ∈ Dj such that
i∑

j=1

cjdj = b

and

∀ j ∈ (i, n], ∃ dj ∈ Dj such that � − b ≤
n∑

j=i+1

cjdj ≤ u − b,

and an arc (vi,b, vi+1,b′ ) ∈ A whenever

∃ d ∈ Di+1 such that ci+1d = b′ − b.

We define the following two recursions to represent the number of incoming and
outgoing paths at each node.

For every vertex vi,b ∈ V , let #ip(i, b) denote the number of paths from vertex
v0,0 to vi,b:

#ip(0, 0) = 1
#ip(i + 1, b′) =

∑

(vi,b,vi+1,b′ )∈A

#ip(i, b), 0 ≤ i < n
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Let #op(i, b) denote the number of paths from vertex vi,b to a vertex vn,b′ with
� ≤ b′ ≤ u.

#op(n, b) = 1
#op(i, b) =

∑

(vi,b,vi+1,b′ )∈A

#op(i + 1, b′), 0 ≤ i < n

The total number of paths (i.e. the solution count) is given by

#knapsack(x, c, �, u) = #op(0, 0)

in time linear in the size of the graph even though there may be exponentially
many of them. The solution density of a variable-value pair (xi, d) is given by

σ(xi, d, knapsack) =

∑
(vi−1,b,vi,b+cid)∈A #ip(i − 1, b) · #op(i, b + cid)

#op(0, 0)
.
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Fig. 1. Reduced graph for knapsack constraint 5 ≤ 3x1 + x2 + 2x3 + x4 ≤ 8 with
D1 = {0, 1, 2}, D2 = {0, 1, 3}, D3 = {0, 1, 2}, D4 = {1, 2}. Vertex labels represent the
number of incoming and outgoing paths.

In Figure 1, the left and right labels inside each vertex give the number of
incoming and outgoing paths for that vertex, respectively. Table 1 reports the
solution densities for every variable-value pair.

The time required to compute these recursions is related to the number of
arcs, which is in O(nu max1≤i≤n{|Di|}). Then each solution density computes
a summation over a subset of the arcs but each arc of the graph is involved in
at most one such summation, so the overall time complexity of computing every
solution density is O(nu max1≤i≤n{|Di|}) as well.
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Table 1. Solution densities for the example of Fig. 1

variable
value x1 x2 x3 x4

0 9/22 8/22 9/22 –
1 10/22 8/22 7/22 11/22
2 3/22 – 6/22 11/22
3 – 6/22 – –

3 Counting with Bounds Consistent Knapsacks

Knapsack constraints, indeed most arithmetic constraints, have traditionally
been handled by enforcing bounds consistency, a much cheaper form of inference.
In some situations, we may not afford to enforce domain consistency in order to
get the solution counting information we need to guide our search heuristic. Can
we still retrieve such information, perhaps not as accurately, from the weaker
bounds consistency?

Consider the variable x with domain D = [a, b]. Each value in D is equiprob-
able. We associate to x the discrete random variable X which follows a discrete
uniform distribution with probability mass function f(v), mean μ = E[X ], and
variance σ2 = V ar[X ].

f(v) =
{ 1

b−a+1 if a ≤ v ≤ b

0 otherwise
(1)

μ =
a + b

2
(2)

σ2 =
(b − a + 1)2 − 1

12
(3)

To find the distribution of a variable subject to a knapsack constraint, one
needs to find the distribution of a linear combination of uniformly distributed
random variables. Lyapunov’s central limit theorem allows us to approximate
the distribution of such a linear combination.
Theorem 1 (Lyapunov’s central limit theorem). Consider the indepen-
dent random variables X1, . . . , Xn. Let μi be the mean of Xi, σ2

i be its variance,
and r3

i = E[|Xi − μi|3] be its third central moment. If

lim
n→∞

(
∑n

i=1 r3
i )

1
3

(
∑n

i=1 σ2
i )

1
2

= 0,

then the random variable S =
∑n

i=1 Xi follows a normal distribution with mean
μS =

∑n
i=1 μi and variance σ2

S =
∑n

i=1 σ2
i .

The probability mass function of the normal distribution with mean μ and vari-
ance σ2 is the Gaussian function:

ϕ(x) =
e−

(x−μ)2

2σ2

σ
√

2π
(4)
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Note that Lyapunov’s central limit theorem does not assume that the variables
are taken from identical distributions. This is necessary since variables with
different domains have different distributions.

Lemma 1 defines an upper bound on the third central moment of the ex-
pression kX where k is a positive coefficient and X is a uniformly distributed
random variable.
Lemma 1. Let Y be a discrete random variable equal to kX such that k is a
positive coefficient and X is a discrete random variable uniformly distributed
over the interval [a, b]. The third central moment r3 = E[|Y − E[Y ]|3] is no
greater than k3(b − a)3.

Proof. The case where a = b is trivial. We prove for b−a > 0. The proof involves
simple algebraic manipulations from the definition of the expectation.

r3 =
kb∑

i=ka

|i − E[Y ]|3f(i) (5)

=
b∑

j=a

|kj − kE[X ]|3f(j) (6)

= k3
b∑

j=a

∣∣∣∣j − a + b

2

∣∣∣∣
3 1

b − a + 1
since k > 0 (7)

=
k3

b − a + 1

⎛

⎝
a+b
2∑

j=a

(
a + b

2
− j

)3

+
b∑

j= a+b
2

(
j − a + b

2

)3
⎞

⎠ (8)

=
k3

b − a + 1

⎛

⎝
b−a
2∑

j=0

j3 +

b−a
2∑

j=0

j3

⎞

⎠ (9)

≤ 2k3

b − a

b−a
2∑

j=0

j3 since b − a > 0 (10)

Let m = b−a
2 .

r3 ≤ k3

m

m∑

j=0

j3 (11)

≤ k3

m

(
1
4
(m + 1)4 − 1

2
(m + 1)3 +

1
4
(m + 1)2

)
(12)

≤ k3

m

(
m4

4
+

m3

2
+

m2

4

)
(13)

≤ k3

m

(
m4

4
+ m4 + m4

)
since m ≥ 1

2 (14)

≤ 9
4
k3m3 (15)
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Which confirms that r3 ≤ 9
32k3(b − a)3 ≤ k3(b − a)3. �	

Lemma 2 defines the distribution of a linear combination of uniformly distributed
random variables.

Lemma 2. Let Y =
∑n

i=1 ciXi be a random variable where Xi is a discrete
random variable uniformly chosen from the interval [ai, bi] and ci is a non-
negative coefficient. When n tends to infinity, the distribution of Y tends to a
normal distribution with mean

∑n
i=1 ci

ai+bi

2 and variance
∑n

i=1 c2
i

(bi−ai+1)2−1
12 .

Proof. Let Yi = ciXi be a random variable. We want to characterize the dis-
tribution of

∑n
i=1 Yi. Let mi = bi−ai

2 . The variance of the uniform distribu-

tion over the interval [ai, bi] is σ2
i = (bi−ai+1)2−1

12 = (mi+ 1
2 )2

3 − 1
12 . We have

V ar[Yi] = c2
i V ar[Xi] = c2

i σ
2
i . Let r3

i be the third central moment of Yi. By
Lemma 1, we have r3

i ≤ c3
i (bi − ai)3. Let L be the term mentioned in the condi-

tion of Lyapunov’s central limit theorem:

L = lim
n→∞

(∑n
i=1 r3

i

) 1
3

(
∑n

i=1 c2
i σ

2
i )

1
2

(16)

Note that the numerator and the denominator of the fraction are non-negative.
This implies that L itself is non-negative. We prove that L ≤ 0 as n tends to
infinity.

L ≤ lim
n→∞

(∑n
i=1 8c3

i m
3
i

) 1
3

(∑n
i=1 c2

i

(
(mi+ 1

2 )2

3 − 1
12

)) 1
2

(17)

≤ lim
n→∞

(
8

∑n
i=1 c3

i m
3
i

) 1
3

( 1
3

∑n
i=1 c2

i m
2
i

) 1
2

(18)

≤ lim
n→∞ 2

√
3 6

√√√√(
∑n

i=1 c3
i m

3
i )

2

(
∑n

i=1 c2
i m

2
i )

3 (19)

≤ lim
n→∞ 2

√
3 6

√ ∑n
i=1

∑n
j=1(cicjmimj)3∑n

i=1
∑n

j=1
∑n

k=1(cicjckmimjmk)2
(20)

Note that in the last inequality, the terms (cicjmimj)3 and (cicjckmimjmk)2

are of the same order. However, there are n times more terms in the denominator
than the numerator. Therefore, when n tends to infinity, the fraction tends to
zero which proves that L = 0 as n tends to zero. By Lyapunov’s central limit
theorem, as n tends to infinity, the expression Y =

∑n
i=1 Yi tends to a nor-

mal distribution with mean E[Y ] =
∑n

i=1 ciE[Xi] =
∑n

i=1 ci
ai+bi

2 and variance

V ar[Y ] =
∑n

i=1 c2
i V ar[Xi] =

∑n
i=1 c2

i
(bi−ai+1)2−1

12 . �	
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Fig. 2. The histogram is the actual distribution of the expression 3x + 4y + 2z for
x, y, z ∈ [0, 5]. The curve is the approximation given by the Gaussian curve with mean
μ = 22.5 and variance σ2 = 84.583.

Consider the knapsack constraint � ≤
∑n

i=1 cixi ≤ u. Let xn+1 be a variable
with domain Dn+1 = [�, u]. We obtain xj = 1

cj
(xn+1 −

∑j−1
i=1 cixi −

∑n
i=j+1 cixi).

Some coefficients in this expression might be negative. They can be made positive
by setting c′i = −ci and D′

i = [− max(Di), − min(Di)]. When n grows to infinity,
the distribution of xj tends to a normal distribution as stated in Lemma 2. In
practice, the normal distribution is a good estimation even for small values of
n. Figure 2 shows the actual distribution of the expression 3x + 4y + 2z for
x, y, z ∈ [0, 5] and its approximation by a normal distribution.

Given a variable xi subject to a knapsack constraint, Algorithm 1 returns
the assignment xi = v with the highest solution density. The for loop computes
the average mean μi and the variance σ2

i of the uniform distribution associated
to each variable xi. Lines 4 to 5 compute the mean and the variance of the
distribution of xn+1 −

∑n
j=1 cjxj while Lines 6 and 7 compute the mean and

the variance of xi = 1
ci

(xn+1 −
∑i−1

j=1 cjxj −
∑n

j=i+1 cjxj). Since this normal
distribution is symmetric and unimodal, the most likely value ki in the domain
Di is the one closest to the mean μi. The algorithm finds and returns this
value as well as its density di. The density di is computed using the normal
distribution. Since the variable xi must be assigned to a value in its domain, the
algorithm normalizes on Line 9 the distribution over the values in the interval
[min(Di), max(Di)].

Lines 1 through 5 take O(n) time to execute. Line 8 depends on the data
structure used by the solver to encode a domain. We assume that the line
takes O(log |Di|) time to execute. The summation on Line 9 can be computed
in constant time by approximating the summation with Φm,v(max(Di) + 1

2 ) −
Φm,v(min(Di) + 1

2 ) where Φm,v is the normal cumulative distribution function
with average m and variance v. The constant 1

2 is added for the continuity
correction. Other lines have a constant running time. The total complexity of
Algorithm 1 is therefore O(n+log |Di|). Note that Line 1 to Line 5 do not depend
on the value of i. Their computation can therefore be cached for subsequent calls
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for j ∈ [1, n] do1

μj ← min(Dj)+max(Dj)
2 ;2

σ2
j ← (max(Dj)−min(Dj)+1)2−1

12 ;3

E ← l+u
2 −

∑n
j=1 cjμj ;4

V ← (u−l+1)2−1
12 +

∑n
j=1 c2

jσ
2
j ;5

e ← E+ciμi
ci

;6

v ← V −c2i σ2
i

c2i
;7

ki ← argmink∈Di
|k − e|;8

di ← 1
v
√

2π
e

− (ki−e)2

2v2 ;9

return 〈xi = ki, di〉10

Algorithm 1. FindDensity([X1, . . . Xn], i) returns the assignment xi = k with
the highest density as well as its density.

to the function over the same knapsack constraint. Using this technique, finding
the variable xi ∈ {x1, . . . , xn} which has an assignment xi = k of maximum
density takes O(

∑n
i=1 log |Di|) time.

A source of alteration of the distribution are values in the interval which are
absent from the actual domain. Bounds consistency approximates the domain
of a variable with its smallest covering interval. In order to reduce the error
introduced by this approximation, one can compute the actual mean and actual
variance of a domain Di on Lines 2 and 3 instead of using the mean and the
variance of the covering interval, at a revised overall cost of O(

∑n
i=1 |Di|).

4 Experiments

We evaluated the usefulness of solution counting information from knapsack
constraints on four types of problems. The first two are benchmarks from the
literature and feature 0-1 knapsack constraints. The third one is a magic square
completion problem, featuring integer knapsack constraints. The last one is in-
spired from the area of rostering and features integer knapsack constraints as
well. These problems were chosen because they are modeled using (almost) only
knapsack constraints, in order to avoid the separate issue of combining heuristic
information from different types of constraints.

A word on the notation used for the search heuristics investigated. The prefix
“Lexico” refers to variable selection according to lexicographic order, whereas
“Dom” refers to variable selection in increasing order of domain size. Keyword
“Random” refers to random value selection. Keyword “MaxSD” refers to vari-
able/value selection in decreasing order of solution density, or solely as a value
selection heuristic if a prefix indicates a particular variable selection heuristic.
Note that densities are considered separately from every constraint. In the case
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of bounds consistency, keyword “MaxSD+” indicates that the actual mean and
variance were computed from the domains in Algorithm 1.

The experiments were performed with ILOG Solver 5.1 on a Sun Fire 4800
(1.2 GHz cpu, 16 Gb ram, 43 Gb swap) running under SunOS 5.10. Measures
reported for heuristics involving random choices are an average over five runs.

4.1 Market Split Problem

The Market Split Problem was introduced by [2] as a challenge to LP-based
branch-and-bound approaches. An optimization version of the problem exists
but it was originally introduced as a satisfaction problem. An instance consists of
m 0-1 equality knapsack constraints on the same 10(m−1) variables. Even small
instances (4 ≤ m ≤ 6) are surprisingly hard to solve by standard means. We used
the generator from [7], whose resulting instances have the same characteristics
as those used in [6] and [1]. Table 2 reports the performance of three search
heuristics with two levels of consistency on ten instances with m = 4. Note that
heuristics based on domain size do not apply here.

Table 2. Results of a few search heuristics on ten 4-30 Market Split instances generated
from [7]

consistency heuristic backtracks time (sec.)
mean min max mean min max

domain LexicoRandom 245234.2 22770 689261 180.7 17.9 443.9
LexicoMaxSD 93212.6 4634 248324 159.8 8.2 433.6

MaxSD 59870.6 7015 175596 257.3 34.5 630.4
bounds LexicoRandom 5848346.0 20671 19403712 121.3 0.4 396.9

LexicoMaxSD 2463102.0 91989 8647160 116.8 4.4 400.1
MaxSD 12543500.0 2701376 22010947 957.6 209.7 1664.7

With domain consistency. We observe that the MaxSD heuristic, based on the
solution density of variable-value pairs, achieves about a four-fold reduction in
the average number of backtracks compared to a random heuristic (variable
selection is lexicographic but the coefficients of the constraints were randomly
generated), but at the expense of slightly higher runtimes. The number of back-
tracks of LexicoRandom is consistent with what was reported in [6] with the
same domain consistency algorithm for knapsack constraints. The LexicoMaxSD
heuristic uses solution density information only to guide value selection. Since
fewer solution densities are examined (the choice of variable is fixed), the search
heuristic will be faster but probably less accurate as well. Despite a noticeable
increase in the average number of backtracks with respect to MaxSD, the average
runtime improves enough to beat LexicoRandom. The random restart strategy
was tried in combination with the heuristics but it significantly deteriorated
their performance: several instances could not be solved within the one-hour
time limit.
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Table 3. Number of backtracks of a few search heuristics on six multidimensional
knapsack instances. Instances are labeled by their size: “number of variables; number
of constraints”. A cutoff time of one hour was used.

consistency heuristic instance (#vars;#constraints)
6;11 15;11 20;11 28;11 39;6 50;6

domain LexicoRandom 0 10 157 3119 85275 –
LexicoMaxSD 0 2 56 448 39305 –

MaxSD 0 2 40 18 1438 –
bounds LexicoRandom 1 66 729 22052 176615 –

LexicoMaxSD 0 35 376 16937 98993 21532762
MaxSD 0 0 3676 260952 – –

Table 4. Runtime in seconds of a few search heuristics on six multidimensional knap-
sack instances. Instances are labeled by their size: “number of variables; number of
constraints”. A cutoff time of one hour was used.

consistency heuristic instance (#vars;#constraints)
6;11 15;11 20;11 28;11 39;6 50;6

domain LexicoRandom 0.0 0.2 2.2 79.8 912.7 –
LexicoMaxSD 0.0 0.2 1.9 22.8 795.0 –

MaxSD 0.0 0.2 1.4 2.1 57.3 –
bounds LexicoRandom 0.0 0.0 0.0 0.9 5.9 –

LexicoMaxSD 0.0 0.0 0.1 3.1 13.4 3047.7
MaxSD 0.0 0.0 0.9 72.5 – –

With bounds consistency. As expected with this weaker level of consistency, the
number of backtracks is significantly larger than with domain consistency but
most runtimes are reduced as well. The LexicoMaxSD heuristic is the fastest
overall. MaxSD does not perform well here.

4.2 Multidimensional Knapsack Problem

This set corresponds to the six mknap instances used in [5]. The mknap1 set from
the OR-Library, which are optimization problems, are transformed into satis-
faction problems by fixing the objective function to its optimal value, thereby
introducing a 0-1 equality knapsack constraint. The other constraints are up-
per bounded knapsack constraints on the same variables. The instances are of
increasing size.

Tables 3 and 4 report the performance of search heuristics on the six instances.
Among the heuristics tested, only LexicoMaxSD with bounds consistency is able
to solve the last instance within an hour. With domain consistency, we note
a correlation between increased use of exact solution densities and decreased
backtracks and runtimes. Note however that these results are not statistically
very significant because there are only three instances of reasonable size – the
instances were used because they previously appeared in [5]. It is difficult to
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Table 5. Results of a few search heuristics on twenty 9 × 9 Magic Square completion
instances with about 90% holes. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 9362.4 3 354346 27.1 7.2 661.3 1.8
DomMaxSD 694.4 2 3642 23.5 20.6 28.6 –

MaxSD 3095.1 2 50750 27.3 21.4 36.4 –
bounds DomRandom 133931.6 43 3864972 4.4 0.0 123.1 0.4

DomMaxSD 266358.0 34 3159163 12.7 0.1 145.0 1.0
DomMaxSD+ 1258030.0 281 11816592 94.8 0.3 838.6 –

MaxSD 200574.0 34 3148707 27.0 0.1 421.2 1.0
MaxSD+ 161512.0 280 757915 47.8 0.2 224.3 3.0

Table 6. Results of a few search heuristics on twenty 9 × 9 Magic Square completion
instances with about 50% holes. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 15679.0 18 341084 72.8 2.2 2020.0 –
DomMaxSD 2442.9 6 16014 14.6 2.3 96.6 –

MaxSD 3102.6 7 17969 19.6 2.6 137.4 –
bounds DomRandom 856060.1 183 17754444 36.3 0.0 744.9 0.2

DomMaxSD 1503090.0 1232 26527968 88.7 0.1 1565.0 –
DomMaxSD+ 236459.0 1023 1257436 20.1 0.1 111.1 –

MaxSD 284006.0 1098 2741124 62.3 0.2 597.1 1.0
MaxSD+ 200094.0 647 1219949 84.9 0.3 402.5 1.0

compare our results to those because in that paper only bounds consistency
was enforced on knapsack constraints. With that same level of consistency, our
heuristics do not perform as well.

4.3 Magic Square Completion Problem

This very old puzzle is built on a square n × n grid and asks that we place
the first n2 integers in the grid so that each row, column and main diagonal
sums up to the same value. A partially filled Magic Square Problem asks for
a solution, if one exists. It can be made harder to solve than the traditional
version starting from a blank grid. This time we have two types of constraints,
2n+2 integer knapsack constraints on n variables and one alldifferent constraint
on n2 variables. Note that the knapsack constraints have unit coefficients. Each
variable ranges over n2 values.

We first generated twenty 9×9 instances with about 10% of the squares al-
ready filled in. Table 5 reports our results. Our heuristics exploiting domain
consistency perform well but with a noticeable computational fixed cost proba-
bly due to the size of the underlying graph, which impacts the solution density
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computation. Despite the fact that these instances seem to have many solutions
(or maybe because of it) — a DomRandom heuristic with bounds consistency solves
almost every instance, often very fast — our heuristics based on discrete uniform
distributions perform worse than DomRandom.

We then generated twenty 9×9 instances with about half of the squares already
filled in. Table 6 reports our results. With domain consistency, all three heuristics
solve every instance but our heuristics perform better both in terms of number of
backtracks and runtime. Our heuristics with bounds consistency require about
two orders of magnitude more backtracks but runtimes that are less than an
order of magnitude longer.

4.4 Cost-Constrained Rostering Problem

This set was constructed for this paper and is inspired from a rostering context.
Here a 25-day schedule is planned for four employees, who each day either work
a two-, three-, five-hour shift, or not at all. Every day, exactly one of each type of
shift must be covered. There is an hourly cost for making someone work, which
varies both across employees and days. For each employee, the total cost must
lie within a certain range. Finally, some employees are unavailable for certain
shifts on certain days.

An employee-centered model for this problem has 100 variables in all (one per
employee and per day), each with domain {0, 2, 3, 5}. There are 25 alldifferent
constraints on four variables each (one for each day). There are four knapsack
constraints on 25 variables each (one for each employee): the integer coefficients
corresponding to the hourly costs are drawn uniformly at random from [0, 9].
Ten unavailabilities exclude some values from the domains. We consider two
variants.

Upper-bounded costs. In this variant, the total cost for each employee is
bounded above by an integer drawn uniformly at random from [240, 260]. This
translates into upper bounded integer knapsack constraints.

Table 7. Results of a few search heuristics on ten rostering instances with upper
bounded costs. A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom 152607.6 0 2653226 197.3 0.3 3280.5 3.0
DomMaxSD 0 0 0 0.6 0.5 0.7 –

MaxSD 0 0 0 0.9 0.8 1.0 –
bounds DomRandom 644552.3 0 10692243 50.8 0.0 862.4 2.0

DomMaxSD 0 0 0 0.0 0.0 0.0 –
DomMaxSD+ 0 0 0 0.0 0.0 0.0 –

MaxSD 0 0 0 0.0 0.0 0.0 –
MaxSD+ 0 0 0 0.1 0.1 0.1 –



Counting Solutions of Knapsack Constraints 215

Table 7 reports the performance of search heuristics on ten feasible instances.
These instances are very easy for our heuristics based on solution densities, either
exact of approximate: every instance is backtrack-free. The DomRandom heuristics
leave a few instances unsolved. Refining variable selection by considering domain
size over dynamic degree did not help DomRandom but adding a random restarts
strategy made it possible to solve every instance, with an average runtime under
a second in the case of DomRandom with bounds consistency.

Exact Costs. In this variant, the total cost for each employee must equal an
integer drawn uniformly at random from [220, 240]. This translates into equal-
ity integer knapsack constraints. Table 8 reports the performance of the search
heuristics on ten feasible instances.

Table 8. Results of a few search heuristics on ten rostering instances with exact costs.
A cutoff time of one hour was used.

consistency heuristic backtracks time (sec.) # unsolved
mean min max mean min max instances

domain DomRandom – – – – – – 5.8
DomMaxSD 7.1 0 49 0.3 0.3 0.3 1.0

MaxSD 5.2 0 40 0.4 0.4 0.5 –
bounds DomRandom – – – – – – 5.3

DomMaxSD 232.0 0 1976 0.0 0.0 0.0 1.0
DomMaxSD+ 29.0 0 161 0.0 0.0 0.0 1.0

MaxSD 508.1 0 4930 0.1 0.0 0.5 –
MaxSD+ 89.0 2 560 0.1 0.1 0.2 –

Here heuristic behavior is similar for domain and bounds consistency. Even
with smallest-domain variable selection and domain (or bounds) consistency
enforced on every constraint of the problem, the behavior of the DomRandom
heuristic is very erratic, failing to solve more than half of the instances on average
and exhibiting backtrack numbers ranging from zero to almost three million. As
before, dynamic degree did not help. The addition of a random restarts strategy
on top of DomRandom helps to solve a few more instances but the overall behavior
remains the same. In contrast, our heuristics using solution densities for value
selection perform extremely well and show more robustness: low average and
maximum number of backtracks. Note however that one instance out of the ten
could not be solved by the DomMaxSD heuristic given one hour of computing time
— using solution densities for variable selection as well appears to be more robust
for this problem. A more extensive experiment with 100 similar instances still
gave very few backtracks for the MaxSD heuristic. For the “bounds consistency”
heuristics, there is a noticeable decrease of the number of backtracks when exact
means and variances are computed.
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5 Discussion

We showed how to evaluate the solution density of a set of variables subject to
a knapsack constraint. The first method based on domain consistency computes
the exact solution density. The second method approximates variable domains
with intervals as it is done with bounds consistency. The experiments generally
showed a significant advantage of search heuristics based on such information
both in the number of backtracks and the computation time. The fact that the
increased accuracy of the solution density information is almost always accompa-
nied by a decreased number of backtracks indicates that this is relevant heuristic
information.

However the experimental results so far do not clearly indicate which of the
two algorithms should be used or even when one dominates the other. It is also
unclear yet whether computing the exact mean and variance of a discrete domain
generally helps. We plan to clarify those points in a further investigation. For
the moment, we at least measured the relative error made by Algorithm 1 when
computing solution densities for the Magic Square Completion Problem. On the
instances with 90% holes, we observed a 5% error with exact mean and variance
and a 9% error with approximated mean and variance. On the instances with
50% holes, the error was 30% in the first case and 35% in the other.

We haven’t attempted here any aggregation of the solution density infor-
mation from different constraints beyond simply taking the maximum. A true
assessment of the potential of such an approach to heuristic search must consider
more ways to aggregate. For example, taking the average solution density of a
variable-value pair over the constraints in whose scope it is and choosing the pair
maximizing that average was tried on the multidimensional knapsack instances
and this outperformed the approach of [5].

Note that both solution density algorithms proposed can be easily adapted to
lift the restriction of non-negative coefficients and domain values, at the expense
of a larger graph in the case of the first algorithm. This means that the scope of
this work can be broadened to general linear constraints.
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