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Abstract

This paper studies the problem of learning parameters for global constraints such as
SEQUENCE from a small set of positive examples. The proposed technique computes
the probability of observing a given constraint in a random solution. This probability is
used to select the more likely constraint in a list of candidates. The learning method can
be applied to both soft and hard constraints.

Context

We work in collaboration with PetalMD, an expert in medical scheduling.
We are given schedules and our goal is to learn the limit constraints that were applied
in order to create a new schedule.

Here is the schedule of an employee. Can you guess the constraints that created it ?

Is it :
One in three days ?

Two in five days ?

Three of ( , ) in four days ?

SEQUENCE Constraint

AMONG(`,u, [xj, . . . , xj+k−1],V )
Ensures that variables x1, . . . , xk are assigned to values in V at least ` and at most u
times.
SEQUENCE(`,u, k , [x1, . . . , xd ],V )
Sliding of AMONG(`,u, [xj, . . . , xj+k−1],V ) over all subsequences of k consecutive
variables.

Problem Description

Why ?
Learning the set of parameters (`,u, k ,V ) of SEQUENCE.

Why ?
SEQUENCE is one of the most common constraint.
Mostly depict team preferences.
Clients express their constraints informally.

How ?
Statistical algorithm that, from a small set of positive examples, ranks all satisfied sets
of parameters by increasing probability of being observed.

Methodology

Input
A small set of positive examples given by a client
The scoped variables x1, . . . , xd
The probability of assignment xi = v , noted pv

Steps
List all sets of parameters satisfied by the given examples (candidates).
Rank the sets of parameters according to the statistical analysis.

Output
Set of parameters (`,u, k ,V ) describing the chosen SEQUENCE.

Individual Probability

The individual probability of observ-
ing a set of parameters is the sum
of probabilities of all its solutions.
In the figure below, each dot repre-
sent a solution. The bigger the dot,
the higher the probability of observ-
ing the solution.

P[S1]

Figure: Probability of observing a set of parameter S1.

Markov Chains

The Markov chain for SEQUENCE(` = 0,u = 1, k = 3, [y1, . . . , yd ],V = {1}), when
p0 = 5/6 and p1 = 1/6, is :
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Gray transitions and node are absorbed in the rejection state because they violate the
given constraint.

Probability Algorithms

We propose three different algorithms to compute the probability of a given set of
parameters for SEQUENCE(`,u, k , [x1, . . . , xd ],V ).
Let α be the vector of initial probabilities and P be the matrix of one step probabilities
associated with the Markov chain.

Method αPn Complexity

Adaptation of Zanarini & Pesant ((((αP)P) . . . )P) O(d2k)

Spectral Decomposition α(V−1DnV ) O(8k)

Decrease & Conquer α(Pn/2)1/2 O(2ωk log(d − k))

Note : O(nω) is the complexity of multiplying two matrices.

Constraint Ranking

P[S1 ∧ S2 | S1] is the probability of observing both sets of parameters knowing we
observed the first set.
The best choice is the constraint that has the lowest individual probability of being
observed in a random solution.

S1

S2 P[S1 ∧ S2 | S1] > P[S1 ∧ S2 | S2]

P[S1 ∧ S2]

P[S1]
>

P[S1 ∧ S2]

P[S2]

P[S1] < P[S2]

Soft Constraints

The Markov chain for the soft constraint
SEQUENCE(` = 0,u = 1, k = 3, [y1, . . . , yd ],V = {1}), when p0 = 5/6 and p1 = 1/6 and
when we accept 1/10 of the violations, is :
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Experiments

Table: Task oriented
Days
1 2 3

T1 A,B A
T2 B A

GCC

Table: Employee oriented

Days
1 2 3

A T1 T1 T2

B T1 T2

One task per day, per
employee

SEQUENCE

Table: Sets of instances
Uniformly Non-Uniformly

distributed tasks distributed tasks
Basic Basic

Employee subset Employee subset
Task subset Task subset
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Comparison of different methods to
 learn constraints from positive examples.

Contribution

Three algorithms to compute the probability of observing a given set of parameters for
SEQUENCE.
Improvement on solution counting for the REGULAR constraint using a simplified
automaton and a matrix representation.
Machine learning tool that can be applied to both soft and hard global constraints
that can be formulated as an automaton, such as SEQUENCE, AMONG Knapsack,
Stretch, etc.
Requires less positive examples to achieve the same results as other methods for
instances where values are uniformly distributed.
Largely better than Counting for instances with non-uniformly distributed values.
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