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Abstract
We learn constraint networks by asking the user
partial queries. That is, we ask the user to classify
assignments to subsets of the variables as positive
or negative. We provide an algorithm that, given a
negative example, focuses onto a constraint of the
target network in a number of queries logarithmic
in the size of the example. We give information
theoretic lower bounds for learning some simple
classes of constraint networks and show that our
generic algorithm is optimal in some cases. Finally
we evaluate our algorithm on some benchmarks.

1 Introduction
A major bottleneck in the use of constraint solvers is mod-
elling. How does the user write down the constraints of a
problem? Several techniques have been proposed to tackle
this bottleneck. For example, the matchmaker agent [Freuder
and Wallace, 1998] interactively asks the user to provide one
of the constraints of the target problem each time the system
proposes an incorrect solution. In Conacq.1 [Bessiere et al.,
2004; 2005], the user provides examples of solutions and non-
solutions. Based on these examples, the system learns a set
of constraints that correctly classifies all examples given so
far. This is a form passive learning. In [Lallouet et al., 2010],
a system based on inductive logic programming uses back-
ground knowledge on the structure of the problem to learn a
representation of the problem correctly classifying the exam-
ples. A last passive learner is ModelSeeker [Beldiceanu and
Simonis, 2012]. Positive examples are provided by the user
to the system which arranges each of them as a matrix and
identifies constraints in the global constraints catalog that are
satisfied by rows or columns of all examples. One weakness
of passive learning is that the user needs to provide diverse
examples for the target set of constraints to be learned.

By contrast, in an active learner like Conacq.2 [Bessiere et
al., 2007], the system proposes examples to the user to clas-
sify as solutions or non solutions. Such questions are called
membership queries [Angluin, 1987]. Such active learning
has several advantages. It can decrease the number of exam-

∗This work has been partially funded by the ANR project ANR-
10-BLA-0214 and by the EU project FP7-284715 ICON.

ples necessary to converge to the target set of constraints. An-
other advantage is that the user need not be a human. It might
be a previous system developed to solve the problem. For in-
stance, the Normind company has recently hired a constraint
programming specialist to transform their expert system for
detecting failures in electric circuits in Airbus airplanes in to
a constraint model in order to make it more efficient and eas-
ier to maintain. As another example, active learning is used
to build a constraint model that encodes non-atomic actions
of a robot (e.g., catch a ball) by asking queries of the simula-
tor of the robot in [Paulin et al., 2008]. Such active learning
introduces two computational challenges. First, how does the
system generate a useful query? Second, how many queries
are needed for the system to converge to the target set of con-
straints? It has been shown that the number of membership
queries required to converge to the target set of constraints
can be exponentially large [Bessiere and Koriche, 2012].

In this paper, we propose QUACQ (for QuickAcquisition),
an active learner that asks the user to classify partial queries.
Given a negative example, QUACQ is able to learn a con-
straint of the target constraint network in a number of queries
logarithmic in the number of variables. In fact, we identify in-
formation theoretic lower bounds on the complexity of learn-
ing constraint networks which show that QUACQ is optimal
on some simple languages. We demonstrate the promise of
this approach in practice with some experimental results.

One application for QUACQ would be to learn a general
purpose model. In constraint programming, a distinction is
made between model and data. For example, in a sudoku
puzzle, the model contains generic constraints like each sub-
square contains a permutation of the numbers. The data, on
the other hand, gives the pre-filled squares for a specific puz-
zle. As a second example, in a time-tabling problem, the
model specifies generic constraints like no teacher can teach
multiple classes at the same time. The data, on the other hand,
specifies particular room sizes, and teacher availability for a
particular time-tabling problem instance. The cost of learn-
ing the model can then be amortized over the lifetime of the
model. Another advantage of this approach is that it provides
less of a burden on the user. First, it often converges quicker
than other methods. Second, partial queries will be easier to
answer than complete queries. Third, as opposed to existing
techniques, the user does not need to give positive examples.
This might be useful if the problem has not yet been solved,



so there are no examples of past solutions.

2 Background
The learner and the user need to share some common knowl-
edge to communicate. We suppose this common knowledge,
called the vocabulary, is a (finite) set of n variables X and a
domain D = {D(Xi)}Xi∈X , where D(Xi) ⊂ Z is the finite
set of values for Xi. Given a sequence of variables S ⊆ X ,
a constraint is a pair (c, S) (also written cS), where c is a
relation over Z specifying which sequences of |S| values are
allowed for the variables S. S is called the scope of cS . A
constraint network is a set C of constraints on the vocabulary
(X,D). An assignment eY on a set of variables Y ⊆ X is
rejected by a constraint cS if S ⊆ Y and the projection eY [S]
of e on the variables in S is not in c. An assignment on X is a
solution of C iff it is not rejected by any constraint in C. We
write sol(C) for the set of solutions of C, and C[Y ] for the
set of constraints from C whose scope is included in Y .

Adapting terms from machine learning, the constraint bias,
denoted by B, is a set of constraints built from the constraint
language Γ on the vocabulary (X,D) from which the learner
builds the constraint network. A concept is a Boolean func-
tion over DX = ΠXi∈XD(Xi), that is, a map that assigns to
each e ∈ DX a value in {0, 1}. A target concept is a concept
fT that returns 1 for e if and only if e is a solution of the prob-
lem the user has in mind. A membership query ASK(e) is a
classification question asked of the user whether e is a com-
plete assignment in DX . The answer to ASK(e) is “yes” if
and only if fT (e) = 1.

To be able to use partial queries, we have an extra condi-
tion on the capabilities of the user. Even if she is not able
to articulate the constraints of her problem, she is able to de-
cide if partial assignments of X violate some requirements or
not. The target model or target constraint network is a net-
work CT such that sol(CT ) = {e ∈ DX | fT (e) = 1}.
A partial query ASK(eY ), with Y ⊆ X , is a classification
question asked of the user, where eY is a partial assignment
in DY = ΠXi∈YD(Xi). A set of constraints C accepts a
partial query eY if and only if there does not exist any con-
straint cS in C rejecting eY [S]. The answer to ASK(eY ) is
“yes” if and only if CT accepts eY . For any assignment eY
on Y , κB(eY ) denotes the set of all constraints in B rejecting
eY . A classified assignment eY is called positive or negative
example depending on whether ASK(eY ) is “yes” or “no”.

We now define convergence, which is the constraint acqui-
sition problem we are interested in. We are given a set E of
(partial) examples labelled by the user 0 or 1. We say that a
constraint network C agrees with E if C accepts all exam-
ples labelled 1 in E and does not accept those labelled 0. The
learning process has converged on the networkCL ⊆ B ifCL

agrees with E and for every other network C ′ ⊆ B agreeing
with E, we have sol(C ′) = sol(CL). If there does not exist
any CL ⊆ B such that CL agrees with E, we say that we
have collapsed. This happens when CT 6⊆ B.

3 Generic Constraint Acquisition Algorithm
We propose QUACQ, a novel active learning algorithm.
QUACQ takes as input a bias B on a vocabulary (X,D). It

asks partial queries of the user until it has converged on a
constraint network CL equivalent to the target network CT ,
or collapses. When a query is answered yes, constraints re-
jecting it are removed fromB. When a query is answered no,
QUACQ enters a loop (functions FindScope and FindC)
that will end by the addition of a constraint to CL.

3.1 Description of QUACQ

QUACQ (see Algorithm 1) initializes the network CL it will
learn to the empty set (line 1). If CL is unsatisfiable (line 3),
the space of possible networks collapses because there does
not exist any subset of the given bias B that is able to cor-
rectly classify the examples already asked of the user. In line
4, QUACQ computes a complete assignment e satisfying CL

but violating at least one constraint from B. If such an exam-
ple does not exist (line 5), then all constraints inB are implied
by CL, and we have converged. If we have not converged, we
propose the example e to the user, who will answer by yes or
no. If the answer is yes, we can remove fromB the set κB(e)
of all constraints inB that reject e (line 6). If the answer is no,
we are sure that e violates at least one constraint of the target
network CT . We then call the function FindScope to dis-
cover the scope of one of these violated constraints. FindC
will select which one with the given scope is violated by e
(line 8). If no constraint is returned (line 9), this is again
a condition for collapsing as we could not find in B a con-
straint rejecting one of the negative examples. Otherwise, the
constraint returned by FindC is added to the learned network
CL (line 10).

Algorithm 1: QUACQ: Acquiring a constraint network
CT with partial queries
CL ← ∅;1
while true do2

if sol(CL) = ∅ then return “collapse”;3

choose e in DX accepted by CL and rejected by B;4
if e = nil then return “convergence on CL”;5
if ASK(e) = yes then B ← B \ κB(e) ;6
else7

c← FindC(e,FindScope(e,∅, X, false));8
if c = nil then return “collapse”;9
else CL ← CL ∪ {c};10

The recursive function FindScope takes as parameters
an example e, two sets R and Y of variables, and a Boolean
ask query. An invariant of FindScope is that e violates at
least one constraint whose scope is a subset of R ∪ Y . When
FindScope is called with ask qery = false, we already
know whether R contains the scope of a constraint that re-
jects e (line 1). If ask qery = true we ask the user whether
e[R] is positive or not (line 2). If yes, we can remove all the
constraints that reject e[R] from the bias, otherwise we return
the empty set (line 3). We reach line 4 only in case e[R] does
not violate any constraint. We know that e[R ∪ Y ] violates a
constraint. Hence, as Y is a singleton, the variable it contains
necessarily belongs to the scope of a constraint that violates



Algorithm 2: Function FindScope: returns the scope
of a constraint in CT

function FindScope(in e,R, Y, ask query): scope;
begin

if ask query then1
if ASK(e[R]) = yes then B ← B \ κB(e[R]);2
else return ∅;3

if |Y | = 1 then return Y;4
split Y into < Y1, Y2 > such that |Y1| = d|Y |/2e ;5
S1 ← FindScope(e,R ∪ Y1, Y2, true);6
S2 ← FindScope(e,R ∪ S1, Y1, (S1 6= ∅));7
return S1 ∪ S2;8

end

e[R ∪ Y ]. The function returns Y . If none of the return con-
ditions are satisfied, the set Y is split in two balanced parts
(line 5) and we apply a technique similar1 to QUICKXPLAIN
([Junker, 2004]) to elucidate the variables of a constraint vio-
lating e[R ∪ Y ] in a logarithmic number of steps (lines 6–8).

The function FindC takes as parameter e and Y , e being
the negative example that led FindScope to find that there
is a constraint from the target network CT over the scope Y .
FindC first removes from B all constraints with scope Y
that are implied by CL because there is no need to learn them
(line 1).2 The set ∆ is initialized to all candidate constraints
violated by e (line 2). If ∆ no longer contains constraints with
scope Y (line 3), we return ∅, which will provoke a collapse
in QUACQ. In line 5, an example e′ is chosen in such a way
that ∆ contains both constraints rejecting e′ and constraints
satisfying e′. If no such example exists (line 6), this means
that all constraints in ∆ are equivalent wrt CL[Y ]. Any of
them is returned except if ∆ is empty (lines 7-8). If a suitable
example was found, it is proposed to the user for classification
(line 9). If classified positive, all constraints rejecting it are
removed from B and ∆ (line 10), otherwise we remove from
∆ all constraints accepting that example (line 11).

3.2 Example
We illustrate the behavior of QUACQ on a simple exam-
ple. Consider the set of variables X1, . . . , X5 with domains
{1..5}, a language Γ = {=, 6=}, a bias B = {=ij , 6=ij |
i, j ∈ 1..5, i < j}, and a target network CT = {=15,
6=34}. Suppose the first example generated in line 4 of
QUACQ is e1 = (1, 1, 1, 1, 1). The trace of the execution of
FindScope(e1,∅, X1 . . . X5, false) is in the table below.
Each line corresponds to a call to FindScope. Queries are
always on the variables in R. ’×’ in the column ASK means
that the previous call returned ∅, so the question is skipped.
The queries in lines 1 and 2.1 in the table permit FindScope
to remove the constraints 6=12, 6=13, 6=23 and 6=14, 6=24 from
B. Once the scope (X3, X4) is returned, FindC requires a
single example to return 6=34 and prune =34 fromB. Suppose
the next example generated by QUACQ is e2 = (1, 2, 3, 4, 5).

1The main difference is that QUACQ splits the set of variables
whereas QUICKXPLAIN splits the set of constraints.

2This operation could proactively be done in QUACQ, just after
line 10, but we preferred the lazy mode as this is a computationally
expensive operation.

Algorithm 3: Function FindC: returns a constraint of
CT with scope Y

function FindC(in e, Y ): constraint;
begin

B ← B \ {cY | CL |= cY };1
∆← {cY ∈ B[Y ] | e 6|= cY };2
if ∆ = ∅ then return ∅;3
while true do4

choose e′ in sol(CL[Y ]) such that5
∃c, c′ ∈ ∆, e′ |= c and e′ 6|= c′;
if e′ = nil then6

if ∆ = ∅ then return nil;7
else pick c in ∆; return c;8

if ASK(e′) = yes then9
B ← B \ κB(e′); ∆← ∆ \ κB(e′);10

else ∆← ∆ ∩ κB(e′);11

end

FindScope will find the scope (X1, X5) and FindC will
return =15 in a way similar to the processing of e1. The con-
straints =12,=13,=14,=23,=24 are removed from B by a
partial positive query on X1, . . . , X4 and 6=15 by FindC. Fi-
nally, examples e3 = (1, 1, 1, 2, 1) and e4 = (3, 2, 2, 3, 3),
both positive, will prune 6=25, 6=35,=45 and =25,=35, 6=45
from B respectively, leading to convergence.

call R Y ASK return
0 ∅ X1, X2, X3, X4, X5 × X3, X4

1 X1, X2, X3 X4, X5 yes X4

1.1 X1, X2, X3, X4 X5 no ∅
1.2 X1, X2, X3 X4 × X4

2 X4 X1, X2, X3 yes X3

2.1 X4, X1, X2 X3 yes X3

2.2 X4, X3 X1, X2 no ∅

3.3 Analysis
We analyse the complexity of QUACQ in terms of the number
of queries it can ask of the user. Queries are proposed to the
user in lines 6 of QUACQ, 2 of FindScope and 9 of FindC.
Proposition 1. Given a bias B built from a language Γ, a
target network CT , a scope Y , FindC uses O(|Γ|) queries
to return a constraint cY from CT if it exists.

Proof. Each time FindC asks a query, whatever the answer
of the user, the size of ∆ strictly decreases. Thus the total
number of queries asked in FindC is bounded above by |∆|,
which itself, by construction in line 2, is bounded above by
the number of constraints from Γ of arity |Y |.

Proposition 2. Given a bias B, a target network CT , an ex-
ample e ∈ DX \sol(CT ), FindScope usesO(|S| · log |X|)
queries to return the scope S of one of the constraints of CT

violated by e.

Proof. FindScope is a recursive algorithm that asks at
most one query per call (line 2). Hence, the number of queries
is bounded above by the number of nodes of the tree of recur-
sive calls to FindScope. We will show that a leaf node is



either on a branch that leads to the elucidation of a variable
in the scope S that will be returned, or is a child of a node
of such a branch. When a branch does not lead to the elu-
cidation of a variable in the scope S that will be returned,
that branch necessarily only leads to leaves that correspond
to calls to FindScope that returned the empty set. The only
way for a leaf call to FindScope to return the empty set
is to have received a no answer to its query (line 3). Let
Rchild, Ychild be the values of the parameters R and Y for a
leaf call with a no answer, andRparent, Yparent be the values
of the parameters R and Y for its parent call in the recursive
tree. From the no answer to the query ASK(e[Rchild]), we
know that S ⊆ Rchild but S * Rparent because the par-
ent call received a yes answer. Consider first the case where
the leaf is the left child of the parent node. By construction,
Rparent ( Rchild ( Rparent ∪ Yparent. As a result, Yparent
intersects S, and the parent node is on a branch that leads
to the elucidation of a variable in S. Consider now the case
where the leaf is the right child of the parent node. As we are
on a leaf, if the ask query Boolean is false, we have neces-
sarily exited from FindScope through line 4, which means
that this node is the end of a branch leading to a variable in S.
Thus, we are guaranteed that the ask query Boolean is true,
which means that the left child of the parent node returned a
non empty set and that the parent node is on a branch to a leaf
that elucidates a variable in S.

We have proved that every leaf is either on a branch that
elucidates a variable in S or is a child of a node on such a
branch. Hence the number of nodes in the tree is at most twice
the number of nodes in branches that lead to the elucidation
of a variable from S. Branches can be at most log |X| long.
Therefore the total number of queries FindScope asks is at
most 2 · |S| · log |X|, which is in O(|S| · log |X|).

Theorem 1. Given a bias B built from a language Γ of
bounded arity constraints, and a target network CT , QUACQ
uses O(|CT | · (log |X| + |Γ|)) queries to find the target net-
work or to collapse andO(|B|) queries to prove convergence.

Proof. Each time line 6 of QUACQ classifies an example as
negative, the scope of a constraint cS from CT is found in at
most |S| · log |X| queries (Proposition 2). As Γ only contains
constraints of bounded arity, either |S| is bounded and cS is
found in O(|Γ|) or we collapse (Proposition 1). Hence, the
number of queries necessary for finding CT or collapsing is
inO(|CT | · (log |X|+ |Γ|)). Convergence is obtained once B
is wiped out thanks to the examples that are classified positive
in line 6 of QUACQ. Each of these examples necessarily leads
to at least one constraint removal from B because of the way
the example is built in line 4. This gives a total inO(|B|).

4 Learning Simple Languages
In order to gain a theoretical insight into the “efficiency” of
QUACQ, we look at some simple languages, and analyze the
number of queries required to learn networks on these lan-
guages. In some cases, we show that QUACQ will learn
problems of a given language with an asymptotically opti-
mal number of queries. However, for some other languages,
a suboptimal number of queries can be necessary in the worst

case. Our analysis assumes that when generating a complete
example in line 4 of QUACQ, the solution of CL maximizing
the number of violated constraints in the bias B is chosen.

4.1 Languages for which QUACQ is optimal
Theorem 2. QUACQ learns Boolean networks on the lan-
guage {=, 6=} in an asymptotically optimal number of
queries.

Proof. (Sketch.) First, we give a lower bound on the num-
ber of queries required to learn a constraint network in this
language. Consider the restriction to equalities only. In an
instance of this language, all variables of a connected compo-
nent must be equal. This is isomorphic to the set of partitions
of n objects, whose size is given by Bell’s Number:

C(n+ 1) =

{
1 if n = 0∑n

i=1

(
n
i

)
C(n− i) if n > 0

(1)

By an information theoretic argument, at least logC(n)
queries are required to learn such a problem. This entails
a lower bound of Ω(n log n) since logC(n) ∈ Ω(n log n)
(see [De Bruijn, 1970] for the proof). The language {=, 6=}
is richer and thus requires at least as many queries.

Second, we consider the query submitted to the user in
line 6 of QUACQ and count how many times it can receive the
answer yes and no. The key observation is that an instance
of this language contains at most O(n) non-redundant con-
straints. For each no answer in line 6 of QUACQ, a new con-
straint will eventually be added to CL. Only non-redundant
constraints are discovered in this way because the query must
satisfy CL. It follows that at most O(n) such queries are an-
swered no, each one entailingO(log n) more queries through
the procedure FindScope.

Now we bound the number of yes answers in line 6 of
QUACQ. The same observation on the structure of this lan-
guage is useful here as well. We show in the complete proof
that a query maximizing the number of violations of con-
straints in the bias B while satisfying the constraints in CL

violates at least d|B|/2e constraints in B. Thus, each query
answered yes at least halves the number of constraints in B.
It follows that the query submitted in line 6 of QUACQ cannot
receive more thanO(log n) yes answers. The total number of
queries is therefore bounded by O(n log n).

The same argument holds for simpler languages ({=} and
{6=} on Boolean domains). Moreover, this is still true for {=}
on arbitrary domains.

Corollary 1. QUACQ can learn constraint networks with un-
bounded domains on the language {=} in an asymptotically
optimal number of queries.

4.2 Languages for which QUACQ is not optimal
First, we show that a Boolean constraint network on the lan-
guage {<} can be learnt with O(n) queries. Then, we show
that QUACQ requires Ω(n log n) queries.

Theorem 3. Boolean constraint networks on the language
{<} can be learned in O(n) queries.



Proof. Observe that in order to describe such a problem, the
variables can be partionned into three sets, one for variables
that must take the value 0 (i.e., on the left side of a < con-
straint), a second for variables that must take the value 1 (i.e.,
on the right side of a < constraint), and the third for uncon-
strained variables. In the first phase, we greedily partition
variables into three sets, L,R,U initially empty and standing
respectively for Left, Right and Unknown. During this phase,
we have three invariants:

1. There is no x, y ∈ U such that x < y belongs to the
target network

2. x ∈ L iff there exists y ∈ U and a constraint x < y in
the target network

3. x ∈ R iff there exists y ∈ U and a constraint y < x in
the target network

We go through all variables of the problem, one at a time.
Let x be the last variable picked. We query the user with an
assignment where x, as well as all variables in U are set to
0, and all variables in R are set to 1 (variables in L are left
unassigned). If the answer is yes, then there is no constraints
between x and any variable in y ∈ U , hence we add x to the
set of undecided variables U without breaking any invariant.
Otherwise we know that x is either involved in a constraint
y < x with y ∈ U , or a constraint x < y with y ∈ U . In or-
der to decide which way is correct, we make a second query,
where the value of x is flipped to 1 and all other variables are
left unchanged. If this second query receives a yes answer,
then the former hypothesis is true and we add x to R, other-
wise, we add it to L. Here again, the invariants still hold.

At the end of the first phase, we therefore know that vari-
ables in U have no constraints between them. However, they
might be involved in constraints with variables in L or in
R. In the second phase, we go over each undecided vari-
able x ∈ U , and query the user with an assignment where
all variables in L are set to 0, all variables in R are set to 1
and x is set to 0. If the answer is no, we conclude that there
is a constraint y < x with y ∈ L and therefore x is added
to R (and removed from U ). Otherwise, we ask the same
query, but with the value of x flipped to 1. If the answer is
no, there must exists y ∈ R such that x < y belongs to the
network, hence x is added to R (and removed from U ). Last,
if both queries get the answer yes, we conclude that x is not
constrained. When every variable has been examined in this
way, variables remaining in U are not constrained.

Theorem 4. QUACQ does not learn Boolean networks on the
language {<} with a minimal number of queries.

Proof. By Theorem 3, we know that these networks can be
learned in O(n) queries. Such networks can contain up to
n − 1 non redundant constraints. QUACQ learns constraints
one at a time, and each call to FindScope takes Ω(log n)
queries. Therefore, QUACQ requires Ω(n log n) queries.

5 Experimental Evaluation
To test the practicality of such active learning, we ran some
experiments with QUACQ. on an Intel Xeon E5462 @
2.80GHz with 16 Gb of RAM. We used several benchmarks.

Random. We generated binary random target networks with
50 variables, domains of size 10, and m binary constraints.
The binary constraints are selected from the language Γ =
{≥,≤, <,>, 6=,=}. QUACQ is initialized with the bias B
containing the complete graph of 7350 binary constraints
taken from Γ. For densities m = 12 (under-constrained) and
m = 122 (phase transition) we launched QUACQ on 100 in-
stances and report averages.
Golomb rulers. (prob006 in [Gent and Walsh, 1999]) This is
encoded as a target network with m variables corresponding
to the m marks, and constraints of varying arity. We learned
the target network encoding the 8 mark ruler. We initialized
QUACQ with a bias of 770 constraints using the language Γ =
{|xi − xj | 6= |xk − xl|, |xi − xj | = |xk − xl|, xi < xj , xi ≥
xj} including binary, ternary3 and quaternary constraints.
Zebra problem. Lewis Carroll’s zebra problem has a single
solution. The target network is formulated using 25 variables
of domain size of 5 with 5 cliques of 6= constraints and 11
additional constraints given in the description of the problem.
To check QUACQ on this problem, we fed it with a bias B
of 4450 unary and binary constraints taken from a language
with 24 basic arithmetic and distance constraints.
Sudoku. The target network of the Sudoku has 81 variables
with domains of size 9 and 810 binary 6= constraints on rows,
columns and squares. Here we fed QUACQ with a bias B of
6480 binary constraints from the language Γ = {=, 6=}.

For all our experiments we report the size |CL| of the
learned network (which can be smaller than the target net-
work due to redundant constraints), the total number #q of
queries, the number #qc of complete queries (i.e., generated
in line 6 of QUACQ), the average size q̄ of all queries, and the
average time needed to compute a query (in seconds).

5.1 QUACQ and convergence
To ensure quick converge, we want a query answered yes to
prune B as much as possible. This is best achieved when the
query generated in line 4 of QUACQ is an assignment vio-
lating a large number of constraints in B. We implemented
the max heuristic to generate a solution of CL that violates
a maximum number of constraints from B. However, this
heuristic can be time consuming as it solves an optimisation
problem. We then added a cutoff of 1 or 10 seconds to the
solver using max, which gives the two heuristics max-1 and
max-10 respectively. We also implemented a cheaper heuris-
tic that we call sol. It simply solves CL and stops at its first
solution violating at least one constraint from B.

Our first experiment was to compare max-1 and max-10 on
large problems. We observed that the performance when us-
ing max-1 is not significantly worse in number of queries than
when using max-10. For instance, on the rand 50 10 122,
#q = 1074 for max-1 and #q = 1005 for max-10. The av-
erage time for generating a query is 0.14 seconds for max-1
and 0.86 for max-10 with a maximum of 1 and 10 seconds
respectively. We then chose not to report results for max-10.

Table 1 reports the results obtained with QUACQ to reach
convergence using the heuristics max-1 and sol. A first obser-

3The ternary constraints are obtained when i = k or j = l in
|xi − xj | 6= |xk − xl|.



Table 1: Results of QUACQ learning until convergence.
|CL| #q #qc q̄ time

rand 50 10 12
max-1 12 196 34 24.04 0.23
sol 12 286 133 33.22 0.09

rand 50 10 122
max-1 86 1074 94 13.90 0.14
sol 83 1062 120 15.64 0.06

Golomb-8
max-1 91 488 101 5.12 0.32
sol 138 709 153 5.31 0.25

Zebra
max-1 60 638 64 8.22 0.15
sol 60 634 63 8.20 0.02

Sudoku 9× 9
max-1 810 8645 821 20.58 0.16
sol 810 9593 815 20.84 0.06

vation is that max-1 generally requires less queries than sol to
reach convergence. This is especially true for rand 50 10 12,
which is very sparse, and Golomb-8, which contains many
redundant constraints. If we have a closer look, these dif-
ferences are mainly explained by the fact that max-1 re-
quires significantly less complete positive queries than sol to
prune B totally and prove convergence (22 complete positive
queries for max-1 and 121 for sol on rand 50 10 12). But in
general, sol is not as bad as we could have expected. The
reason is that, except on very sparse networks, the number
of constraints from B violated ’by chance’ with sol is large
enough. The second observation is that when the network
contains a lot of redundancies, max-1 converges on a smaller
network than sol. We observed this on Golomb-8, and other
problems not reported here. The third observation is that the
average size of queries is always significantly smaller than
the number of variables in the problem. A last observation is
that sol is very fast for all its queries (see the time column).
We can expect it to be usable on even larger problems.

As a second experiment we evaluated the effect of the size
of the bias on the number of queries. On the zebra problem
we fed QUACQ with biases of different sizes and stored the
number of queries for each run. Figure 1 shows that when
|B| grows, the number of queries follows a logarithmic scale.
This is very good news as it means that learning problems
with expressive biases will scale well.

QUACQ has two main advantages over learning with mem-
bership queries, as in CONACQ. One is the small average
size of queries q̄, which are probably easier to answer by the
user. The second advantage is the time to generate queries.
Conacq.2 needs to find examples that violate exactly one con-
straint of the bias to make progress towards convergence.
This can be expensive to compute, preventing the use of
Conacq.2 on large problems. QUACQ, on the other hand, can
use cheap heuristics like max-1 and sol to generate queries.

5.2 QUACQ as a solver
Conacq.2 and ModelSeeker need complete positive examples
to learn a constraint network. By comparison, QUACQ can
learn without any complete positive example. This extends
its use to solving a single instance of a problem never solved
before. We simply need to exit QUACQ as soon as a com-
plete example is classified yes by the user. We assessed this
feature by solving a sequence of 5 instances of Sudoku, that
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Figure 1: QUACQ behavior on different bias sizes for Zebra

is, Sudoku grids with their pre-filled cells. For each of them,
QUACQ exits when the solution is found. As the goal is not
to converge we replaced max-1 by a min-1 heuristic, that is,
a heuristic that tries to satisfy as much as possible the con-
straints in B, with a cutoff at 1 second. Each run takes as
input the CL and B in the state they were at the end of the
previous run because the partially learned network is a valid
starting point for further learning. The number of queries re-
quired to solve each of the 5 instances in the sequence was
3859, 1521, 687, 135, and 34 respectively. The size of CL

after each run was 340, 482, 547, 558, and 561, respectively.
We see that for the first grid, where QUACQ starts with a
complete bias, we find the solution in only 44% of the queries
needed to QUACQ to converge (See Table 1). On each run,
QUACQ needs fewer queries to find a solution asCL becomes
closer to the target network.

6 Conclusion
We have proposed QUACQ, an algorithm that learns con-
straint networks by asking the user to classify partial assign-
ments as positive or negative. Each time it receives a neg-
ative example, the algorithm converges on a constraint of
the target network in a logarithmic number of queries. We
have shown that QUACQ is optimal on certain constraint lan-
guages. Our approach has several advantages over existing
work. First, it always converges on the target constraint net-
work in a polynomial number of queries. Second, the queries
are often much shorter than membership queries, so are eas-
ier to handle for the user. Third, as opposed to existing tech-
niques, the user does not need to provide positive examples to
converge. This last feature can be very useful when the prob-
lem has not been previously solved. Our experimental eval-
uation shows that generating good queries in QUACQ is not
computationally difficult and that when the bias increases in
size, the increase in number of queries follows a logarithmic
shape. These results are promising for the use of QUACQ on
real problems. However, problems with dense constraint net-
works (as Sudoku) require a number of queries that could be
too large for a human user. An interesting direction would be
to combine ModelSeeker and QUACQ to quickly learn global
constraints and use QUACQ to finalize the model.
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