
Beyond Finite Domains: the All Different and

Global Cardinality Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 School of Computer Science, University of Waterloo, Canada,
cquimper@math.uwaterloo.ca

2 NICTA and UNSW, Sydney, Australia, tw@cse.unsw.edu.au

Abstract. We describe how the propagator for the All-Different

constraint can be generalized to prune variables whose domains are not
just simple finite integer domains. We show, for example, how it can be
used to propagate set, multiset and tuple variables.

1 Introduction

Constraint programming has restricted itself largely to finding values for vari-
ables taken from finite integer domains. However, we might want to consider
variables representing sets [11–13], multisets [14], ordered tuples, or other struc-
tures. These variable types reduce the space needed to represent possible domain
values, improve the efficiency of constraint propagators and inherit all the usual
benefits of data abstraction like ease of debugging and code maintenance.

As an example, consider the round robin sports scheduling problem (prob026
in CSPLib). In this problem, we wish to find a schedule satisfying a number
of constraints including that a team never plays twice with another team. We
therefore would like a propagator which works on an All-Different constraint
posted on variables whose values are pairs of teams. In this paper, we consider
how to efficiently and effectively implement the All-Different constraint on
variables whose values are sets, multisets or tuples. Due to space restrictions, we
omit proofs. A longer version of the paper is available as a technical report.

2 Propagators for the All-Different Constraint

Propagating the All-Different constraint involves removing from the domain
of variables those values that cannot be part of a consistent assignment. To design
his propagator, Leconte [16] introduced the concept of Hall set based on Hall’s
work [1].

Definition 1. A Hall set is a set H of values such that the number of variables

whose domain is contained in H is equal to the cardinality of H. More formally,

H is a Hall set if and only if |H | = |{xi | dom(xi) ⊆ H}|.

To enforce domain consistency, it is necessary and sufficient to detect every
Hall set H and remove its values from the domains that are not fully contained in
H . Régin’s propagator [4] uses matching theory to detect Hall sets. Leconte [16],
Puget [17], López-Ortiz et al. [9] use simpler ways to detect Hall intervals and
achieve weaker consistencies.

3 Beyond integer variables

A propagator designed for integer variables can be applied to any type of variable
whose domain can be enumerated. For instance, let the following variables be
sets whose domains are expressed by a set of required values and a set of allowed
values. {} ⊆ S1, S2, S3, S4 ⊆ {1, 2} and {} ⊆ S5, S6 ⊆ {2, 3}. Variable domains
can be expanded as follows: S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈
{{}, {2}, {3}, {2, 3}}. By enforcing GAC on the All-Different constraint, we
obtain S1, S2, S3, S4 ∈ {{}, {1}, {2}, {1, 2}} and S5, S6 ∈ {{3}, {2, 3}}. We can
now convert the domains back to their initial representation. {} ⊆ S1, S2, S3, S4 ⊆
{1, 2} and {3} ⊆ S5, S6 ⊆ {2, 3}.

This technique always works but is not tractable in general since variable
domains might have exponential size. For instance, the domain of ∅ ⊆ Si ⊆ [1, n]
contains 2n elements. The following important lemma allows us to ignore such
variables and focus just on those with “small” domains.

Lemma 1. Let n be the number of variables and let F be a set of variables

whose domains are not contained in any Hall set. Let xi 6∈ F be a variable whose

domain contains more than n − |F | values. Then dom(xi) is not contained in

any Hall set.

Lemma 1 helps us to find variables F whose domain cannot be contained
in a Hall set. Algorithm 1 prunes the domains of n variables and ensures that
domains larger than n do not slow down the propagation.

F ← ∅
1 for xi ∈ X do if |dom(xi)| > |X| − |F | then F ← F ∪ {xi}
2 Expand domains of variables in X − F .

Propagate the All-Different constraint on variables X − F and find Hall sets H.
for xi ∈ F do dom(xi)← dom(xi)−H

3 Collapse domains of variables in X − F .

Algorithm 1: All-Different propagator for variables with large domains

To apply our new techniques, three conditions must be satisfied by the rep-
resentation of the variables: computing the size of the domain must be tractable
(Line 1), domains must be efficiently enumerable (Line 2) and efficiently com-
puted from an enumeration of values (Line 3). The next sections describe how
different representations of domains for set, multiset and tuple variables meet
these three conditions.

4 All-Different on sets

Several representations of domains have been suggested for set variables. The
most common representations use a set of required elements lb and a set of al-
lowed elements ub such that any set S satisfying lb ⊆ S ⊆ ub belongs to the
domain [11, 12]. The cardinality of dom(S) is 2|ub−lb| and can be computed in
constant time. Often, to represent more precisely the possible values, a cardinal-
ity variable C is added such that |S| ∈ dom(C). The size of the domain is then

given by
∑

j∈dom(C)

(

|ub−lb|
j−|lb|

)

and this can be computed in O(|dom(C)|) steps.

To increase the expressiveness of the domain representation, Sadler and
Gervet [6] suggest adding a lexicographic ordering constraint. We therefore say
that S1 < S2 holds if S1 comes before S2 in a lexicographical order. The new
domain representation now involves two lexicographic bounds l ≤ S ≤ u. To
compute the size of such domains, we consider the binary vector representation
where each bit of a vector corresponds to an element in ub − lb. The bit is set
to 1 if the element belongs to the set and 0 otherwise. Let a and b be the bi-
nary vector representation of the lexicographical bounds l and u. Let a − 1 be
the vector that lexicographically precedes a. Function f computes the number
of binary vectors lexicographicaly smaller than or equal to s with k bits set to
one. Assuming that

(

x

y

)

= 0 for any y < 0, the size of domain S is given by the
following equations.

|dom(S)| =
∑

k∈C

(f(b, k) − f(a − 1, k)) (1)

f([sm, . . . , s1], k) =

m
∑

i=1

si

(

i − 1

k −
∑m

j=i+1 sj

)

+ δ(s, k) (2)

δ([sm, . . . , s1], k) =

{

1 if
∑m

i=1 si = k and s0 = 0
0 otherwise

(3)

Function f can be evaluated in O(|ub− lb|) steps. The size of domain dom(S)
therefore requires O(|ub − lb||dom(C)|) steps to compute.

We can enumerate the sets in dom(S) of cardinality k for each k ∈ dom(C).
Based on the lexicographic bound l, we find the first set of cardinality k. Algo-
rithm T from Knuth [8] provides subsequent sets. Proceeding this way results in
a O(|dom(C)||ub − lb| + |dom(S)|) algorithm. When there are no lexicographic
bounds, the complexity can be reduced to O(max(|ub − lb|, |dom(S)|)).

5 All-Different on tuples

A tuple t is an ordered sequence of n elements that allows multiple occurrences.
The most common way to represent the domain of a tuple is simply by associating
an integer variable to each of the tuple components. A tuple of size n is therefore
represented by n integer variables x1, . . . , xn.

To apply an All-Different constraint to a set of tuples, a common so-
lution is to create an integer variable t for each tuple. If each component xi

ranges from 0 to ci exclusively, we add the channeling following constraint
t =

∑n

i

∏n

j=i+1 cjxi.
This technique suffers from either inefficient or ineffective channeling between

variable t and the components xi. Most constraint libraries enforce bound con-
sistency on t. A modification to the domain of xi does not necessarily affect t.
Conversely, even if all tuples encoded in dom(t) have xi 6= v, value v will most
often not be removed from dom(xi). On the other hand, enforcing domain con-
sistency typically requires O(|dom(t)|) steps which can be time consuming when
domains are large.

To address this issue, one can define a tuple variable whose domain is defined
by the domain of its components. dom(t) = dom(x1) × . . . × dom(xn). The size
of such a domain is given by |dom(t)| =

∏n

i=1 |dom(xi)| which can be computed
in O(n) steps.

As Sadler and Gervet [6] did for sets, we can add lexicographical bounds to
tuples l ≤ t ≤ u in order to better express the values the domain contains.

Let idx(v, x) be the number of values smaller than v in the domain of
the integer variable x. Assuming idx(v, x) has a running time complexity of
O(log(|dom(x)|)), the size of the domain can be evaluated in O(n+log(|dom(t)|))

steps using |dom(t)| = 1+
∑n

i=1

(

(idx(u[i], xi) − idx(l[i], xi))
∏n

j=i+1 |dom(xi)|
)

Algorithm M from Knuth [7] enumerates the domain of a tuple variable in
lexicographical order. Assuming the domain of all component variables have the
same size, this algorithm runs in O(|dom(t)|) steps which is optimal.

6 All-Different on multi-sets

Unlike sets, multi-sets allow multiple occurrences of a same element. A multi-set
can be represented by a tuple where each component indicates the multiplicity of
an element in the multi-set. All algorithms explained in Section 5 can therefore
be applied to multi-sets.

7 Indexing domain values

Propagators for the All-Different constraint, like the one proposed by Régin [4],
need to store information about the values appearing in the domains of variables.
When values are integers, a table T can store information related to value v in
entry T [v]. Algorithm 1 ensures that no more than n2 distinct values will be
handled by the propagator. When these n2 values come from a significantly
larger set of values, table T becomes very sparse. To allow better direct access,
we need to map the n2 values to an index in the interval [1, n2]. The trie data
structure retrieves the value associated to a set, a multi-set, a tuple, or any
other sequential data structure of length l in O(l) steps. This technique permits
existing propagators to work without a penalty for sparse domain values.

8 Conclusions

We have described how existing propagators for the All-Different constraint
can be generalized to prune variables whose domains are not just simple finite
integer domains. In particular, we described how it can be used to propagate set,
multi-set and tuple variables. This result can easily be generalized for the global
cardinality constraint. Many other global constraints still remain to be general-
ized to deal with variables which are not just simple integer finite domains, as
well as to variables of other types.

References

1. P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
pages 26–30, 1935.

2. J. Hopcroft and R. Karp. An n
5/2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal of Computing, 2:225–231, 1973.
3. ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.
4. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proc.

of the 12th National Conference on Artificial Intelligence, pp 362–367, 1994.
5. K. Stergiou and T. Walsh. The difference all-difference makes. In Proc. of the 16th

Int. Joint Conference on Artificial Intelligence, pages 414–419, 1999.
6. A. Sadler and C. Gervet Hybrid Set Domains to Strengthen Constraint Propaga-

tion and Reduce Symmetries In In Proc. of the 10th Int. Conference on Principles

and Practice of Constraint Programming, pp 604–618, 2004.
7. D. Knuth, Volume 4 of The Art of Computer Programming, Pre-Fascicle 2a: Gen-

erating all n-tuples, http://www-cs-faculty.stanford.edu/˜knuth/
8. D. Knuth, Volume 4 of The Art of Computer Programming, Pre-Fascicle 3a: Gen-

erating all combinations, http://www-cs-faculty.stanford.edu/˜knuth/
9. A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple

algorithm for bounds consistency of the alldifferent constraint. In Proc. of the 18th

Int. Joint Conference on Artificial Intelligence, pages 245–250, 2003.
10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling Numerical Recipes

in C: The Art of Scientific Computing, 2nd Edition Cambridge Univ. Press, 1992
11. C. Gervet Interval Propagation to Reason about Sets: Definition and Implemen-

tation of a Practical Language. CONSTRAINTS journal 1(3) (1997) p. 191-244
12. J.-F. Puget Finite set intervals. In Proc. of Workshop on Set Constraints, CP1996.
13. T. Müller and M. Müller. Finite set constraints in Oz. In F. Bry,B. Freitag,

and D. Seipel, editors, 13. Workshop Logische Programmierung, pages 104–115,
Technische Universität München, 17–19 September 1997.

14. T. Walsh Consistency and Propagation with Multiset Constraints: A Formal View-
point In Proc. of the 9th International Conference on Principles and Practice of

Constraint Programming, 2003.
15. I.P. Gent and T. Walsh CSPLib: a benchmark library for constraints Technical

report APES-09-1999, 1999.
16. M. Leconte. A bounds-based reduction scheme for constraints of difference. In

Proceedings of the Constraint-96 International Workshop on Constraint-Based Rea-

soning, pp. 19–28, 1996
17. J.-F. Puget. A Fast Algorithm for the Bound Consistency of Alldiff Constraints.

In Proc. of the 15th National Conf. on Artificiel Intelligence, pp 359–366, 1998

