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Exploiting Constraint Weights for Revision
Ordering in Arc Consistency Algorithms

Thanasis Balafoutis and Kostas Stergiou
Department of Information & Communication Systems Engineering

University of the Aegean, Greece
email: {abalafoutis,konsterg}@aegean.gr

Abstract. Coarse grained arc consistency algorithms, like
AC-3, operate by maintaining a list of arcs (or variables) that
records the revisions that are still to be performed. It is well
known that the performance of such algorithms is affected
by the order in which revisions are carried out. As a result,
several heuristics for ordering the elements of the revision
list have been proposed. These heuristics exploit information
about the original and the current state of the problem, such
as domain sizes, variable degrees, and allowed combinations
of values, to reduce the number of constraint checks and list
operations aiming at speeding up arc consistency computa-
tion. Recently, Boussemart et al. proposed novel variable or-
dering heuristics that exploit information about failures gath-
ered throughout search and recorded in the form of constraint
weights. Such heuristics are now considered as the most effi-
cient general purpose variable ordering heuristic for CSPs. In
this paper we show how information about constraint weights
can be exploited to efficiently order the revision list when
AC is applied during search. We propose a number of sim-
ple revision ordering heuristics based on constraint weights
for arc, variable, and constraint oriented implementations of
coarse grained arc consistency algorithms, and compare them
to the most efficient existing revision ordering heuristic. Im-
portantly, the new heuristics can not only reduce the num-
bers of constraints checks and list operations, but also cut
down the size of the explored search tree. Results from vari-
ous structured and random problems demonstrate that some
of the proposed heuristics can offer significant speed-ups.

1 Introduction

Among the plethora of algorithms that have been devised to
solve CSPs, the look-ahead algorithm termed MAC (main-
taining arc consistency) [16, 2] is considered as one of the
most efficient. As MAC applies arc consistency (AC) on the
problem after every variable assignment, speeding up the pro-
cess of AC application has received a lot of attention in the
literature. The numerous AC algorithms that have been pro-
posed can be classified into coarse grained and fine grained.
Typically, coarse grained algorithms like AC-3 [12] and its
extensions (e.g. AC2001/3.1 [3] and AC-3d [7]) apply succes-
sive revisions of arcs or, depending on the implementation,
variables [13]. On the other hand, fine grained algorithms like
AC-2004 [14] and AC-2007 [1] use various data structures to

apply successive revisions of variable-value-constraint triplets.
Although AC-3 does not have an optimal worst-case time
complexity, as the fine grained algorithms do, it is compet-
itive and often better in practice and has the additional ad-
vantage of being easy to implement. Further to this, some of
the extensions to AC-3 achieve optimal worst-case complexity
while preserving the simplicity of implementation and good
average case behavior.

It is well known that the way in which the list of revisions
is implemented and manipulated is an important point re-
garding the efficiency of coarse grained AC algorithms. In a
recent empirical investigation Boussemart et al. [4] showed
that a variable-oriented implementation of AC-3, as proposed
in [13], usually outperforms the standard arc-oriented imple-
mentation of [12] and the constraint-oriented implementation
of [4]. Perhaps more significantly, the order in which the ele-
ments of the revision list are processed, in any implementa-
tion, can have a notable effect on the number of constraint
checks and list insertion/removal operations. Since MAC ap-
plies AC thousands or even millions of times during search,
any savings in checks and list operations can be reflected
on the overall cpu time efficiency. Having recognized this,
Wallace and Freuder proposed a number of revision order-
ing heuristics aiming at speeding up AC processing as early
as 1992. Since then this issue has been further investigated
and alternative heuristics have been proposed [8, 7, 11, 4]. All
the proposed heuristics exploit information about the orig-
inal and the current state of the problem, such as domain
sizes, variable degrees, and allowed combinations of values, to
reduce the number of constraint checks and list operations.
However, it has to be noted that even the most successful
revision heuristic of variable-oriented propagation only offers
a 25% speed-up compared to a fifo implementation of the
revision list [4].

In recent years, powerful variable ordering heuristics have
been proposed and their integration with MAC has led to
significant speed-ups of existing solvers. The conflict-driven
weighted degree (wdeg) heuristics of Boussemart et al. are de-
signed to enhance variable selection by incorporating knowl-
edge gained during search, in particular knowledge derived
from failures [5]. These heuristics work as follows. All con-
straints are given an initial weight of 1. During search the
weight of a constraint is incremented by 1 every time the con-
straint causes a domain wipe-out (DWO) during constraint

1



propagation. The weighted degree (wdeg) of a variable is then
the sum of the weights of the constraints that include this
variable and at least another unassigned variable. The weights
are continuously updated during search by using information
learnt from previous failures. The basic wdeg heuristic selects
the variable having the largest weighted degree. In addition
to the basic wdeg heuristic, combining weighted degree and
domain size yields a heuristic that selects the variable with
the smallest ratio of current domain size to current weighted
degree (dom/wdeg). The advantage that these heuristics offer
is that they use previous search states as guidance, while older
standard heuristics either use the initial state or the current
state only.

In this paper we show how information about constraint
weights can be exploited not only to perform variable selec-
tion, but also to efficiently order the revision list when AC
is maintained during search. We investigate several new con-
straint weight based approaches to ordering the revision list
in all the alternative implementations of AC-3: arc-oriented,
variable-oriented and constraint-oriented. Experimental re-
sults from various random, academic and real world prob-
lems show that some of the proposed heuristics, when used in
conjunction with a conflict-driven variable ordering heuristic
such as dom/wdeg, demonstrate a measurable improvement
in constraint checks compared to the most efficient existing
revision ordering heuristic.

Notably, the new revision heuristics can not only reduce the
numbers of constraint checks and list operations, but also cut
down the size of the explored search tree by focusing search on
more relevant variables. Due to this, in the variable-oriented
implementation of AC-3, which is the most efficient among
the three alternatives, the new heuristics can offer significant
savings in cpu times. This opens up interesting directions for
future work since, apart from an implementation tool, revision
ordering heuristics can be viewed as methods to have a really
important impact on the search process.

The rest of the paper is organized as follows. Section 2
gives the necessary definitions and notation and briefly de-
scribes the three alternative implementations of AC-3. Section
3 summarizes existing work on revision ordering heuristics for
constraint propagation. In Section 4 we propose new revision
ordering heuristics based on constraint weights. In Section
5 we experimentally compare the proposed heuristics to the
best existing revision heuristics on a variety of problems. Con-
clusions are presented in Section 6.

2 Background

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C ),
where X is a set containing n variables {x1, x2, ..., xn}; D is a
set of domains {D(x1), D(x2), ..., D(xn)} for those variables,
with each D(xi) consisting of the possible values which xi may
take; and C is a set of constraints {c1, c2, ..., ck} between vari-
ables in subsets of X. Each ci ∈ C expresses a relation defining
which variable assignment combinations are allowed for the
variables in the scope of the constraint, vars(ci). Two vari-
ables are said to be neighbors if they share a constraint. The
arity of a constraint is the number of variables in the scope of
the constraint. A binary constraint between variables xi and
xj will be denoted by cij . In this paper we focus on binary
CSPs. However, the proposed revision ordering heuristics are

generic and can be applied on problems with constraints of
any arity.

A partial assignment is a set of tuple pairs, each tuple con-
sisting of an instantiated variable and the value that is as-
signed to it in the current search state. A full assignment is
one containing all n variables. A solution to a CSP is a full
assignment such that no constraint is violated.

An arc is a pair (c, xi) where xi ∈ vars(c). As we focus on
binary CSPs, any arc (cij , xi) will be alternatively denoted
by the pair of variables (xi,xj), where xj ∈ vars(cij). That
is, xj is the other variable involved in cij . An arc (xi,xj)
is arc consistent (AC) iff for every value a ∈ D(xi) there
exists at least one value b ∈ D(xj) such that the pair (a,b)
satisfies cij . In this case we say that b is a support of a on
arc (xi,xj). Accordingly, a is a support of b on arc (xj ,xi).
A problem is AC iff there are no empty domains and all arcs
are AC. The application of AC on a problem results in the
removal of all non-supported values from the domains of the
variables. A support check (consistency check) is a test to find
out if two values support each other. The revision of an arc
(xi,xj) using AC verifies if all values in D(xi) have supports
in D(xj). We say that a revision is fruitful if it deletes at least
one value, while it is redundant if it achieves no pruning. A
DWO-revision is one that causes a DWO. That is, it results
in an empty domain.

In the following, we will use the basic coarse grained algo-
rithm to establish arc consistency, namely, AC-3. This does
not limit the generality of the proposed heuristics as they can
be easily integrated into any coarse grained AC algorithm. In
the reported experiments we use MAC as our search algorithm
and the dom/wdeg heuristic for dynamic variable ordering.

2.1 AC-3 variants

The AC-3 arc consistency algorithm can be implemented us-
ing a variety of propagation schemes. We recall here the
three variants, as presented in [4], which respectively corre-
spond to algorithms with an arc-oriented, variable-oriented
and constraint-oriented propagation scheme.

The first one (arc-oriented propagation) is the most com-
monly presented and used because of its simple and natural
structure. Algorithm 1 depicts the main procedure. As ex-
plained, an arc is a variable pair (xi, xj) which corresponds
to a directed constraint. Hence, for each binary constraint cij

involving variables xi and xj there are two arcs, (xi, xj) and
(xj , xi). Initially, the algorithm inserts all arcs in the revision
list Q. Then, each arc (xi, xj) is removed from the list and
revised in turn. If any value in D(xi) is removed when revis-
ing (xi, xj), all arcs pointing to xi (i.e. having xi as second
element in the pair), except (xi, xj), will be inserted in Q (if
not already there) to be revised. Algorithm 2 depicts func-
tion revise(xi, xj) which seeks supports for the values of xi in
D(xj). It removes those values in D(xi) that do not have any
support in D(xj). The algorithm terminates when the list Q
becomes empty.

The variable-oriented propagation scheme was proposed by
McGregor [13] and later studied in [6]. Instead of keeping
arcs in the revision list, this variant of AC-3 keeps variables.
The main procedure is depicted in Algorithm 3. Initially, all
variables are inserted in the revision list Q. Then each variable
xi is removed from the list and each constraint involving xi
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Algorithm 1 arc-oriented AC3

1: Q ←{(xi, xj)} | cij ∈ C or cji ∈ C, i #= j
2: while Q #= ∅ do
3: select and delete an arc (xi, xj) from Q
4: if REVISE(xi, xj) then
5: Q ← Q ∪ {(xk, xi)} | cki ∈ C, k #= j
6: end if
7: end while

Algorithm 2 revise-3(xi, xj)

1: DELETE ← false
2: for each a ∈ D(xi) do
3: if ! b ∈ D(xj) such that (a, b) satisfies cij then
4: delete a from D(xi)
5: DELETE ← true
6: end if
7: end for
8: return DELETE

Algorithm 3 variable-oriented AC3

1: Q ← {xi | xi ∈ X}
2: ∀ cij ∈ C, ∀xi ∈ vars(cij), ctr(cij , xi) ← 1
3: while Q #= ∅ do
4: get xi from Q
5: for each cij | xi ∈ vars(cij) do
6: if ctr(cij , xi) = 0 then continue
7: for each xj ∈ vars(cij) do
8: if needsNotBeRevised(cij , xj) then continue
9: nbRemovals ← revise(cij , xj)

10: if nbRemovals > 0 then
11: if dom(xj) = ∅ then return false
12: Q ← Q ∪ {xj}
13: for each cjk | cjk #= cij ∧ xj ∈ vars(cjk) do
14: ctr(cjk, xj) ← ctr(cjk, xj) + nbRemovals
15: end for
16: end if
17: end for
18: for each xj ∈ vars(cij) do ctr(cij , xj) ← 0
19: end for
20: end while
21: return true

Algorithm 4 needsNotBeRevised(cij , xi) : boolean

1: return (ctr(cij , xi) > 0 and !xj ∈ vars(cij) | xj #= xi ∧
ctr(cij , xj) > 0)

is processed. For each such constraint cij we revise the arc
(xj ,xi). If the revision removes some values from the domain
of xj , then variable xj is inserted in Q (if not already there).

Function needsNotBeRevised given in Algorithm 4, is used
to determine relevant revisions. This is done by associating
a counter ctr(cij ,xi) with any arc (xi,xj). The value of the
counter denotes the number of removed values in the domain
of variable xi since the last revision involving constraint cij .
If xi is the only variable in vars(cij) that has a counter value
greater than zero, then we only need to revise arc (xj ,xi).
Otherwise, both arcs are revised.

The constraint-oriented propagation scheme is depicted in
Algorithm 5. This algorithm is an analogue to Algorithm 3.

Algorithm 5 constraint-oriented AC3

1: Q ← {cij | cij ∈ C}
2: ∀ cij ∈ C, ∀xi ∈ vars(cij), ctr(cij , xi) ← 1
3: while Q #= ∅ do
4: get cij from Q
5: for each xj ∈ vars(cij) do
6: if needsNotBeRevised(cij , xj) then continue
7: nbRemovals ← revise(cij , xj)
8: if nbRemovals > 0 then
9: if dom(xj) = ∅ then return false

10: for each cjk | cjk #= cij ∧ xj ∈ vars(cjk) do
11: Q ← Q ∪ {xj}
12: ctr(cjk, xj) ← ctr(cjk, xj) + nbRemovals
13: end for
14: end if
15: end for
16: for each xj ∈ vars(cij) do ctr(cij , xj) ← 0
17: end while
18: return true

Initially, all constraints are inserted in the revision list Q.
Then each constraint cij is removed from the list and each
variable xj ∈ vars(cij) is selected and revised. If the revision
of the selected arc (cij , xj) is fruitful, then the reinsertion of
the constraint cij in the list is needed. As in variable-oriented
scheme, the same counters are also used here to avoid useless
revisions.

3 Related work
Revision ordering heuristics is a topic that has received con-
siderable attention in the literature. The first systematic
study on this topic was carried out by Wallace and Freuder,
who proposed a number of different revision ordering heuris-
tics that can be used with the arc-oriented variant of AC3 [17].
These heuristics, which are defined for binary constraints, are
based on three major features of CSPs: (i) the number of
acceptable pairs in each constraint (the constraint size or sat-
isfiability), (ii) the number of values in each domain and (iii)
the number of binary constraints that each variable partici-
pates in (the degree of the variable). Based on these features,
they proposed three revision ordering heuristics: (i) ordering
the list of arcs by increasing relative satisfiability (sat up),
(ii) ordering by increasing size of the domain of the variables
(dom j up) and (iii) ordering by descending degree of each
variable (deg down).

The heuristic sat up counts the number of acceptable pairs
of values in each constraint (i.e the number of tuples in the
Cartesian product built from the current domains of the vari-
ables involved in the constraint) and puts constraints in the
list in ascending order of this count. Although this heuristic
reduces the list additions and constraint checks, it does not
speed up the search process. When a value is deleted from
the domain of a variable, the counter that keeps the number
of acceptable arcs has to be updated. This process is usu-
ally time consuming because the algorithm has to identify
the constraints in which the specific variable participates and
to recalculate the counters with acceptable value pairs. Also
an additional overhead is needed to reorder the list.

The heuristic dom j up counts the number of remaining
values in each variable’s current domain during search. Vari-
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ables are inserted in the list by increasing size of their do-
mains. This heuristic reduces significantly list additions and
constraint checks and is the most efficient heuristic among
those proposed in [17].

The deg down heuristic counts the current degree of each
variable. The initial degree of a variable xi is the number of
variables that share a constraint with xi. During search, the
current degree of xi is the number of unassigned variables that
share a constraint with xi. The deg down heuristic sorts vari-
ables in the list by decreasing size of their current degree. As
noticed in [17] and confirmed in [4], the (deg down) heuristic
does not offer any improvement.

Gent et al. [8] proposed another heuristic called kac. This
heuristic is based on the number of acceptable pairs of values
in each constraint and tries to minimize the constrainedness
of the resulting subproblem. Experiments have shown that
kac is time expensive but it performs less constraint checks
when compared to sat up and dom j up.

Boussemart et al. performed an empirical investigation of
the heuristics of [17] with respect to the different variants
(arc, variable and constraint) of AC-3 [4]. In addition, they
introduced some new heuristics. Concerning the arc-oriented
AC-3 variant, they have examined the dom j up as a stand
alone heuristic (called domv) or together with deg down which
is used in order to break ties (called ddeg ◦ domv). Moreover,
they proposed the ratio sat up/dom j up (called domc/domv)
as a new heuristic. Regarding the variable-oriented variant,
they adopted the domv and ddeg heuristics from [17] and
proposed a new one called remv. This heuristic corresponds
to the greatest proportion of removed values in a variable’s
domain. For the constraint-oriented variant they used domc

(the smallest current domain size) and remc (the greatest
proportion of removed values in a variable’s domain). Experi-
mental results showed that the variable-oriented AC-3 imple-
mentation with the domv revision ordering heuristic (simply
denoted dom hereafter) is the most efficient alternative.

4 Revision ordering heuristics based on
constraint weights

The heuristics described in the previous section, and espe-
cially dom, improve the performance of AC-3 (and MAC)
when compared to the classical queue or stack implementa-
tion of the revision list. This improvement in performance is
mainly due to the reduction in list additions and constraint
checks. A key principle that can also have a positive effect on
the performance is the “fail-first principle” of Haralick and
Elliot [10] which states that “to succeed, try first where you
are most likely to fail”. Considering revision ordering heuris-
tics this principle can be translated as follows: When AC is
applied during search (within an algorithm such as MAC), to
reach as early as possible a failure (DWO), order the revision
list by putting first the arc or variable which will guide you
earlier to a DWO.

To apply the “fail-first principle” in revision ordering
heuristics, we must use some metric to compute which arc
(or variable) in the AC revision list is the most probable to
cause failure. Until now, constraint weights have only been
used for variable selection. In our proposed revision ordering
heuristics, we use information about constraint weights as a
metric to order the AC revision list. These heuristics can ef-

ficiently be used in conjunction with conflict-driven variable
ordering heuristics in order to boost search.

The main idea behind these new heuristics is to handle as
early as possible potential DWO-revisions by appropriately
ordering the arcs, variables, or constraints in the revision list.
In this way the revision process of AC will be terminated ear-
lier and thus constraint checks can be significantly be reduced.
Moreover, with such a design we may be able to avoid many
redundant revisions.

Revision ordering and variable ordering heuristics have dif-
ferent tasks to perform when used in a search algorithm
like MAC. Before the appearance of conflict-driven heuristics
there was no way to achieve an interaction with each other,
i.e. the order in which the list was organized during AC was
impossible to affect the decision of which variable to select
next (and vice versa). The contribution of revision ordering
heuristics to the solver’s efficiency was limited to the reduc-
tion of list additions and constraint checks.

However, when a conflict-driven variable ordering heuristic
like wdeg or dom/weg is used, then there are cases where the
decision of which arc (or variable) to revise first can affect the
variable selection. To better illustrate this interaction we give
the following example.

Example 1 Assume we are using MAC with an arc-oriented
implementation of AC-3 to solve a CSP (X, D, C). Also as-
sume that a conflict-driven variable ordering heuristic (e.g.
dom/wdeg) is used, and that at some point during search the
following AC revision list is formed: Q={(c12, x1), (c34, x3),
(c56, x5)}. Suppose that (c12, x1) and (c56, x5) can both lead
to a DWO if they are selected first from the list. If a revision
ordering heuristic R1 selects (c12, x1) first then the DWO of
x1 will be detected and the weight of constraint c12 will in-
creased by 1. If some other revision ordering heuristic R2 se-
lects (c56, x5) first then the DWO of x5 will be detected but
this time the weight of a different constraint (c56) will in-
creased by 1. Since constraint weights affect the choices of
the variable ordering heuristic, R1 and R2 can lead to differ-
ent future decisions for variable instantiation. Thus, R1 and
R2 may guide search to different parts of the search space.

We now describe a number of new revision ordering heuris-
tics for all three AC-3 variants. It is easy to see that all these
heuristics are lightweight (i.e. cheap to compute) assuming
that the weights of constraints are updated during search.

Arc-oriented heuristics are tailored for the arc-oriented vari-
ant where the list of revisions Q stores arcs of the form
(cij ,xi). Since an arc consists of a constraint cij and a variable
xi, we can use information about the weight of the constraint,
or the weight of the variable, or both, to guide the heuristic
selection. These ideas are the basis of the proposed heuristics
described below. For each heuristic we specify the arc that it
selects.

• wcon: selects the arc (cij ,xi) such that cij has the highest
weight wcon among all constraints appearing in an arc in
Q.

• wdeg: selects the arc (cij ,xi) such that xi has the highest
weighted degree wdeg among all variables appearing in an
arc in Q.

• dom/wdeg: selects the arc (cij ,xi) such that xi has the
smallest ratio between current domain size and weighted
degree among all variables appearing in an arc in Q.
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• dom/wcon: selects the arc (cij ,xi) having the smallest ratio
between the current domain size of xi and the weight of cij

among all arcs in Q.

The call to one of the proposed arc-oriented heuristics can
be attached to line 3 of Algorithm 1.

Variable-oriented heuristics are tailored for the variable-
oriented variant of AC-3 where the list of revisions Q stores
variables. For each of the heuristics given below we specify
the variable that it selects.

• wdeg: selects the variable having the highest weighted de-
gree wdeg among all variables in Q.

• dom/wdeg: selects the variable having the smallest ratio
between current domain size and wdeg among all variables
in Q.

The call to one of the proposed variable-oriented heuristics
can be attached to line 4 of Algorithm 3. After selecting a
variable, the algorithm revises, in some order, the constraints
in which the selected variable participates (line 5). Our heuris-
tics process these constraints in descending order according to
their corresponding weight.

Finally, the constraint-oriented heuristic wcon selects a con-
straint cij from the AC revision list having the highest weight
among all constraints in Q. The call to this heuristic can be at-
tached to line 4 of Algorithm 5. One can devise more complex
constraint-oriented heuristics by aggregating the weighted de-
grees of the variables involved in a constraint. However, we
have not yet experimented with such heuristics.

5 Experiments and results
In this section we experimentally investigate the behavior of
the new revision ordering heuristics proposed above on sev-
eral classes of real, toy and random problems1. In our experi-
ments we included both satisfiable and unsatisfiable instances.
We only give results for the two most significant arc consis-
tency variants: arc and variable oriented. We have excluded
the constraint-oriented variant since this is not as competitive
as the other two [4].

We compare our heuristics with dom, the most efficient pre-
viously proposed revision ordering heuristic. We also include
results from the standard fifo implementation of the revision
list which always selects the oldest element in the list (i.e. the
list is implemented as a queue). In our tests we have used the
following measures of performance: cpu time in seconds (t),
number of visited nodes (n) and number of constraint checks
(c). The solver we used applies d-way branching, dom/wdeg
for variable ordering and lexicographic value ordering. It also
employs restarts. Concerning the restart policy, the initial
number of allowed backtracks for the first run has been set
to 10 and at each new run the number of allowed backtracks
increases by a factor of 1.5.

Tables 1 and 2 show results from some real-world RLFAP
instances. In the arc-oriented implementation of AC-3 (Ta-
ble 1), heuristics wcon, mainly, and dom/wcon, to a lesser
extent, decrease the number of constraint checks compared to
dom. However, the decrease is not substantial and is rarely
translated into a decrease in cpu times. The notable speed-up

1 (http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/)

Table 1. Cpu times (t), constraint checks (c) and nodes (n)
from frequency allocation problems (hard instances) using arc and

variable oriented propagation. The s prefix stands for scen
instances. Best cpu time is in bold.

ARC ORIENTED
Inst. queue dom wcon wdeg d/wdeg d/wcon
s11-f9 t 17,1 11,7 13,3 13,5 17,3 12,9

c 18M 13,9M 9,5M 15M 15,1M 12,1M
n 1760 1688 1689 1671 1681 1697

s11-f8 t 34,2 18,5 20,5 20 26 21,4
c 33,5M 21,1M 13,8M 21,7M 23,7M 19,8M
n 2902 2679 2699 2746 2682 2822

s11-f7 t 234,6 133,5 154,9 241,7 187,5 297,2
c 193,1M 114,7M 92,5M 202,5M 147,6M 215,9M
n 25830 21571 23334 30185 22427 43695

s11-f6 t 518 423,9 281,9 492,4 760,8 361,2
c 347M 336,9M 166,1M 372,1M 536,3M 261M
n 68225 73235 42541 71918 99874 52512

s11-f5 t 2571 2102 2792 2947 2641 2088
c 1,793G 1,539G 1,509G 2,107G 1,868G 1,414G
n 310,4M 318,3M 440,2M 378,1M 272,3M 274,3M

s11-f4 t 10220 7084 7523 9464 11409 9543
c 7,150G 5,075G 3,812G 6,490G 7,706G 6,186G
n 1,103G 1,038G 1,116G 1,219G 1,245G 1,152G

observed for problem s11-f6 is mainly attributed to the re-
duction in node visits offered by the two new heuristics. wdeg
and dom/wdeg are less competitive, indicating that informa-
tion about the variables involved in arcs is less important
compared to information about constraints.

The variable-oriented implementation (Table 2) is clearly
more efficient than the arc-oriented one. This confirms the
results of [4]. Concerning this implementation, heuristic
dom/wdeg outperforms dom and queue both in node visits
and checks. Importantly, these savings are reflected on no-
table cpu time gains making the variable-oriented dom/wdeg
the overall winner. Results also show that as the instances
becomes harder, the efficiency of dom/wdeg heuristic com-
pared to dom increases. The variable-oriented wdeg heuristic
in most cases outperforms dom but is clearly less efficient than
dom/wdeg.

Table 2. Cpu times (t), constraint checks (c) and nodes (n)
from frequency allocation problems (hard instances) using arc and

variable oriented propagation. The s prefix stands for scen
instances. Best cpu time is in bold.

VARIABLE ORIENTED
Inst. queue dom wdeg d/wdeg
s11-f9 t 16,2 9,3 9,9 9

c 16,3M 8,2M 9,3M 7,9M
n 1767 1635 1677 1664

s11-f8 t 30,1 15,8 16,9 15,2
c 30,3M 12,4M 14,7M 12,1M
n 2879 2697 2679 2695

s11-f7 t 187,3 144,1 140,8 98,6
c 139,1M 84,1M 113,4M 59,5M
n 26139 27485 21332 19298

s11-f6 t 286 356,3 395,8 245,6
c 220,3M 189,4M 297,6M 138,6M
n 36331 68391 60919 46174

s11-f5 t 2254 2966 1840 1579
c 1,492G 1,522G 1,081G 832,8M
n 327,9M 582,1M 278,9M 292,6M

s11-f4 t 12729 10806 8648 6077
c 8,676G 5,405G 4,975G 3,110G
n 1,682G 1,982G 1,374G 1,048G

In Table 3 we present results from structured instances
belonging to benchmark classes langford and driver. As the
variable-oriented AC-3 variant is more efficient than the arc-
oriented one, we only present results from the former. Results
show that on easy problems all heuristics except queue are
quite competitive. But as the difficulty of the problem in-
creases, the improvement offered by the dom/wdeg revision
heuristic becomes clear. On instance driverlogw-09 we can see
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the effect that weight based revision ordering heuristics can
have on search. dom/wdeg cuts down the number of node vis-
its by more than 5 times resulting in a similar speed-up. It is
interesting that dom/wdeg is considerably more efficient than
wdeg and dom, indicating that information about domain size
or weighted degree alone is not sufficient to efficiently order
the revision list.

Table 3. Cpu times (t), constraint checks (c) and nodes (n)
from structured problems using variable oriented propagation.

Best cpu time is in bold.

Instance queue dom wdeg d/wdeg
langford-2-9 t 49,4 42,7 55 42,1

c 71,7M 58,8M 71,9M 58,7M
n 71729 58897 71907 59095

langford-2-10 t 450 392,4 381,7 309,9
c 241,8M 204,1M 198M 142,4M
n 497,359 410819 381161 305480

langford-3-11 t 633,5 590,9 768,6 467,9
c 294M 253,8M 337,3M 184,7M
n 119036 99619 152063 96567

langford-4-10 t 76,3 52,6 90,6 37,5
c 37,8M 23,9M 42,9M 15,6M
n 5253 4352 5759 3896

driverlogw-08c t 26,4 13,4 13,1 13,3
c 15M 6,2M 7,9M 6,5M
n 7576 4451 2870 3895

driverlogw-09 t 206,1 374,5 315,6 63,9
c 109M 181M 146,5M 28,4M
n 30720 60084 46188 10917

Finally, in Table 4 we present results from benchmark ran-
dom problems. Here, there is a large diversity in the results.
All heuristics seems to lack robustness and there is no clear
winner. The constraint weight based heuristics can be up to
one order of magnitude faster than dom (instance geo50-20-
d4-75-2), but they can also be significantly slower (frb30-15-
2). In all cases, the large run time differences in favor of one
or another heuristic are caused by corresponding differences
in the size of the explored search tree, as node visits clearly
demonstrate.

A possible explanation for the diversity in the performance
of the heuristics on random problems as opposed to structured
ones is the following. When dealing with structured problems,
and assuming we use the variable-oriented variant of AC-3, a
weighted based heuristic like dom/wdeg will give priority for
revision to variables that are involved in hard subproblems
and hence will carry out DWO-revisions faster. This will in
turn increase the weights of constraints that are involved in
such hard subproblems and thus search will focus on the most
important parts of the search space. Random instances that
lack structure do not in general consist of hard local subprob-
lems. Thus, different decisions on which variables to revise
first can lead to different DWO-revisions being discovered,
which in turn can direct search tree to different parts of the
search space with unpredictable results. Note that for struc-
tured problems only a few possible DWO-revisions are present
in the revision list at each point in time, while for random ones
there can be a large number of such revisions.

6 Conclusions
In this paper we showed how information about constraint
weights can be exploited not only to perform variable selec-
tion, but also to order the revision list when arc consistency is
applied during search. As a result, we proposed a number of
simple and lightweight revision ordering heuristics for coarse
grained arc consistency algorithms. The proposed heuristics

Table 4. Cpu times (t), constraint checks (c) and nodes (n)
from random problems using variable oriented propagation. Best

cpu time is in bold.

Instance queue dom wdeg d/wdeg
frb30-15-1 t 26 19 26,7 12,8

c 11,9M 8M 11,8M 5,4M
n 6142 5648 6058 3659

frb30-15-2 t 69,4 27,1 108,3 86,6
c 32,9M 15,7M 64,8M 49,6M
n 18099 11617 36818 35822

frb35-17-1 t 114,6 176,5 107,5 228,6
c 67,6M 103,6M 64,6M 130,2M
n 27213 59585 28062 74098

rand-2-30-15 t 1130,1 67,8 89,3 98,5
c 82,4M 38,2M 52,2M 56,2M
n 42056 29056 29563 42115

geo50-20-d4-75-2 t 213,5 366,1 31,7 36
c 138M 223,3M 20,3M 20,7M
n 30747 88111 5468 8029

order the revision list by trying to carry out possible DWO-
revisions as soon as possible. Importantly, the heuristics can
not only reduce the numbers of constraint checks and list op-
erations but they can also have a significant effect on search.
Among the heuristic we experimented with, the one with best
performance was dom/wdeg in the variable-oriented imple-
mentation of arc consistency. Experimental results from var-
ious domains displayed the potential of the proposed heuris-
tics.

As future work, it would be interesting to study the inter-
action of revision ordering heuristics with other modern vari-
able ordering heuristics apart from dom/wdeg. For example,
the impact-based heuristics of [15] and the explanation-based
heuristics of [9].
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Penalties may have collateral effects. A MAX-SAT
analysis.

Roberto Battiti and Paolo Campigotto 1

Abstract.

Many incomplete approaches for MAX-SAT have been proposed

in the last years. The objective of this investigation is not so much

horse-racing (beating the competition on selected benchmarks) but

understanding the qualitative differences between the various meth-

ods. In particular, we focus on reactive search schemes where task-

dependent and local properties in the configuration space are used

for the dynamic on-line tuning of local search parameters and we

consider the choice between prohibition-based and penalty-based ap-

proaches. To abstract from implementation details we focus on the

search trajectory characteristics and study the trade-off between di-

versification and bias after starting from a local minimizer. We then

study the warping effects on the fitness surface of weight-update

schemes and the resulting dynamics, through an exhaustive analysis

of small MAX-SAT instances, and of the average evolution of in-

dividual trajectories. The results are compatible with the conclusion

that penalty-based schemes achieve diversification from a starting lo-

cal optimum through a complex method with global and potentially

dangerous collateral effects, while prohibition-based schemes reach

comparable or better results in a more direct and controllable manner.

In the final part of this paper, we consider long runs of the com-

plete algorithms on selected MAX-SAT instances, which confirm the

competitiveness of prohibition-based reactive approaches.

1 Introduction

Most of the incomplete methods based on stochastic local search

(SLS) for MAX-SAT are characterized by a set of parameters whose

tuning is crucial for CPU time requirements and solution quality.

However, the appropriate tuning depends on both the problem and the

current instance being solved, implying costly human intervention.

Furthermore, the optimal parameter setting can vary widely in differ-

ent regions of the configuration space around a given tentative cur-

rent solution, leading to dynamic adaptive schemes. Reactive search

strategies for the on-line dynamic tuning of these free parameters to

the current task being solved and to the local characteristics can be

used to obtain more robust and efficient techniques [1].

The scope of this paper does not allow a detailed review, see for

example [2, 4] for a recent survey of propositional satisfiability and

the related constraint programming problem, and [5] for a survey

of stochastic local search approaches for MAX-SAT. Let us concen-

trate on reactive schemes and let us classify them according to the

target acted upon during the on-line adaptation. In detail, the reac-

tion can be on the generation of a set of constraints on the variables

1 Dipartimento di Ingegneria e Scienza dell’Informazione (DISI), University
of Trento, Italy, email: {battiti, campigotto}@disi.unitn.it

through the prohibition of recently-applied moves, or on the mod-

ification of the cost function guiding the local search. For brevity,

the two paradigms will be denoted as prohibition-based and penalty-

based, respectively. The first method, which is an ingredient of what

is known as “tabu search,” aims at pushing the configuration out from

the attraction basin around a local minimizer by temporarily prohibit-

ing some moves which would lead the trajectory back to the starting

point. The second method, also termed “dynamic local search,” mod-

ifies the objective function guiding the search so that a local min-

imum is raised to encourage the exploration of different areas, see

Fig. 1.

new local minimum

a

b

c

local minimum

dynamic penalty

Figure 1. Transformation of the objective function to gently push the
solution out of a given local minimum. Note: the intuition can be misleading

for dynamically weighted clauses in MAX-SAT.

A second macroscopic difference is given by the selection of

the variables considered during each local search step. In the basic

schemes (like GSAT), all variables are potential candidates for the

next flip, in more recent proposals (like WalkSAT), only the vari-

ables appearing in unsatisfied clauses are considered for a possible

flip (let’s call them “unsatisfied variables”).

Given the space constraints of this paper we report selected re-

sults within an ongoing investigation to compare and identify qualita-

tive differences between search dynamics of prohibition and penalty-

based schemes.
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2 SLS approaches with on-line learning and
dynamical systems

Let n and m denote the number of variables and clauses of a given

MAX-SAT instance in conjunctive normal form. The simplest cost

function guiding SLS algorithms for MAX-SAT is the number of

unsatisfied clauses. This function will be denoted as f . Escaping lo-
cal minima of f in a strategic and intelligent manner can be consid-
ered as the underlying motivation of most recent approaches based

on stochastic local search. In many cases, local minima are actu-

ally large plateaus where the basic local search cannot determine

the “right” direction to continue and performs a slow random-walk

in search of an escape point. More advanced schemes design discrete

dynamical systems so that the generated trajectory achieves a more

efficient and effective exploration of the fitness surface. In this work

we do not consider implementation details (supporting data struc-

tures) and CPU times but focus only on the trajectory properties. The

fact that appropriate data structures make the advanced schemes fully

competitive with the simpler ones has been matter of investigation

but it is not included in this work due to space constraints.

A remedy to escape from local minima consists of transforming

f into a modified g cost function, therefore warping the fitness sur-
face, and generating a new direction of movement. This cost function

modification may look at the internal structure of the current solu-

tion, not simply at the number of satisfied clauses. In [1] one exploits

non-oblivious cost functions, which measure the degree of satisfac-

tion of each clause by counting the number of matched literals. Aim-

ing at a redundant satisfaction eliminates the difficulty in selecting

among seemingly similar situations and may eventually permit to flip

a variable to satisfy a new clause, without losing any already satisfied

clause.

Another approach to escape from local minima or plateaus of f is
given by dynamic local search, that relies on a dynamically weighted

version of the oblivious function. The works in [8, 10] use dynamic

weights to encourage the satisfaction of “more difficult” clauses.

Clause weighting is motivated in [8] as a ”breakout method for es-

caping from local minima”, in [10] as a way to “fill-in” local minima.

See for example [18, 15] and the contained references for some re-

cent work in this area.

A starting point of this work is [17] where the authors investigate

the dynamic warping of the search space caused by dynamic weight

penalties, fail to find evidence that warped landscapes represent ac-

cumulated knowledge about the search space [3] and clarify that the

“hole-filling” analogy can be deceiving by presenting a toy exam-

ple showing the global and potentially detrimental side-effects, also

hinted in [8]. Their empirical investigation shows that warping al-

gorithms mainly serve as a diversification mechanism, which allows

the search process to effectively overcome stagnation due to local

minima and plateaus.

The purpose of this work is to continue the investigation through

additional means:

Exhaustive analysis of warped landscapes Small (but non-trivial)

instances of MAX-SAT are subjected to an exhaustive analysis of

the modification (warping) effects by examining the local minima

canceled, produced, and maintained after updating weights.

Diversification-Bias analysis It is suggested in [1] that Pareto-

optimal points on D-B plots of basic versions of SLS schemes

have an empirical predictive power for the overall success of the

methods. This hypothesis is investigated for skeletal versions of

prohibition- and penalty-based schemes.

Sample trajectories analysis While D-B plots summarize snap-

shots of the search after short periods starting from a local mini-

mum event, and the exhaustive analysis describes the overall mod-

ification of the fitness surface, the analysis of sample trajectories

produces additional information about the dynamical evolution of

the search.

3 Exhaustive analysis of warped landscapes

First we perform an experimental analysis on a single unsatisfiable

MAX-SAT instance formed by 20 variables and 110 clauses, close to

the “satisfiability threshold region” [13].

We consider a prototypical and simplified version of the weight-

update approach: as soon as the first local minimum (FLM ) point

for the “standard” f function is encountered, the weights of the cur-
rently unsatisfied clauses are increased by a fixed quantity ∆w. An
exhaustive analysis of the search space is then performed, showing

the difference between the original and the warped fitness landscape

generated by the weight update. The number of local minima of the

landscape at different Hamming distances from the FLM point are

counted. This classification allows to understand if the effects of the

weight update are local or global, i.e., if the changes of the fitness

landscape concentrate in the neighborhood region surrounding the

FLM point or affect the whole search space. Due to the weight

update operation performed when visiting the FLM point, new lo-

cal minima can be generated in the search space (Fig. 2), while, at

the same time, “old” local minima (i.e., local minima in the original

landscape) may be canceled (Fig. 3). By definition, a local minimum

disappears as soon as at least one improving move is available in its

neighborhood.
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Figure 2. Distribution of the newly generated local minima over different
warped landscapes. The curves describe the landscape generated by a weight
increase operation with different∆w values (0.5, 1, 2, 4, 128). The curve

for∆w = 0.5 is at the bottom of the Fig.

The absolute numbers of local minima generated or canceled is

bigger in the region around Hamming distance 10 from the FLM
point. One suspects that the numbers are related to the original num-

ber of local minima present at specific distances, which is in turn

related to the total number of binary strings at specific distances, a

distribution peaked at distance n/2 with simple counting arguments.

Furthermore, the observed effects over the search landscape are

not directly related to ∆w: as soon as the ∆w value is bigger than

1.0, very similar curves are obtained. The warped landscapes gen-
erated by the considered weight update values ranging from 4.0 to

2
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Figure 3. Distribution of the deleted local minima over different warped
landscapes. The curves describe the landscape generated by a weight

increase operation with different∆w values (0.5, 1, 2, 4, 128). The curve
for∆w = 4.0 overlaps with the curve for∆w = 128.0, while the curve for

∆w = 0.5 and∆w = 0.5 are very close.

128.0 delete and generate exactly the same number of local minima
at specific Hamming distances from the FLM point: the weighted

clauses become so important that the effect of the other clauses is

negligible.

Finally, the number of the canceled local minima is bigger than

the number of the newly generated local minima.

Fig. 4 considers ratios instead of absolute numbers. Ratios under-

line that the deletion process of “old” local minima acts in a rather

uniform way over the whole search landscape: it does not depend on

the Hamming distance from the FLM point. Therefore, the changes

affecting the search landscape in no way can be considered a local-

ized effect.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10  12  14  16  18  20#
 c

a
n
c
e
le

d
 l
o
c
a
l 
m

in
im

a
  
/ 
#
 o

f 
in

it
ia

l 
lo

c
a
l 
m

in
im

a

Hamming distance from the first local minimum

Deltaw=0.5
Deltaw=1.0
Deltaw=2.0
Deltaw=4.0

Deltaw=128.0

Figure 4. Fraction of canceled local minima over the search landscape.
The curves are for the different∆w values (0.5, 1, 2, 4, 128)

The results clearly confirm the hints and the anecdotic evidence

of previous researchers: weight updates caused by a specific local

minimum encountered along the trajectory have a huge global effect:

to escape from a single local attractor one is modifying in a radical

manner also the value of configurations which are very far from the

local minimum. In addition, a very large fraction of the initial lo-

cal minima are canceled, about 50% in the given example, after an

update caused by a single local minimum.

To measure the quality of the warped fitness landscape w.r.t. the

original landscape, the quality of the deleted/generated local min-

ima is also taken into account. The quality of the local minima is

measured in terms of the cost function f , which counts the number
of unsatisfied clauses. The smaller is the f value, the better is the
quality of the local minimum, as it can be considered a better “ap-

proximation” of the global minima.

In particular, do weight-update schemes generate a “better” land-

scape, i.e., a landscape allowing better performance for local search

strategies? This would be the case if poor quality local minima are

ironed out but good quality ones are preserved. Furthermore, is the

deletion/generation of the local minima related to their quality?

The weight-update mechanism aims at raising up (i.e., deleting)

the local minimum which the algorithm is trapped in, allowing to

escape from it (see Fig. 1). Let’s call this local minimum the cur-

rent local minimum. (Note that in our experiments the current local

minimum is the FLM point).

There is a popular belief that the weight-update mechanism tends

to delete low quality local minima in addition to the current one,

obtaining a “cleaner” fitness surface. As a results, the warped surface

should speed up the search of the global minima.

However, for the instance considered in the exhaustive analysis,

we show this is not the case. Fig. 5 and 6 show the mean quality of

the generated and deleted local minima w.r.t. the mean quality of the

local minima in the original fitness surface. The different plots are

for different weight update values shown in the labels. The plots for

the weight update values 8.0, 16.0, 32.0 and 128.0 are equal to the
plot for∆w = 4.0.
The quality of the newly generated local minima is worse than

the quality of the deleted ones. Furthermore, for all the weight up-

date values considered, the mean quality of the local minima in the

warped surface never improves w.r.t. the mean quality of the local

minima in the original surface (Table 1). In most of the cases, it is

worse.

∆w LM number mean LM quality

0.0 1629 6.7114

0.01 958 6.5417
0.1 957 6.5423
0.5 974 6.5533
1.0 1383 6.8886
2.0 1244 7.0506
4.0 1227 7.1035

Table 1. Snapshot of the fitness surface after the weight-update operation.
The first column indicates the∆w value, while the second and third ones
show the number of local minima and their mean quality, measured in terms
of the cost function f . The first line (weight update equal to 0.0) indicates

the original “fitness surface”.

Again, the strong global effect is observed: the quality of

deleted/generated local minima does not depend on the Hamming

distance from the FLM point.

In this experiment the global minima of the studied MAX-SAT

instance (corresponding to 3 points with score function equal to 2)

are not affected by the collateral effect of the weight update, i.e.,

they are still global minima in the warped surface.

The analysis performed shows that the warped surface obtained
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Figure 5. The mean quality of the generated/deleted local minima for the
weight update values 0.01, 0.5, 1.0. The curve labeled as “original” shows

the mean quality of the local minima in the initial fitness surface.
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Figure 6. The mean quality of the generated/deleted local minima for the
weight update values 2.0, 4.0. The curve labeled as “original” shows the

mean quality of the local minima in the initial fitness surface.
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in all the experiments does not correspond to one of a better quality

for the local search techniques. The long runs of complete penalty-

based algorithms reported in the last part of the paper fully validate

this observation.

To verify that our observations are not biased by the MAX-

SAT instances benchmark selected, we now consider a small hand

crafted MAX-SAT instance obtained from the SAT 2005 competi-

tion, with 24 variables and 61 clauses, and repeat the exhaustive anal-

ysis of the search space. Fig. 7, 8 and 9 show the distribution of the

deleted/generated local minima and the ratio among the deleted and

the initial local minima, respectively.
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Fig. 10 compares the mean quality of the generated/deleted local

minima w.r.t. the quality of the initial local minima for weight update

values equal to 0.01, 0.5, and 2.0. The warped surface obtained for
the weight update values 4.0, 8.0, 16.0, 32.0, 64.0 and 128.0 is equal
to the case∆w = 2.0.
Table 2 summarizes the changes among the original and the

warped fitness surface for the various experiments.
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Figure 9. Fraction of canceled local minima over the search landscape.
The curves are for the different∆w values (0.01, 0.5, 2.0)

∆w LM number mean LM quality

0.0 7756 3.7748

0.01 5341 3.5967
0.1 5341 3.5967
0.5 5341 3.5967
1.0 6139 3.7730
2.0 6056 3.7836

Table 2. Snapshot of the fitness surface after the weight-update operation.
The first column show the weight update considered, while the second and
third ones show the number of local minima and their mean quality,

measured in terms of the cost function f . The first line (weight update equal
to 0.0) indicates the original “fitness surface”.

The results on the crafted instance confirm the observations for the

random instance:

• the distribution and the quality of the deleted/generated local min-

ima do not depend strongly on the Hamming distance from the

FLM point;

• the number of the deleted local minima is bigger than the number

of newly generated local minima;

• the mean quality of the local minima in the new fitness surface is

never strongly improved (in some cases, it is even worse).

Again, the penalty-based approach exhibits a global and potentially

undesiderable side effect.

Furthermore, in this case the minima are affected by the

weight- update operation. In the original fitness surface there are 134

minima; for the weight update values bigger than 2.0 consid-
ered, 12 of them are deleted: over the warped surface they are not

even a local minimum. For the weight update values smaller than

1.0, one initial global minimum becomes a local minimum point in
the warped surface, while 11 initial global minima do not remain

local minima.

4 Diversification-bias analysis

We follow the diversification-bias empirical analysis (“D-B plots”)

proposed in [1] where the authors conjecture that the dominant
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Figure 10. The mean quality of the generated/deleted local minima for the
weight update values 0.01, 0.5, 2.0. The curve labeled as “original” shows

the mean quality of the local minima in the initial fitness surface.

Pareto-optimal points on D-B plots of basic versions of SLS schemes

have an empirical predictive power for the overall success of the

methods. The metric used to measure the quality of the visited points

(or, simply, the bias of the algorithm) is their average cost function

value, while the diversification is measured via the average Ham-

ming distance reached in short runs starting from a local optimum.

A scheme (characterized by the choice of algorithm and parameter,

∆w or prohibition T ) is Pareto-optimal if there is no other scheme
reaching both a higher diversification and a better bias. The prohibi-

tion scheme (GSAT/tabu) acts according to the very simple rule: after

a single bit (truth value) is changed, it cannot be changed again for

the next T iterations. Among the admissible bits (the ones which can
be changed), one leading to the best ∆f value is chosen randomly
among the possible ties.

By using the D-B plots, we want to understand how the warped

landscapes generated by the weight-update schemes affect the per-

formance of the dynamic local search (DLS) algorithms, considering

both bias and diversification. In particular, we compare the results for

the weight-update method with the results of the prohibition-based

approach.

All runs of the algorithms considered proceed as follows: as soon

as the first local optimum for the “standard” f function is encoun-
tered, it is stored and the algorithm is then run for additional 4 ∗ n
iterations. The final D-B values averaged over 500 tests are reported.

For each test we identify the first local minimum via the GSAT algo-

rithm, and then, depending on the different test, we run one among

GSAT/tabu and the weighted version of GSAT, starting from the the

discovered local minimum.

The tests presented in this work are dedicated to selected MAX-3-

SAT instances defined in [7]. In detail, if n : m identify variables and

clauses, 50 instances for the 20:110 cases have been randomly gener-

ated. The different algorithms are run for the different instances, for

a total of 500 tests. The average results are presented.

First, we evaluate the GSAT/tabu method based on fixed prohi-

bitions. Then we study the performance of a simplified version of

the weighted GSAT algorithm. Initially all clause weights are equal

to one and, once the first local optimum is encountered, the weights

of the currently unsatisfied clauses are increased by a fixed quantity

∆w. Let’s note that the increment of the weights is performed only
once: for the subsequent local minima, weights remain fixed.

Fig. 11 shows the results obtained by running the considered al-

gorithm for 4 ∗ n steps after the first local minimum discovered by

the GSAT algorithm for the same SAT instances. The labels for the

curve named gsatWeighted represent the different∆w values consid-
ered. The value 0 for the “gsatWeighted” curve represents the case of

the original GSAT algorithm [12]. The curve named gsatTabu is la-

beled with the values for the fractional prohibition Tf , given by the

prohibition parameter divided by n.
The bias is plotted as differencew.r.t. the starting f value at the lo-

cal minimum (good values are therefore at the bottom), the Hamming

distance is divided by the number of variables n. One notes that small
prohibitions values lead to bias levels comparable with the penalty-

based scheme, but they allow for a bigger diversification. This result

is confirmed by the repetition of the experiment over the 500:5000

instances, which shows a bigger set of Pareto-optimal points for the

prohibition-based scheme (Fig. 12).

In Sec. 6 we consider the original complete schemes for penalty-

based and prohibition-based approaches, including the reactive and

dynamic versions and analyze the average f values obtained for long
runs. The D-B plots Pareto-optimal points are indeed accurate pre-

dictors of performance over the long runs.
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5 Sample trajectories analysis

We now consider the impact of the penalty-based and of the

prohibition-based mechanisms on the dynamical evolution of the

search trajectories. In particular, do the changes on the landscape

caused by the weight-update strategy significantly affect the behav-

ior of a dynamic local search algorithm? If yes, is the biased behavior

observed while visiting the region surrounding the first FLM point

or over the whole search landscape? Furthermore, we ask whether

the prohibition-based strategy, that does not modify the fitness sur-

face, performs a similar function but with a more direct manner. Let’s

consider again the simplified prohibition-based mechanism and the

weight-update strategy described so far. We execute a single short

run of both methods starting from a FLM point on the 20:110 in-

stance considered (the first point encountered by local search starting

from an initial random configuration), and measure the diversifica-

tion level reached in both cases (Fig. 13 and 14). We repeat the ex-

periment using different values of the fractional prohibitionTf and of

the ∆w quantity. The trajectories of the prohibition-based scheme
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Figure 13. Evolution of the Hamming distance of single short trajectories
of the prohibition-based strategy .
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show an initial Hamming distance growing linearly up to distance

T +1, a deterministic effect cause by the prohibition mechanism, fol-

lowed by a diverse and randomized exploration of the search space.

The average deviation of the distances tends to grow with the larger

prohibition values. No evidence of entrapment is shown in the later

steps.

The situation is qualitatively different for the penalty-based

scheme. For small∆w values (values smaller than 1.0, in this case),
the trajectory shows a cycle of length 2. For bigger values, the al-

gorithm escapes from the attraction basin of the FLM point, but

it is eventually stuck at another local minimum. For the 1.0 value,
the algorithm cannot escape from this second local minimum. Fur-

thermore, for all the values bigger than 1.0 the same trajectory is
observed. This is not surprising, as in the exhaustive analysis we ob-

served that the number of canceled/generated local minima is the

same in all cases. To be fair, let’s note that the observed cycles may

be avoided by considering more complex weight-update based mech-

anism, that perform the weight update for each local minimum en-

countered during the trajectory.
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Figure 15. Performance of prohibition-based strategy during short
trajectories. The values are averaged over 1000 trajectories starting at a

different initial FLM point.

To validate our initial observation of sample trajectories, we now

consider the performance of penalty-based and prohibition-based ap-

proaches averaged over 1000 runs performed starting from 1000 dif-

ferent initial local minima. Fig. 15 show that during the first iter-

ations of the prohibition-based approach the diversification strictly

increases, as expected, and that, eventually, it tends to converge to a

common value. The memory about the initial local minimum is effec-

tively lost and exploration proceeds without hindrance. Furthermore,

larger values for the prohibition T lead to a bigger initial diversifi-

cation. Fig. 16 clearly indicates that the performance in terms of di-

versification of the penalty-based approach is worse than that of the

prohibition-based strategy: smaller Hamming distances are reached

and the effect shows a fragile dependence on the ∆w values, which

can be compared to the rather similar behavior of different T values

after runs of comparable length (60 iterations in our case). As sug-

gested by intuition, a better diversification is reached with the bigger

∆w values. In particular, the worst performance is reached by the

GSAT algorithm, that operates over the non-weighted f function.
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Figure 16. Performance of penalty-based strategy during short trajectories.
The values are averaged over 1000 trajectories starting at a different initial

FLM point.

6 Experiments on long runs

Even if this work does not target the horse-racing point of view, to

validate the results of the exhaustive analysis and of the D-B plots

experiments, we show the MAX-SAT results reached by the penalty-

based and the prohibition-based approaches. In particular, we con-

sider the 500:5000 and the 300:1500 MAX-SAT benchmarks and

execute the following SLS approaches:

• GSAT [12], a basic local search greedy strategy guided by the

score function f , that simply counts the number of unsatisfied
clauses;

• GSAT/tabu [14], which enriches the GSAT algorithm via a

prohibition-based search criterion;

• WalkSAT/SKC [11], the ancestor of the WalkSat family. It ran-

domly alternates between greedy minimizing moves and random

noisy moves. The moves of both kinds act on the variables appear-

ing in unsatisfied clauses;

• WalkSAT/tabu [6], that adopts the same score function and the

same variables selection mechanism of the WalkSAT/SKC algo-

rithm, complemented by tabu search;

• H-RTS, a Hamming-based reactive tabu search algorithm, that dy-

namically adapts the prohibition parameter during the search;

• AdaptNovelty+ [16], that exploits the concept of variable “age”

and uses the same scoring function of GSAT. The variable age can

be considered a sort of soft prohibition of recently-changed vari-

ables in the case of ties. The prefix “Adapt” underlines a reactive

behavior, that dynamically adjusts its internal parameters;

• Scaling and Probabilistic Smoothing (SAPS) [18], an accelerated

version of the Exponentiated Subgradient algorithm [9] based on

dynamic penalties, and a reactive version thereof called RSAPS.

For brevity we report here only the average results (10 runs with

different random seeds for each of the 50 instances) as a function

of the number of iterations (flips). The user of SLS algorithms is

typically interested in the number of iterations required by each al-

gorithm to reach the desired results, or, at least, a good quality ap-

proximation. As predicted by the previous diversification-bias anal-

ysis and according to the exhaustive search experiments performed,

the curves in Fig. 17 confirm a clear superiority of the prohibition-

based techniques with respect to the penalty-based approaches. The
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error bars are not shown on the plots to avoid cluttering. Among all

the possible values for the tabu parameter of the WalkSAT/tabu algo-

rithm, we plot the case where the fractional prohibition Tf is 0.01, as

with this setting we obtain the best performance over the considered

benchmark. The same for the GSAT/tabu algorithm, whose curve is

drawn for the optimal Tf value 0.05 over our benchmark set.

The SAPS parameters have been set to the default values, with-

out attempting any extensive optimization. Preliminary tests obtained

changing the values did not lead to significant improvements.

With this optimal setting, the GSAT/tabu algorithm reaches even-

tually a performance equivalent to that of H-RTS, even if its perfor-

mance is inferior in the initial phase. This result clearly indicates that

parameters setting is crucial for the algorithms performance: not only

H-RTS reaches results comparable to the ones with a fixed and op-

timal Tf , but it actually improves on these because of the dynamic

on-line adaptation. This observation is emphasized by the curves for

SAPS and RSAPS. They confirm the effectiveness of the reactive ap-

proach, that obtains better results while, at same time, allowing to

avoid the manual tuning. The SAPS parameters have been set to the

default values, without attempting any extensive optimization. Pre-

liminary tests obtained by changing the values did not lead to signif-

icant improvements.

Finally, the curve for H-RTS shows the effectiveness of the NOB

search to rapidly discover good local optima.
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Figure 17. The mean best so far bias value reached by the SAPS, RSAPS,
AdaptNovelty+ and H-RTS algorithms.

Fig. 18 shows the behavior of the same algorithms in a scenario

closer to the satisfiability threshold (the clauses/variables ratio of the

300:1500 tasks is 5) and to the small 20:110MAX-SAT instance con-

sidered for the exhaustive analysis. The results of the previous long

runs experiment are confirmed, apart from the competitive perfor-

mance of AdaptNovelty+ which eventually duplicates H-RTS’ per-

formance although with a much slower start.

Let us note that many of the considered techniques have been pro-

posed for SAT and one may argue that a direct comparison with

MAX-SAT algorithms such as H-RTS is not fair. On the other hand,

the underlying logic of the methods is always based on maximizing

the number of satisfied clauses, which is an argument in favor a di-

rect comparison, in particular for adaptive techniques. In any case,

this issue will be explored further in the future.
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Figure 18. The mean best so far bias value reached by the SAPS, RSAPS,
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7 Conclusion

We presented some selected results of an ongoing comprehensive

evaluation of alternatives design strategies for MAX-SAT algorithms

base on stochastic local search. In particular, we focused on studying

the qualitative differences of the dynamics caused by prohibition-

and penalty-based schemes, by exhaustively analyzing the warped

landscape of small problems, by measuring the diversification and

the bias after starting from local minima, and the average behavior of

sample trajectories.

The results confirm the hypothesis that penalty-based modifica-

tions of the search landscape have global side-effects with a poten-

tially disturbing influence on the search trajectory. The real advan-

tage of these schemes appears to be the fact of forcing the trajectory

to abandon an area around a local optimizer to avoid confinement.

On the other hand, a very similar “escaping” effect can be ob-

tained by direct prohibition-based schemes, which do not require the

addition of explicit forgetting schemes as a cure to the potentially

harming side-effects and are more amenable to explanation. We are

aware of the preliminary and in part controversial nature of this in-

vestigation, which motivates additional work to further substantiate

this hypothesis, when both dynamical system properties and the final

competitiveness of the implemented schemes are considered.
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Abstract. Amajor challenge in constraint programming is to create

an adequate constraint model for a given problem. This is an iterative

process, in which an original model must be amended or ‘debugged’.

An important source of guidance in this effort is the existence of so-

lutions not allowed by the model in its current form but which the

user either knows are solutions or wants to have included. This paper

describes a system, “Ananke”, which allows this aspect of the mod-

elling process to be partly automated. In Ananke, the current model is

considered an instantiation of a metamodel whose solutions are sets

of constraints that together form a CSP. In this system, given a CSP

model, the user suggests a partial or complete solution. If that solu-

tion is not part of the current model, the system uses its metamodel to

search for changes in constraints that would produce a revised model

containing the proposed solution. In this work, we consider differ-

ent metrics for judging quality of revisions, including the number of

additional tuples that will result from a change and number of addi-

tional solutions. We also consider heuristics that improve search effi-

ciency, including some that limit the constraints that may be changed.

This work shows how meta-reasoning can be used effectively to sup-

port the process of developing viable constraint satisfaction models.

1 INTRODUCTION.

A CSP model may be incomplete or incorrect. In this situation we

would like the computer to provide “debugging” assistance in com-

pleting or correcting the model. This raises very general questions as

to what it means for a model to be complete and correct, what kinds

of assistance users would find helpful, and how such assistance might

be efficiently and effectively provided. Here, we describe a specific

form of assistance to address a specific class of model deficiencies:

the user indicates that there should be a set of solutions with a

specified property,

the system indicates that there is not and suggests alterations to

the model that will admit such solutions,

and we develop and evaluate procedures for providing this assistance.

We will utilize a very simple temporal reasoning problem to illus-

trate some of the basic concepts here. There are three meetings to

be scheduled, each can be held at 11 or 1, meeting A must be held

before meeting B, and meeting B must be held at the same time as

meeting C. A specific interaction here might be:

This work received support from Science Foundation Ireland under Grant
05/IN/I886. We thank Benne Jakobus for help with some of the coding.

User: There should be at least one solution where meeting A can

be held in the afternoon.

System: There are no such solutions at present. Currently, meeting

A is constrained to occur before meeting B. If we changed that to

allow it to occur after meeting B, we would have a solution with

meeting A in the afternoon. Shall we do that?

This form of interaction, which addresses overconstrained prob-

lems, might be viewed as complementary to the interaction in the

Matchmaker system [4] where the system suggests solutions to un-

derconstrained problems and the user indicates that these are not so-

lutions and provides alterations to the model to prohibit them. The

approach we take here could also be extended to underconstrained

problems, or problems that are simultaneously over and under con-

strained. This form of interaction is also directly related to a consider-

able body of work on modeling, debugging, configuration, interactive

CSP, dynamic CSP, partial CSP, hierarchical CSP, soft CSP, explana-

tion, compilation, acquisition and learning within the CP community

and more broadly to work in knowledge acquisition, knowledge en-

gineering, truth maintenance, machine learning, and diagnosis.

In particular, the QuickXPlain algorithm [5] for determining pre-

ferred relaxations and the CONACQ algorithm [2] for acquiring

constraint networks from training sets might be viewed as already

addressing specific forms of this general interactive paradigm, and

might be usefully extended or combined in this context. However,

we wish to explore the possibility that “bespoke” solutions to specific

forms of debugging may provide additional efficiency and flexibility.

The underlying premise here is that it can be worthwhile to identify

specific special cases of the general debugging challenge, and spe-

cific methods for dealing with them, then work to generalize, adapt,

or combine these methods.

This work is part of a broader research programme to develop

a mixed-initiative interface that can provide a variety of assistance

modes to address in a user-friendly fashion the variety of knowledge

acquisition, validation, and revision issues that can arise in defining,

debugging, and maintaining models for constraint satisfaction and

optimisation applications. This work is inspired in part by the clas-

sic early work on knowledge acquisition and debugging in a rule-

based context, Teiresias. We have named our project Ananke, after

the ‘Goddess of Bonds’, the deity that rules constraint and coercion.

The next section, 2, discusses metaknowledge and metamodels.

Section 3 presents an overview of the present implementation of

Ananke. Section 4 describes Ananke’s debugging procedure in more

detail. Section 5 gives results of some preliminary tests of the sys-
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tem. Section 6 discusses related work. Section 7 gives conclusions

and a brief note on future prospects.

2 METAKNOWLEDGEANDMETAMODELS

We start with the basic model of a CSP, as a triple , where

is a set of variables, is a multi-set of domains in 1:1 relation

with , and is a set of constraints applied to . Also, an assign-

ment is a set of elements each drawn from a separate domain in ;

if the assignment is of size and satisfies all the relations in , then

it is a solution to the CSP model.

2.1 Metaknowledge

We focus our study here by making the following assumptions:

The property that characterizes the “missing” solutions can be

expressed as a set of additional “missing solution constraints”

(ms-constraints) over a subset of the problem variables, the ms-

variables. We will say that the ms-constraints are a form of meta-

knowledge. In the example above, the ms-constraints would con-

sist of the single constraint that meeting A occurs in the afternoon,

and ms-variables the single variable corresponding to meeting A.

For each constraint in the original problem there is a set of alterna-

tive constraints to choose from. In the example, we could specify a

different form of relation between meetings A and B. Or we could

suggest removing the constraint entirely.

More formally, a missing solution constraint, can be defined

as a set-constraint whose tuples are the possible solution sets to the

problem. The possible values of this constraint are, therefore, the

powerset of the set of tuples allowed by a set of CSP variables that

are (partial) solutions. This can be written:

where , are the variables in the assignment, and

, the number of variables in the CSP, and , are assign-

ments to these variables that form a viable (partial) solution. The con-

straint itself consists of all such solution sets that contain the missing

solutions.

This formulation allows for the fact that the user may not know

complete missing solutions, or that an explicit list might be too large

to enumerate. It also allows specifications in terms of subsets of do-

mains, and this allows the user to characterize what is missing more

abstractly than by simple enumeration.

Our goal here is to assist the user in exploring the space of possible

models for the problem under consideration. In the above example,

the user may be saying “I am an expert and I know what solutions to

expect; if this program doesn’t provide them it has the wrong model”

or the user may be saying “If the model does not allow this type of

solution, I am willing to change the model”.

2.2 Metaproblems

We define a constraint metaproblem, or MCSP, as a CSP whose so-

lutions are CSPs (viewed as sets of constraints). The values of the

metaproblem variables, or metavariables, will be constraints. In the

example, an MCSP could consist of 5 metavariables, 3 correspond-

ing to the unary constraints specifying the domains of the 3 meeting

variables and 2 corresponding to the temporal constraints, and one

ms-constraint, which in this case is also unary. The domain of values

for the latter could be the possible equality/inequality relations be-

tween two quantities, or it could be the Allen’s algebra constraints.

The former each have a single unary constraint value, specifying the

set 11 1 . A ground solution to an MCSP is defined to be a solution

to one of the CSPs that is itself a solution to the MCSP.

In general we can have MCSP constraints, or metaconstraints,

on the metavariables; e.g. an equality metaconstraint between the

metavariables corresponding to the two temporal constraints in the

example could specify that these constraints have to be the same.

This provides a mechanism for future elaboration of the interaction

between user and system. Our current implementation, however, only

considers unary metaconstraints.

Given a CSP we can now define a specific form of the general

user/system interaction paradigm we started with:

The user specifies that there should be a set of solutions to the CSP

augmented by a set of ms-constraints.

The system indicates that there is not and suggests alternative

choices for some of the constraints that will admit such solutions.

Our problem now is to derive these suggestions for changing con-

straints. We can formulate this problem itself as a kind of CSP, in

terms of a metaproblem, the missing solution CSP or MS-CSP. This

is a bit baroque to define precisely, but the underlying idea is straight-

forward: We have to choose alternative constraints for some of the

constraints that allow us then to solve the resulting problem, aug-

mented by the ms-constraints.

Specifically, we construct the MS-CSP as follows:

1. Take the original CSP. Let us use our running example.

2. Replace the constraints with metavariables. In the example, the

constraint between A and B would be replaced by the metavari-

able corresponding to this constraint, whose domain of values con-

sisted of the possible relations that could hold between these vari-

ables.

3. Add the ms-constraints as new metavariables. However, instead of

implementing these constraints according to the basic definition,

we include only the tuples formed by the user’s specifications. In

the present example, the new metavalue would be a unary con-

straint on meeting A requiring it to be in the afternoon.

The argument for implementing ms-constraints in this way is

straightforward. We know that the set of solutions of the original

CSP does not satisfy the ms-constraint. However, any selection of

values for the metavariables consistent with the tuple-set specified

by the user will be included in the set of solution-sets that satisfies

the ms-constraint. This is because the set of partial assignments is a

subset of the intersection of all solution sets that contain this set as a

subset, i.e.

If, in addition, we choose values for the metaconstraint variables that

serve to relax the original CSP constraints, we will not lose any of the

original solutions. The present implementation is organised to make

selections according to this requirement.

2.3 Solutions and Metrics

Finding ground solutions to the MS-CSP involves choosing both

metavariable values, i.e. constraints, and variable values. We can

make these choices with some form of backtrack search, as described
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below. This raises questions of efficiency, but also of the quality of

solutions, since there are many alternative ways that quality could be

measured.

Metrics are required for searching through the set of possible CSP

models efficiently. A natural consideration for judging the quality of

suggestions is the amount of change they represent from the origi-

nal model. Perhaps the most basic metric of this kind is the number

of solutions that differ between the given and modified model. But,

since computing all solutions is expensive, we will consider other

cruder metrics of this type.

The simplest is to arrange the possible constraints into a partial

order, in which any change that relaxes a constraint, i.e. allows more

tuples to satisfy it, is judged as having a greater cost than a tighter

constraint. Then, single steps in the resulting lattice can be consid-

ered to add a cost of 1 to the overall cost of the change.

A more sophisticated metric that is still often simple to compute is

based on the number of tuples that would be added if the constraint

were relaxed in a certain way. For example, if a binary constraint

were relaxed to , this would add one tuple, while if it were relaxed

to , then tuples would be added. This form of metric can be

cast in a general form: a lattice whose elements are associated with

a number of tuples ranging from 0 to , where is the arity of the

constraint.

2.4 Heuristics

In addition to guidance from the chosen metric, it is possible to use

various heuristic methods to make search more efficient. A basic hy-

pothesis here is that the metaknowledge can help direct the search.

These methods, however, often entail tradeoffs between efficiency

and quality of the resulting suggestion.

The most important heuristic is one that orders the changes in a

given constraint according to the cost function employed. In many

cases, changes can be preordered even if the exact cost is not known

ahead of time. For example, a constraint will always allow at

least as many tuples as a constraint. Employing this heuristic

greatly enhances the bounding process in branch and bound search

(in the monotonic context), because once the current bound has been

exceeded for a given constraint change, then any more expensive

change will also exceed the bound.

Another heuristic method is to restrict search to constraints link-

ing the ms-variables and other problem variables, which we will

call “link constraints.” In this case, we can ‘fix’ the problem by just

changing or removing one or more link constraints. In the example,

we changed the link constraint between meeting A and meeting B.

Obviously, if one of the possible changes is removing a constraint,

this method will always produce a solution. However, it may not be

as desireable as the best-cost solution obtained by searching through

the complete space of possible changes. On the other hand, if one of

the criteria for goodness of a solution is that the changes occur as

close to the failed assignment as possible, then this criterion can be

incorporated in the cost function.

Link constraints can be found by doing an all-solutions search with

the original CSP model while keeping track of solutions that match

the desired solution or solutions in as many assignments as possi-

ble. Here, there are several alternative approaches that can be used to

specify link constraints:

taking the constraints adjacent to the unassigned variables in an

arbitrary best-match, e.g. the first best-match found during search,

taking the intersection of unassigned variables in all best-match

solutions,

taking the union of the unassigned variables in all best-match so-

lutions.

Another straightforward method is to include the metaknowledge

regarding missing solutions in order to guide the search for suggested

model alterations. This greatly speeds up search. However, unless the

desired solution is already present, this method makes the resulting

CSP insoluble, which prevents us from finding link constraints with

any of the above methods. On the other hand, since it is a very quick

method for determining whether the desired solutions are present in

the problem, it can be used in tandem with an all-solutions search, so

that the latter can be avoided in these cases.

Figure 1. Ananke 1.0 Interface.

3 ANANKE 1.0

The ideas described above were implemented using Visual Studio.

The code for this version of Ananke is written in Visual Basic. ILOG

solver is used to solve particular CSPs. The present system runs un-

der Windows XP on a Dell Precision PWS 390 (2.66 GHz, 2 GB

RAM).

The basic user interface is shown in Figure 1. Different windows

display the original or current CSP (black-bordered window on upper

left), allow the user to enter an expected solution (topmost window to

right of CSP window), show statistics pertaining to search (window

below SEARCH button), and present suggestions in accordance with

the limits placed on search by the user (large window on right-hand

side). The DEBUG button, which initiates a search for suggestions,

appears to the right of the SEARCH button when appropriate). There

is also an area on the lower left for setting up and running experi-

ments.

In the example shown in this figure, a small problem is displayed

having three variables and two constraints. The user has specified a

solution where X1=2, X3=2, and X2 should have a value in the range

2 4. The system has found a best-match with X1=2, X2=2 and
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X3=1, i.e. with two variables matching the specified assignments. A

subsequent search (not restricted to link constraints) has discovered

two changes to the original problem that will allow one of the desired

solutions: one in which the inequality constraint between X2 and X3

is removed, and one in which the equality constraint between X1 and

X2 is changed to a less-than-or-equals constraint.

Figure 2. Ananke Debugging Overview.

Figure 2 gives an overview of the basic debugging procedure. Af-

ter the current model of the problem is loaded, the user enters an

expected solution (which may be a complete or partial solution and

may also include ranges for some or all of the variables). This be-

comes part of the metaknowledge. The system then conducts an all-

solutions search on the CSP represented by the model. Throughout

this search, it records the maximum number of assignments in a so-

lution that match the expected solution; this is the “closeness” of that

solution, and the maximum closeness is presented at the end of the

search along with a solution that gives that closeness. (The present

version of Ananke does not show alternative solutions with maxi-

mum closeness, which can involve different subsets of variables. This

may be included in latter versions. In any case, it does not affect the

subsequent search for constraint changes that allow the expected so-

lution to be incorporated into the model.) If the closeness is less than

100%, the debugging process is initiated.

Debugging search uses the CSP induced by the ms-constraints

(which simply means that the suggested assignments are added to the

model in the form of constraints) while carrying out a meta-search

through the space of possible CSPs. This is done with a branch-and-

bound algorithm that uses a specified cost-function to find minimal-

cost changes to the present set of constraints (described in detail in

the next section). (In Ananke 1.0 the cost function is chosen by the

programmer, but in later versions it will be possible to do this through

the interface. The coding required to do this is simple; the problem

will be to present these choices to the user in a way that makes sense.)

The set of changes may include the entire set of best-cost solu-

tions, or if the user has limited the search by indicating that only link

constraints are to be tested, then suggested changes will only involve

those constraints. As an example, the first suggestion shown in Fig-

ure 1 is obtained if search is restricted to the link constraint, X2

X3; while unrestricted search produces the two suggestions shown.

In this case, the suggestion obtained under unrestricted search pre-

serves both constraints, while that restricted to the link constraints

does not.

4 THE DEBUGGING ALGORITHM

This section describes the branch and bound algorithm that is the

core of the debugging process. The solutions sought in this process

are sets of constraint changes that give the best cost according to

some metric. The number of constraints in such a set can vary from

1 to . However, if we allow the null change as one of the possible

changes in a constraint, then all constraints will be involved in every

solution; obviously, we can obtain the solution wewant by discarding

those constraints with null changes after search is over. This allows

us to treat the metaproblem as an ordinary CSP whose variables are

the constraints potentially subject to change, and whose values are

the allowable changes.

Pseudocode for the branch and algorithm is shown in Figure 3,

where the algorithm is presented in iterative form (its form in the

present implementation).

The algorithm is also enhanced by preliminary identification of

connected components. For disconnected graphs, if there are con-

nected components that do not include any unassigned variables, the

constraints in these components can be disregarded during search.

This has no effect on the correctness of the algorithm, but it can en-

hance its efficiency under these circumstances.

meta-branch-and-bound()

currentCost = 0
bestCost =
searchLevel = 0

while searchLevel 0
if searchLevel ’new solution found

create and save newCSP based on present metamodel
and ms-constraints

if newCSP has a (CSP) solution
if currentCost bestCost
set bestSolutions to solution
set bestCost to currentCost

else
add solution to set of bestSolutions

decrement searchLevel

else if nextRelaxation maxRelaxation at searchLevel
if currentCost + cost of nextRelaxation bestCost

reset data structures at this level
decrement searchLevel

else
add nextRelaxation to partialSolution
save nextRelaxation and update currentCost
increment searchLevel

else
reset data structures at searchLevel
decrement searchLevel

Figure 3. Pseudocode for branch and bound algorithm for search for the

set of best-cost solutions in a space of metamodels using a monotonic cost

function.

5 EXPERIMENTAL RESULTS

Our first experiments used a familiar metamodel whose constraints

are based on the standard relational operators, , , , , , and

, which can be arranged into a lattice structure consistent with the

number of viable tuples. The cost function was that noted in the sub-

section on Metrics, where each step upward in the lattice incurs a

cost of 1.
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Figure 4 shows some representative results that demonstrates the

expected improvement in search efficiency with ms-constraints of in-

creasing arity (i.e. increasing numbers of ms-variables, here shown

in proportion to the number of variables in the original problem). For

all but the smallest partial solutions, the savings is over 90%.

Figure 4. Search improvement with inclusion of ms-variables.

In other experiments, we compared suggestions under focused and

unfocused conditions, i.e. using or not using linked constraints. In

these experiments, 50 problems were generated per condition, and

the size of the missing solution was 0.8 of the number of variables

(rounded to the nearest integer). No attempt was made to control for

the size of the best match, except to discard occasional cases where

this was 100%.

In each case, more suggestions (i.e. sets of relaxations that al-

low the ground solutions required by the user) are found with un-

focused search, while at the same time, there are on average fewer

changes (i.e. constraint relaxations) per suggestion. For example, for

5,5,0.40 problems there were 1.2 suggestions per problem in

the focused case and 1.6 with non-focused search, while the num-

ber of changes per suggestion were 2.2 and 1.5, respectively. For

8,5,0.25 problems there was 1 suggestion per problem with fo-

cused search and 1.4 with non-focused, while the number of changes

per suggestion were 2.6 and 2.2. In these cases, based on a simple

partial ordering of constraint relaxations, the cost of a suggestion is

the same as the number of changes.

6 RELATEDWORK

The present work is related to a small but growing body of work

on constraint acquisition. This work involves procedures derived

from psychology and machine learnig for acquiring discrete con-

cepts based on examples; in this case, the examples are solutions

and non-solutions. As a result, much effort has been made on de-

veloping efficient sets of queries that will enable a CSP model to be

obtained [8] [2]. In the present work, we are attempting to adjust an

existing model. Thus, while work in constraint acquisition attempts

to impose restrictions on a space of possible models, the intention of

the present work is to find models that are minimally distant from an

existing model. As a result, the techniques employed in these respec-

tive tasks are quite different. Nonethess, a natural extension of the

present work would be to combine the present approach with con-

cept learning, where the system not only finds a set of minimally

distant solutions but then presents examples in order to distinguish

among them (or even larger sets).

In the present debugging task, the distinction between complete

and partial solutions is not critical, although our algorithms are natu-

rally more efficient when the solution set is more restricted. Although

this may not be a critical difference for constraint acquisition either,

it is something that has not to our knowledge been considered in this

context. Finally, we should note that when the set of possible con-

straint relaxations is extended, e.g. if X Y can be replaced by X

Y - instead of by another relational operator, this will not have a

marked effect on task difficulty although the version space is greatly

extended with consequent difficulties for pure acquisition.

Another related area concerns “explanations” for assignment fail-

ures (e.g. [6] [5] [1] [7]). This work considers a similar type of prob-

lem, but from the other ‘end of the telescope’, in that the goal is to

find adjustments to an invalid complete or partial solution that will

satisfy the constraints that disallow it. In other words, the empha-

sis in explanation research is on finding correct solutions, while our

concern is properly defining the problem. For this reason, it is not

necessary to move to the level of metaknowledge to obtain expla-

nations. However, explanations in the form of minimal conflict sets

can serve as another heuristic method for guiding the debugging pro-

cess, so there is much here that is of potential value for the present

research.

Some of our heuristic methods resemble methods and issues in

the field of dynamic CSPs. In particular, the focus heuristics we have

considered are similar in intent to the concerns, e.g. for solution sta-

bility, that have inspired algorithms such as local changes [9]. At the

same time, there is again a fundamental difference in intent, since

our basic concern is finding a model that is consistent with a solu-

tion, rather than finding a solution consistent with a given model.

The context established here of searching for alternative models

in a space of possibilities with a distance metric is reminiscent of the

partial CSP (PCSP) framework for overconstrained problem solving

[3]. In fact, in that earlier work a search through a space of relaxed

CSPs was considered but that approach was not pursued. Since the

concern in the PCSP context was to find an existing assignment with

optimal properties (e.g. minimal number of violated constraints), the

algorithms were different in character from the one presented here.

Again, however, there is a potential for interplay between that field

and the present work.

7 CONCLUSIONS AND FUTUREWORK

In this paper we have presented a new approach to constraint model

debugging, and we have demonstrated the viability of these ideas

with a working implementation. There are many extensions to con-

sider. Perhaps the most obvious is to extend the system to handle a

broader class of constraints and relaxations. More importantly, we

need to consider the source(s) of metaknowledge in greater depth.

That is, how do we decide what the alternatives for a given constraint

should be?

We have also spoken about possible metrics to use in this context,

as well as heuristics. Ideally an interface would allow users to choose

different measures of solution quality, and then automatically choose

appropriate heuristics to efficiently find solutions according to the

chosen metrics.

Although the present system only makes suggestions that are

monotonic with respect to allowed solutions, we may also wish to
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be able to operate in a non-monotonic context. The changes we need

or wish to make may remove some solutions at the same time as

they add others. Since the system is assisting the user in searching

the space of possible models, it needs to help the user avoid ‘infinite

loops’. On the other hand, users may want the right to change their

minds, and e.g. remove solution to admit solution . Ultimately, we

would like to be able to provide the user with a choice as to how ‘pa-

ternal’ the system should be, e.g. the user might say “never make a

suggestions that would cause the removal of a solution I have added”

or “only make such a suggestion as a last resort” or “tell me whenever

you are making such a suggestion”.

We also think that this approach can be extended to a context in

which we are not merely detecting ‘bugs’ that prevent our model

from being complete or correct, but correcting them in order to im-

prove our model: where debugging becomes more of a discovery pro-

cess. We illustrate with a simple example: Suppose we were design-

ing a device such as a teapot that is heated through an electrical con-

nection in a base. And suppose we were working with a CAD tool

that allowed one to manipulate a mock-up of this device. In doing

this, we find that any rotation around the vertical axis requires one to

move the base as well as the teapot itself, but it would be better if the

teapot could be rotated independently. However, this possibility, this

‘solution’, is not allowed by the present model.

We believe that using metaknowledge supplied by human-

computer interaction to guide search through a metaspace of mod-

els provides a powerful approach to the CSP acquisition challenge.

The broader vision for the future of Ananke is an environment that

can provide constraint knowledge acquisition and maintenance as-

sistance in a variety of forms to take best advantage of the user’s

experience while moving as much of the burden of the process as

possible from human to machine.
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Common Subexpression Elimination in Automated
Constraint Modelling

Ian P. Gent and Ian Miguel and Andrea Rendl1

Abstract. Typically, there are many alternative models of a given
problem as a constraint satisfaction problem, and formulating an ef-
fective model requires a great deal of expertise. To reduce this bot-
tleneck, automated constraint modelling systems allow the abstract
specification of a problem, which can then be refined automatically
to a solver-independent modelling language. The final step is to tai-
lor the model to a particular constraint solver. We show that we can
eliminate common subexpressions in the tailoring step, as compilers
do when compiling source code. We show that common subexpres-
sion elimination has two key benefits. First, it can lead to a dramatic
reduction in the size of a constraint problem, to the extent that solving
time is reduced by an order of magnitude when the number of nodes
searched is the same. Second, it can lead to enhanced propagation
and reduced search. The effect of this can be even more dramatic,
leading to reductions in nodes searched and time taken by several or-
ders of magnitude. Where the technique does not lead to improved
search, we have not seen it cause a significant overhead. Therefore,
we propose that common subexpression elimination is an important
technique for constraint programming.

1 INTRODUCTION

Constraint solving of a combinatorial problem, such as timetabling
or planning, proceeds in two phases. First, the problem is modelled
as a set of decision variables and constraints that a solution must sat-
isfy. The second phase consists of using a constraint solver to search
for solutions to the model: assignments of values to decision vari-
ables satisfying all constraints. Modelling a large, complex problem
using constraints does, however, require expert knowledge. Such ex-
perts are few in number, preventing widespread access to constraint
solving. One important obstacle is the modelling bottleneck. Not only
are there many possible models for a given problem, but the model
chosen has a substantial effect on the efficiency of constraint solving,
and selecting an effective model is difficult.

Recent work has addressed this problem by allowing the user to
describe a problem at a high level in an abstract constraint spec-
ification language, such as ESRA [6], ESSENCE [7], or Zinc [3],
without being forced to make detailed modelling decisions. An au-
tomated system, such as CONJURE [8] or Cadmium [18], transforms
this specification into a concrete model. This step is similar to pro-
gram compilation. A compiler and a modelling system both refine a
high-level language to an intermediate representation that is flattened
to a target machine. The difference lies in the processed data: com-
pilers deal with a set of instructions, Constraint Modelling deals with
a set of relations.

1 University of St Andrews, UK, email: {ipg,ianm,andrea}@cs.st-and.ac.uk

Eliminating common subexpressions is a technique that has been
used successfully in Compiler Construction [5]. The idea is to en-
hance a program by detecting common pieces of code: if two pieces
are equivalent, one piece can be omitted. Hence a reduction in exe-
cution time and memory usage is achieved.

This paper shows that eliminating common subexpressions in the
context of constraint modelling conveys two key benefits. First, it can
produce a significant reduction in the size of a constraint model. Sec-
ond, it can lead to improved constraint propagation (inferences made
by the constraint solver), and therefore dramatically reduced search.
We show experimentally that the first benefit can lead to an order of
magnitude improvement in run time in a constraint solver, while the
second benefit can give several orders of magnitude improvement.

2 BACKGROUND
A constraint model is defined by a finite set of decision variables
and a finite set of constraints on those variables. A decision variable
represents a choice that must be made in order to solve the prob-
lem. The finite domain of potential values associated with each de-
cision variable corresponds to the various options for that choice. A
good model may be solved quickly while a bad model might not be
solvable in a practical amount of time. An efficient model exploits
both the modelling language’s features and the constraint solver’s
strengths. Hence choosing an efficient representation requires a lot
of expertise. Automated modelling seeks to ease this burden by au-
tomating as much as possible of the modelling process.

2.1 Automated Constraint Modelling
A number of approaches have been taken to automated constraint
modelling. For example, the CONACQ [4] system uses machine
learning to formulate a model from a set of solutions and non-
solutions provided by the user. The O’CASEY system [15] uses
case-based reasoning to store, retrieve and reuse constraint program-
ming experience. In this paper our focus is on automated modelling
through refinement of an abstract specification. In particular, we will
discuss our approach in the context of the ESSENCE / CONJURE sys-
tem, but it is equally applicable to similar systems such as Zinc / Cad-
mium. Indeed, common subexpression elimination could be used as
a post-processing step to improve an existing model.

The ESSENCE language allows the specification of a problem ab-
stractly, i.e. without making modelling decisions. ESSENCE, like
Zinc, provides decision variables whose domain elements are com-
binatorial objects, such as sets, functions, or relations. Furthermore,
these objects can be nested so that an individual variable may repre-
sent a set of sets, a set of sets of relations, and so on. This specifica-
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Figure 1. Automated Constraint Modelling with ESSENCE and CONJURE.

tion is refined automatically by the CONJURE system to a solver-
independent constraint modelling language ESSENCE′. ESSENCE′

is a version of ESSENCE that has abstraction removed (principally,
domain values are atomic) and provides facilities common to exist-
ing constraint solvers and toolkits. An ESSENCE′ model is adapted,
or ‘tailored’ to a particular constraint solver using the TAILOR sys-
tem [12]. The tailoring task consists of mapping ESSENCE′ expres-
sions to the set of constraints provided by the target solver, as ex-
plained below. In this paper we will use MINION [11] as our target
solver. An overview of the automated modelling process is given in
Figure 1. At present, we are eliminating common subexpressions in
the tailoring stage. In future, we plan to lift this work to the refine-
ment stage.

3 TAILORING CONSTRAINT INSTANCES TO
SOLVERS

Our approach focusses on tailoring problem instances rather than
problem classes to a target solver. An instance is obtained from a
class by giving a value for each parameter in the model (e.g. by giv-
ing n = 8, we obtain the 8-queens instance). Hence, each occur-
rence of a parameter in the model is instantiated to its associated
value, which promotes tailoring steps such as evaluation and flatten-
ing. In our implementation, TAILOR adapts solver-independent con-
straint models to a particular solver by the following steps:

• Insert parameter values to obtain an individual instance
• Normalise the problem instance
• Flatten ESSENCE′ constraints (and variable datastructures) to con-

form those provided by the target solver
• Map flat, normalised instance to the target solver

Some constraint solvers, such as Minion, require individual in-
stances as input. For others, our conjecture is that tailoring instances

is worthwhile because of the extra information provided by instanti-
ating the parameters. In the following we discuss the tailoring steps
that are crucial for detecting common subexpressions efficiently.

3.1 Normalisation: A Prelude to Common
Subexpression Detection

Our normalisation of ESSENCE′ has two components: evaluation and
ordering. These are applied in an interleaved manner until a fixpoint
is reached (the normal form). They are described below. We nor-
malise expressions not only after parsing but also during flattening,
when we unroll more complex expressions, such as quantifications.
We do not apply any kind of factorisation of expressions.

3.1.1 Evaluation

Evaluation is particularly powerful when tailoring a problem instance
to a target solver. Care is necessary in deciding the extent of evalua-
tion: in some cases further evaluation might improve an instance but
increase tailoring time and hence impair the (combined) modelling
and solving process. Therefore, the expression evaluation included
in our normalisation is simple, and cheap to perform. We evaluate
constant expressions and apply several simple algebraic transforma-
tions, such as algebraic identity or algebraic inverses. We give some
examples below.

3 ∗ 4− 2 −→ 10 Constant Evaluation
exp + 0 −→ exp Algebraic Identity
exp− exp −→ 0 Algebraic Inverse
exp∧ false −→ false Logic

3.1.2 Ordering

We define a total order ≤o over the expressions of ESSENCE′. An
ESSENCE′ model is transformed into a minimal form with respect to
this order. The order represents a hierarchy of expressions, based on
their complexity: Expressions on the bottom of the hierachy are ex-
pensive ones, such as non-linear expressions. Constants are at the top
of this order, followed by variables and arrays. Further down the or-
der are constraint types such as equalities, disequalities, inequalities,
and special constraints like ‘all-different’. Linear expressions come
before non-linear expressions.

a + b + c + d ≤o a ∗ b

Expressions of different type are ordered based on their position in
the order. Expressions of the same type are ordered recursively; each
type has self-comparison rule. An equality constraint, for example, is
ordered by examining the left argument first, followed by the right.
The base case is where two constants or two variables are compared.
In the former case, the comparison is by value, with least first. In the
latter, the comparison is by name and domain. To illustrate, consider
the following normalisations:

x4 + x3 &= x2 + x1 −→ x1 + x2 &= x3 + x4

x5 ∗ x6 = x8 + x7 −→ x7 + x8 = x5 ∗ x6

3.2 Flattening
It is common for constraint languages to support complex constraint
expressions by re-writing, or flattening, them into a conjunction of
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simple constraints. In general, this mechanism is straightforward: re-
place a complex subexpression by an auxiliary variable that repre-
sents the subexpression. For example, an arithmetic expression, such
as a ∗ (b + c), is flattened by replacing b + c by an integer auxiliary
variable auxi and introducing an additional constraint auxi = b+c.
A relational expression, such as a ⇒ (b ∧ c), is flattened by replac-
ing b ∧ c with a Boolean auxiliary variable auxb. The equivalence
between auxb and b ∧ c is expressed by a so-called reification con-
straint reify(b∧ c, auxb) that corresponds to auxb ⇔ b∧ c (auxb is
true if and only if the reified constraint b ∧ c is satisfied).

Unflattened Flattened
Arithmetic a ∗ (b + c) auxi = a + b
Expression a∗auxi

Relational a⇒ (b ∧ c) reify(b ∧ c,auxb)
Expression a⇒auxb

More complex expressions require several flattening steps to flat-
ten completely, each introducing another auxiliary variable and
equality constraint or reified constraint, respectively. As an example
of a more complex expression, consider the constraint describing the
‘legal moves’ in the action-based model of the Peg Solitaire problem
from [14] in Table 1.

4 COMMON SUBEXPRESSION ELIMINATION

This section discusses different sources of common subexpressions,
together with efficient ways of detecting and exploiting them.

We say that two expressions are common (or equivalent) if they
take the same value under all possible satisfying assignments. We
distinguish between two types of equivalent subexpressions: subex-
pressions that are syntactically equivalent and subexpressions that
are semantically equivalent. Syntactically equivalent expressions are
written in the same way, such as a pair of occurrences of a ∗ b. Se-
mantically equivalent expressions mean the same thing, which can
be deduced by their operational semantics, such as from the equiva-
lence relation a∗ b = c. Clearly, syntactically equivalent expressions
are also semantically equivalent.

Due to properties such as commutativity, many semantically
equivalent logical and arithmetic expressions can be written so as to
be syntactically distinct. A simple example is a + b versus b + a. By
normalising a constraint model (as we describe in Section 3.1) prior
to common subexpression detection, the test for semantic equiva-
lence is, in many cases, therefore reduced to the much cheaper test
for syntactic equivalence.

The process of common subexpression elimination is straight-
forward. We record every two expressions that we denote equiva-
lent. According to our expression ordering (see Section 3.1.2) the
smaller expression is stored in a hashmap as representative for the
greater expression. Whenever the greater expression re-occurrs in the
constraint model, it is replaced by the smaller expression. Since the
ordering captures the complexity of expressions, a subexpression is
always replaced by a more effective subexpression.

Most common subexpressions arise in quantified expressions that
are unrolled during flattening. Although a constraints expert can, of
course, recognise common subexpressions and perform elimination
manually, it is likely that a non-expert would not. Furthermore, even
for an expert, performing this step in a complex model can be labo-
rious and, without care, a source of error.

4.1 Explicit Common Subexpressions
A very simple example of common subexpressions is when the
model contains a constraint of the form X = Y . We shall refer to
constraints of this form as explicit equivalences, since they are given
directly in the model.

4.1.1 Equivalence between Atomic Expressions

The simplest case of explicit common subexpressions x = y is where
x and y are atomic expressions, i.e. variables or constant values. The
standard enhancement approach is to use x for every occurrence of
y and, if y is a variable, to remove y from the set of variables, thus
saving a variable. This approach has been extensively studied [1, 2,
16].

4.1.2 Equivalence between Compound Expressions

The general case of explicit common subexpressions X = Y oc-
curs when X and Y are arbitraily complex expressions. As example,
consider the expression x = y ∗ z. According to our ordering, x is
cheaper than y ∗ z and we can replace every further occurrence of
y ∗ z with x. Though exploiting equivalence between compound ex-
pressions can yield very effective results, this case mostly occurs in
models formulated by non-experts.

4.2 Common Subexpressions Introduced During
Flattening

The flattening process, which was explained in Section 3.2, natu-
rally introduces a large number of equalities and reification con-
straints, which are a rich source of common subexpressions. If a cer-
tain subexpression appears again, we can simply re-use the auxiliary
variable that already represents the subexpression, as the simple ex-
ample below demonstrates:

Unflattened Standard Flattening Enhanced Flattening
a + x ∗ y = 0 aux1 = x ∗ y aux1 = x ∗ y
x ∗ y + b = t a+aux1 = 0 a+aux1 = 0

aux2 = x ∗ y aux1 + b = t
aux2 + b = t

In our implementation, we flatten expressions bottom-up, i.e. ex-
pressions are flattened starting from the leaves of the expression tree.
We maintain a hashmap that maps all previously flattened subexpres-
sions to their corresponding auxiliary variables. Whenever we flat-
ten a new subexpression we look up the hashmap for an equivalent
expression: if we find an equivalent expression, we replace it with
the respective auxiliary variable. This approach reduces the time re-
quired to match subexpressions and the memory we spend to collect
previously flattened subexpressions. Note the importance of normal-
isation here: it is much easier to detect equivalence of normalised
subexpressions.

The benefits we gain are great. First, if an instance contains com-
mon subexpressions of this kind, we save a variable and a set of con-
straints (depending on the complexity of the common subexpression)
for every subexpression. Below, we report results to show that this
effect on its own can reduce solving time by an order of magnitude,
even without reducing the numbers of nodes searched.

We obtain a second large benefit, with even greater potential. This
is that we can get additional propagation through re-using auxiliary
variables. To see how this could happen, consider again the example
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above. Suppose that the domains of x and y are both {1, 2}. The
domain of a is therefore {−4,−2,−1} because a + x ∗ y = 0.
During search, we might set b = 0, t = 2. From this we can deduce
x ∗ y = 2 and in the standard flattening we get aux2 = 2. However,
we can deduce nothing about x or y because either x = 1, y = 2 or
x = 2, y = 1 is possible, so nothing propagates through to aux1 or
a. When we use enhanced flattening, we share the same variable, so
we deduce aux1 = 2 and immediately propagate to set a = −2. Of
course this can propagate further, depending on the problem. Thus,
the simple detection of common subexpressions can lead to reduced
search. Not only can it do this in principle, we will see below that it
can reduce search by a factor of more than 2,000 in practice.

Some solvers flatten their input themselves, such as the Eclipse
Constraint Programming System [10] which does not eliminate com-
mon subexpressions [19]. However, most solvers, such as MINION or
Gecode [9] take a flattened model as input, hence flattening (in com-
bination with common subexpression elimination) has to be done by
the modeller - a tedious task, even for an expert (consider eliminat-
ing all common subexpressions of the ‘legal moves’-constraint of the
Peg Solitaire model in Table 1!). Therefore both Constraint novices
and experts benefit from automated common subexpression elimina-
tion: poor models are drastically improved and good models might be
improved if they contain common subexpressions without increasing
tailoring time significantly.

Peg Solitaire Action model description
We represent the board by bState, a list of squares for each
step of the game. Every possible peq-move is assigned to a number
between 1 and 76 and the array of variables moves holds the
corresponding move for each step.
0 given noSteps : int
1 letting transitionStep :
2 matrix indexed by [int(1..76),int(1..3)] of int(1..33) be ...
3 letting transitionNumber :
4 matrix indexed by [int(1..33),int(1..33)] of int(0..76) be ...
5 letting STEPS be domain int(0..noSteps)
6 letting FIELDS be domain int(1..33)
7
8 find bState : matrix indexed by [ STEPS, FIELDS ] of bool
9 find moves : matrix indexed by [int(0..noSteps-1) ] of int(1..76)
10
11 such that
12 . . .
13 $ legal moves
14 forall step : int(0..noSteps-1) .
15 forall f1,f2 : FIELDS .
16
17 $ if there exists a legal move from f1 to f2
18 (transitionNumber[f1,f2] != 0)⇒
19
20 $ and we make that transition, the following holds..
21 ( (moves[step] = transitionNumber[f1,f2])⇔
22
23 ( (bState[step, f1] > bState[step+1,f1]) /\
24
25 (bState[step,transitionStep[transitionNumber[f1,f2],2]] >
26 bState[step+1, transitionStep[transitionNumber[f1,f2],2]]) /\
27
28 (bState[step, f2] < bState[step+1, f2]) /\
29
30 forall field : FIELDS .
31 ( (field != f1) /\
32 (field != transitionStep[transitionNumber[f1,f2],2]) /\
33 (field != f2)
34 )⇒
35 (bState[step,field] = bState[step+1,field])
36 )
37 )

Table 1. Segment of the Peg Solitaire Action model [14] formulated in
modelling language ESSENCE′. A summary of the model is given in Table 2

4.2.1 Example: Common Subexpressions in Peg Solitaire

As an example for common subexpressions, consider the partial
model of the Peg Solitaire Problem [14] in Table 1. Peg Solitaire

is a gamed played on a board with holes and pegs to arrange. The
aim in the standard version of the game is to perform checkers-like
moves to remove all pegs but one from the board.

We represent the 33 fields (holes) on the board by booleans: true
states that a peg is in the hole and false states that the hole is
empty. The board changes after every move, so we represent the
board states by the matrix bState, where the ith vector represents
the field-variables for the ith step in the game. There are 76 possi-
ble moves on the board and the 1-dimensional matrix moves holds
the variables for each move made in the game. The constant matrix
transitionNumber[f1,f2] gives the corresponding transition number
(ranging from 1 to 76) when making a move from field f1 to f2.
transitionStep [step, i] gives the field-variable that is involved when
performing the step with number step.

We constrain the move chosen to be legal using a universal quan-
tification in line 14. A summary of the ‘legal moves’-constraint is
given in Table 2. Recall that such quantified ‘loops’ must be unrolled
for constraint solvers such as Minion or Gecode. As we do so, com-
mon subexpressions arise between the expressions obtained for dif-
ferent values of the quantified variable. An example is the inequality
in line 23 that is nested in a conjunction,

bState[step, f1] > bState[step + 1, f1]

When the quantification is unrolled for step=0 and f1=2, it yields the
subexpression

bState[0, 2] > bState[1, 2]

that re-occurs every time field 2 is involved in another move at step
0. The same holds for the other inequalities from lines 25 and 28.

Summary of action-centric model of Peg Solitaire where move is
an array of variables representing the moves required to solve the puzzle,
bState is an array of variables representing the state of the board at
each step, t ranges over the steps in the sequence of moves, m is a move,
start(m), mid(m) and end(m) return the three positions affected by
move m, and unchanged(m) returns the set of positions not affected
by move m.
forall t in 1..31 .
forall m in 1..76 .

move[t] = m↔
bState[t− 1, start(m)] > bState[t, start(m)] ∧
bState[t− 1, mid(m)] > bState[t, mid(m)] ∧
bState[t− 1, end(m)] < bState[t, end(m)] ∧
forall u in unchanged(m) . bState[t− 1, u] = bState[t, u]

Table 2. Summary of action-centric model of Peg Solitaire

5 EXPERIMENTAL RESULTS
In this section we compare models that we tailor (as described in
Section 3) either with or without common subexpression elimination.
We present a selection of problems that we formulate in ESSENCE′

without applying symmetry breaking. Then we tailor the ESSENCE′

model to a MINION instance using the tool TAILOR, in which we
have implemented (optional) common subexpression elimination.
For each problem instance, we generate two different MINION input
files: one that is tailored by eliminating common subexpressions and
one that is not. Both models are solved on the same machine (Dual-
core Intel P4 at 3GHz with 1.5Gb RAM) using MINION v0.5. We
apply the same variable ordering heuristic (decision variables first,
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n Tailoring (s) Solving Time (s) Search Nodes
♠ ♥ ♠ ♥ ♠ ♥

5 0.36 0.37 9.49 0.04 400,399 1870
6 0.41 0.42 1809.53 0.39 79,159,269 32,964
7 0.53 0.49 48,020.50 8.58 1,448,334,418 604,206

Common Aux Variables Constraints
Subexpr. ♠ ♥ ♠ ♥

1,230 1,440 200 1,486 256
2,248 2,535 287 2,614 366
3,710 4,101 391 4,206 496

Table 3. Solving performance and model features of Peaceable Army of Queens models with (♥) and without(♠) common subexpression elimination

then auxiliary variables) and same value ordering heuristic (ascend-
ing) in both cases. We compare the models in several ways. As well
as solving performance we report tailoring time. We also look at fea-
tures of the tailored instances, such as the number of constraints and
auxiliary variables.

5.1 Golomb Ruler
The Golomb Ruler problem is to find a ruler of minimal length with n
ticks such that the distance between every two ticks is different. Our
results with common subexpression elimination are very interesting:
we take the basic model from [13] which uses quarternary constraints
to express the distances between the ticks. Applying common subex-
pression elimination on the basic model automatically yields the en-
hanced distance model from [13]. Hence this example demonstrates
how weak models can automatically be enhanced to advanced, effec-
tive models from the literature. The results are given in Table 4: we
gain a great reduction in search time but also in search space.

Common Solving Time Search Nodes
n Subexpr. ♠ ♥ ♠ ♥
7 679 0.97 0.04 2,507 1,996
8 1260 26.80 0.35 22,508 17,427
9 2148 513.54 3.27 188,026 141,503

10 3435 >7,461.07 36.32 >1,406,328 1,114,964
Table 4. Solving performance of Golomb Ruler instances with(♥) and

without(♠) common subexpression elimination

5.2 Peg Solitaire
We formulated two different models of Peg Solitaire. The first is
taken from [14] and is state-centric: for each possible change to the
state of the board, a constraint is added specifying the moves that
might be responsible. We also experimented with a novel action-
centric model: a constraint is added for each possible action, spec-
ifying the changed and unchanged parts of the board. The constraints
are briefly summarised in Table 2.

In the action-centric model, we reduce the number of auxiliary
variables from 87,172 to 6,603, and the number of constraints from
89,625 to just over or under 9,000 depending on the starting po-
sition. In the state-centric model, we reduce the number of auxil-
iary variables from 313,720 to 12,989 and the number of constraints
from 316,886 to 16,155. We present solving results in the two mod-
els (from three different starting positions) in Table 5. In the action-
centric model, we get no reduction in search nodes, a small increase
in tailoring time, but an order of magnitude reduction in run time.
In the state-centric model, we do in fact get a reduction in search of
about a factor of 3, as well as a reduction in time taken per node.
Note that the elimination of common subexpressions reverses the
performance of models. That is, the action-centric model is best with-
out subexpression elimination, but when it is used the state-centric
model searches faster. When tailoring time is also taken into account,
the action-centric model is fastest overall on the easiest instance, but
state-centric remains best for the two harder instances.

start Tailoring (s) Solving (s) Search Nodes
field ♠ ♥ ♠ ♥ ♠ ♥
17 5.88 5.97 31.7 3.2 10,269 10,269
10 5.87 6.18 4376.2 456.7 1,486,641 1,486,641
5 5.97 6.04 >7200 3,920.4 11,398,210 11,398,210
17 47.06 44.37 42.4 2.7 10,269 3,944
10 46.55 44.24 6,383.2 247.4 1,486,641 539,374
5 46.64 44.70 >7200 2,151.8 >1,784,832 3,066,971

Table 5. Action-centric (top) and state-centric (bottom ) Peg Solitaire
models with (♥) and without (♠) common subexpression elimination

.5.3 Peaceable Army of Queens

The peaceable army of n queens problem is to place two equally-
sized armies of white and black queens on an n×n chessboard such
that no queen can attack a queen of the other colour. We formulate
the ‘basic model’ of Smith et al [17] without symmetry breaking con-
straints in ESSENCE′. We compare performance (to find an optimal
solution and prove its optimality) and the models in Table 3. Com-
mon subexpression elimination has a more dramatic impact than in
the previous experiment. Here, we see the number of search nodes
reduced from 1.5 billion to less than a million at n = 7, a factor of
more than 2,000. Solving time is reduced even more, by more than
5,000 times at n = 7. These dramatic improvements occur through
improved propagation after we have eliminated common subexpres-
sions. They allow reasoning to occur over parts of the model which
are separated in the vanilla model. Comparison with results of [17] is
inconclusive. Our results without common subexpression detection
are much worse than reported there, while results with it are similar.
We do not know if this is because some feature of our model which
is different in detail to theirs, or Minion propagates the same model
worse, or whether Smith et al may have eliminated subexpressions
without detailing it. None of these explanations would invalidate our
main point, that common subexpression elimination can, on its own,
make a very bad model much better purely automatically.

5.4 Balanced Incomplete Block Design (BIBD)

BIBD is problem 28 in CSPLib [20]. We use the standard model from
the literature, consisting of 0/1 variables, sums and scalar products.
The model does not contain common subexpressions so we cannot
improve the model during flattening. Still, we generate two MINION
models from each instance: one where we try to eliminate common
subexpressions (in vain) and one without. We don’t give a model
comparison since the generated models are identical, but investigate
tailoring and solving time in Table 6. This comparison is very in-
teresting: we observe that we do not suffer significantly from the
attempt to eliminate common subexpressions, even though there are
none. Translation times are no more than 30% higher when failing
to find any common subexpressions. We generate an identical model
and get identical search results in terms of nodes searched, with very
similar search times. Fluctuations in search time are presumably just
the difference between separate runs. From this experiment we draw
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the conclusion that the attempt to eliminate common subexpressions
- even in vain - does not significantly slow down the modelling and
solving process.

b, v, r, k, λ Tailoring (s) Solving Time (s) Search Nodes
♠ ♥ ♠ ♥ ♠ ♥

7,7,3,3,1 0.28 0.24 0.01 0.01 21 21
140,7,60,3,20 0.51 0.59 0.43 0.44 17,235 17,235
210,7,90,3,30 0.68 0.82 2.61 2.63 67,040 67,040
280, 7,120,3,40 0.90 1.15 9.92 9.51 182,970 182,970
315,7,135,3,45 1.04 1.26 16.05 17.05 278,310 278,310
385, 7,165,3,55 1.29 1.64 44.17 44.30 574,365 574,365

Table 6. Solving performance of BIBD models with (♥) and without(♠)
common subexpression elimination. No common subexpressions were

found.

6 RELATED WORK
Le Provost and Wallace discuss derivation and elimination of com-
mon subexpression during propagation in [2] but restrict their discus-
sion to explicit atomic subexpressions. Harvey and Stuckey eliminate
explicit atomic and linear subexpressions in their work on improving
linear constraint representations in [1]. Neither study addresses com-
mon subexpression elimination during flattening nor elimination of
non-linear constraints, as we do in our work.

In their work on interval analysis, Schichl et al [21, 22] discuss
common subexpression elimination in models of mathematical prob-
lems represented as directed acyclic graphs. These studies have much
in common with our work, and further examine the issue of propa-
gation over common subexpressions. However, they do not include
logical expressions, such as quantification, which we have identified
as one of the main sources of common subexpressions.

7 CONCLUSIONS
We have shown that common subexpression detection, common in
compilers, can be applied successfully to constraint modelling. We
have shown that this can be implemented effectively as part of the
TAILOR system, which translates models from a solver-independent
modelling language to a target constraint solver.

Our experimental results show three things. First, we can obtain
an order of magnitude improvement in run time simply by reducing
the number of variables and constraints, with no change in search
space. Second, we can obtain additional propagation, resulting in or-
ders of magnitude improvements in the search space and run time.
Third, although these improvements are not always possible, we do
not pay a significant penalty where we cannot find common subex-
pressions. Taken together, the huge benefits outweigh the low costs,
and common subexpression elimination should be considered wher-
ever possible.

It could be argued that tailoring a simple model without common
subexpression detection is a straw man, because other models per-
form better. There may be other models which are inherently bet-
ter, with or without common subexpression detection. It is also true
that any model reduction achieved automatically can also be achieved
manually. However, these potential criticisms do not address the true
point of our work. First, if we can improve a poor model by a fac-
tor of thousands in run time, we may avoid the need to spend time
thinking of a better model. The result may be much better in terms of

time required of an expert constraint modeller. Second, while com-
mon subexpression detection could be done by humans, it is not done
in practice. In fact, it would often be impractical. A modeller would
have to study a model looking for repeated expressions, and then re-
model manually while avoiding mistakes in doing so. It is preferable
to automate this process. Hence both modelling expert and novice
benefit from automated common subexpression elimination.
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Global Preferential Consistency for the Topological 
Sorting-Based Maximal Spanning Tree Problem

Rémy-Robert Joseph1

Abstract.   We introduce a new type of fully computable problems, 
for DSS dedicated to maximal spanning tree problems, based on 
deduction and choice: preferential consistency problems. To show 
its interest,  we describe a new compact representation of prefer-
ences specific to spanning trees, identifying an efficient maximal 
spanning tree sub-problem. Next, we compare this problem with 
the Pareto-based multiobjective one. And at last, we propose an ef-
ficient  algorithm  solving  the  associated  preferential  consistency 
problem.

Keywords: Consistency enforcing, Interactive methods, Multiob-
jective combinatorial optimization, Preferences compact represen-
tation, Spanning tree.

1 INTRODUCTION

Given an undirected graph G = (V, E) with V the vertices and E the 

edges, a  spanning tree x of  G is a connected and acyclic partial 

graph of G. x is then always composed with |V| ! 1 edges. We de-

note by SST(G) the spanning trees set of G. For short, we write: e " 

x, with e " E, to say: e is an edge of the spanning tree x. More gen-

erally, we will assimilate x to its edges set. The classical problem 

of maximum spanning tree (# ST/$u/OPT) is defined as follow:1

ST/$u/OPT: Given an undirected graph G = (V, E) and a utility u(e) 

associated with each edge e " E, the result is a feasible span-

ning tree x of G, maximizing the sum of utilities of edges in x, 

if such a tree exists. Otherwise, the result is ‘no’.

Several  consistency problems have been recently investigated 

on spanning trees. On the one hand, we note the consistency prob-

lem associated with feasible spanning trees of a graph [25]. Other 

investigations  pointed  out  consistency  associated  with  weighted 

spanning trees [8], and maximum spanning tree [9]. On the other 

hand,  numerous  local  consistency  problems  combining  classical 

spanning tree problems with other constraints have been investig-

ated.  For  example,  the  diameter  constrained  minimum spanning 

tree problem (DCMST) [16].

Within non-conventional preferences, the situation is radically 

different. Very few consistency spanning tree problems have been 

investigated in literature. We cite a local consistency problem pro-

cessed  for  the  robust  spanning  tree  problem  with  interval  data 

(RSTID) [1].

1 Université des Antilles et de la Guyane / Institut d'Etudes Supérieures de 
Guyane, French Guyana, France,   e-mail : remy.joseph@caramail.com

Yet, the most of combinatorial problems from the real practical 

world require the modeling of imprecision or uncertainty, multiple 

divergent viewpoints and conflicts management, to wholly assess 

the solutions and to identify the best compromise ones. These sin-

gularities require more complex modeling of preferences [27, 21]. 

For now some decades, the OR/CP community scrutinizes combin-

atorial  problems  enabling  non-conventional  global  preferences. 

Thus, we attended to the flowering of a great number of publica-

tions dealing with multiobjective combinatorial optimization prob-

lems (see [10, 3] for surveys). Nevertheless,  a very few articles 

dealt  with combinatorial problems with purely ordinal and/or in-

transitive preferential information. We mention the recent investig-

ations in the scope of (i) decision theory with maximal spanning 

trees and maximal paths in a digraph [18], (ii) game theory with 

stable matchings (see [20] for a survey), (iii) algebraic combinator-

ial  optimization  [28,  5],  or  (iv)  artificial  intelligence  with some 

configuration problems [4, 14] and with heuristic search algorithms 

[17, 14]. We decide to bring another stone to this building, with the 

concept of preferential consistency applied to the topological sort-

ing-based maximal spanning trees problem.

The decision problematic of finding a suitable preferred solution 

is semi-structured: in the general case (beyond total preorders), a 

preferred solution fitted to the decision-maker cannot be only iden-

tified  from  the  implemented  preferential  information.  Preferred 

solutions are not all equivalent, some are partially comparable oth-

ers  are incomparable,  and sometimes,  there exists no optimal or 

maximal solution [27, 21]. To investigate these semi-computable 

problems,  we  will  use  the concept  of  Decision Support  System 

(DSS) to explore the preferred solutions set. This exploration can 

be achieved other than by building iteratively new preferred solu-

tions – as usually in multicriteria optimization –; For example, by 

describing this  preferred set  with the set  of values present  in at 

least one preferred solution. The notion of consistency, defined in 

Constraint  Programming,  gathers  the  theoretical  surrounding  of 

this descriptive approach of implicit  sets. This is  a reactive [26] 

and deductive approach of solving; In a polynomial number of ac-

tions (removings, instantiations and backtrackings), the user leads 

to a preferred solution.

Consequently, after an introduction on preference relations (§ 

2.1), we make a brief presentation on compact representation of 

preferences  (§  2.2).  We  next  point  out  a  generalization  of  the 

maximum spanning  trees  problem:  the  maximal spanning  trees 

problem (§ 3.1). So, we introduce (§ 3.2) preferential consistency, 

i.e. a template redefining consistency in order to take into account 

of peculiarities of combinatorial problems exploiting non-conven-

tional preferences, followed by its using on the maximal spanning 

1
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trees. In general, most of relevant computable problems supporting 

the initial decision problem are intractable. Accordingly, we point 

out an  easy suitable maximal  spanning trees  sub-problem (§ 4), 

based on a compact preference representation inspired by topolo-

gical sorting (§ 4.1). In § 4.2, we give an example of using in the 

multicriteria  context  and we compare this  sub-problem with the 

Pareto-based multiobjective version. Next, we design a global pref-

erential consistency algorithm (§ 5) dedicated to it. We conclude (§ 

6) with some perspectives.

2 PREREQUISITES IN DECISION THEORY

Throughout this article, we take place at a very general abstraction 

level, where global preferences are represented by a non complete, 

intransitive and even cyclic binary relation on the solutions space, 

but enabling a  maximal set (there  exist  no solution strictly  pre-

ferred to any of them). Here are some definitions:

2.1 Preference relation

Given a non-empty finite set S, a (crisp binary) preference rela-
tion [23, 27, 21] ! of an individual on S is a reflexive binary rela-
tion on S (! ! " S # S and $ x % S, (x, x) % !) translating some 
judgments of this individual concerning his preferences between 
the alternative elements of S. For every couple of elements x and y 
of  S,  the assertion « x ! y » is equivalent to « (x,  y)  % ! » and 
means that « x is at least as good quality as y for considered indi-
vidual ». A preference relation  ! carries out a partition of  S # S 
into four fundamental relations:

(indifference) x " y ! ( x ! y  and  y ! x ) for all x, y % S

(strict preference) x # y ! ( x ! y  and  not(y ! x) ) for all x, 

y % S

(strict aversion) x $ y ! y # x for every x, y % S

(incomparability) x % y ! ( not(x ! y)  and  not(y ! x) ) for 

every x, y % S

Preference relations defined on a finite set formally correspond 

with the concept of simple directed graphs (shortly digraphs). Ac-

cordingly, the graphical representation of digraphs will allow us to 

illustrate our  investigation.  For  every non-empty  A " S,  the  re-

striction of ! to A is the preference relation !|A defined as follow: 

!|A = {(x, y) % A # A, such that: x ! y}. By abuse, we do not spe-

cify  the restriction,  the context  enabling to  identify  the targeted 

subset of S. A preference relation ! is:

• transitive iff  [x ! y and y ! z] & x ! z, for all x, y, z % S

• quasi-transitive  iff  [x # y and y # z] & x # z, for all x, y, z % 

S iff the strict preference relation is transitive

• P-acyclic iff $ t > 2 and $ x1, x2, …, xt % S,

[x1 # x2 # … # xt] & not(xt # x1) 

iff ! has no circuit of strict preference.

• an equivalence relation iff it is reflexive2, symmetric and tran-

sitive

• a partial preorder iff it is reflexive and transitive

• a complete (or total) preorder iff it is reflexive, transitive and 

complete

2 Mention that a binary relation ! is symmetric iff x ! y & y ! x, for all 
x, y % S; antisymmetric iff x ! y & not(y ! x), for all x, y % S with x ' 
y; and complete (or total) iff x ! y or y ! x, for all x, y % S and x ' y.

• a  complete (or  total) order iff it is reflexive, transitive, anti-

symmetric and complete

Given a finite non-empty set S structured by a preference rela-

tion !, the maximal set (or efficient set) of S according to !, de-

noted M(S, !), is the subset of S verifying: M(S, !) = {x % S | $ y 

% S, not(y # x)}; while the optimal set of  S according to  !, de-

noted B(S, !), is the subset of S verifying: B(S, !) = {x % S | $ y % 

S, x ! y}. Of course, there exists other choices of axioms identify-

ing preferred (i.e. best quality, or best compromise) solutions from 

a preference relation, and we refer to [11, 24] for a deepening.

Given a preference relation ! on a finite set S, another prefer-

ence relation !& on S is an extension of ! if $ x, y % S, x # y & x 

#& y. The relation !& is called a linear extension of ! if !& is an 

extension of ! and !& is a total order. We have the following res-

ult (see [23]): a preference relation ! on a finite set S is P-acyclic 

! every non empty subset of S has a non empty maximal set (! $ 

( ' A " S,  M(A,  !)  ' ()  ! there exists linear extensions of  !'

and they are obtained by topological sorting.

2.2 Compact representations of preferences in 
combinatorial problems

In combinatorial practical applications, solutions are implicit: de-

scribed by a set  S of elementary components of a set  E (! S " 

!(E)). Then, it is necessary to imagine a compact representation 

of preferences for their elicitation (acquisition) and their process-

ing; because these operations with an explicit representation – the 

listing of the couples x,  y % S such that x ! y – being usually in-

tractable.

Thus, in classical combinatorial optimization, the preferences are 

represented by a utility function u from !(E) to ( to maximize:  x 

! y ! u(x)  ) u(y).  In  multicriteria  optimization  based  on  the 

Pareto dominance, preferences are represented by a vector of utility 

functions (u1, …,  up), aggregated by the Pareto dominance:  x ! y 

! [$ i % {1, …, p},  ui(x)  ) ui(y)]. This hierarchical aggregation 

will be noted p*u>PARETO. And more generally, every aggregation 

of a family of p utility functions by a rule AR will be noted p*u>AR. 

In artificial intelligence, numerous compact representations of pref-

erences appeared: from CP-nets [4, 14] to constraints describing 

the preferential neighbourhood of the solutions (called preferential 

constraints in [13]), by going through soft constraints [3, 19] and 

dynamic CSP [26]. In the following, any compact representation of 

a preference relation  ! is denoted  I(!). We will present in § 4.1 

the compact  representation used here  for  our  maximal  spanning 

trees sub-problem.

3 PREFERENTIAL CONSISTENCY AND 
MAXIMAL SPANNING TREES

3.1 Maximal spanning trees problems

Consider the problem of finding a  satisficing (in the meaning of 

Newell  &  Simon  [15])  maximal  spanning  tree.  Denoted  by 

DS(ST/CBPR/MAX), this semi-structured problem is formulated in the 

following way:

2
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DS(ST/CBPR/MAX): Given an undirected graph G = (V, E) and a com-

pact representation I(!) of a preference relation ! on !(E), the 

result is a feasible spanning tree which is:

(i) maximal for (SST(G), !), if such a solution exists, and

(ii)suited with the system of values of the user.

Otherwise, the result is ‘no’.

Remark 1. DS and CBPR mean respectively decision support and crisp 

binary preference relation. The condition (ii) means the user via an 

interactive process will treat the lack of equivalence and the incom-

pleteness between maximal solutions. This definition of problem 

involves  that  the  satisficing solution,  must  be  also  maximal  in 

(SST(G),  !). In other words, the only degree of freedom let to the 

DSS user is  the choice of a suited solution  among the maximal 

ones. This definition refers for example to contexts where prefer-

ences have been given by the different actors of the decision prob-

lem, next aggregated in global – possibly incomplete and intransit-

ive – preferences ! on the solutions !(E) via a compact represent-

ation I(!); Now, an individual: the user, being able to bring effi-

ciently forgotten preferential information at different times of the 

decision process, is in charge of finding the suited solution mirror-

ing at best global preferences.

At  this  semi-structured problem is  associated the computable 

problem of finding a maximal spanning tree, denoted ST/CBPR/MAX, 

the definition of which corresponds with the  DS(ST/CBPR/MAX) one, 

after erasing the property (ii). In such a general framework, these 

computable problems are hard. To be convinced, it is sufficient to 

consider the peculiar case where the used compact representation 

of  preferences  is  the  Pareto-based  multicriteria  one.  Hence,  the 

membership problem associated with this multiobjective spanning 

trees problem is NP-complete [6, 12].

3.2 Preferential consistency for maximal spanning 
trees

In Constraint Programming [19],  consistency is a part of a more 

general problematic called description. The aim of consistency is 

the description of the feasible set of a constraint system by way of 

values or combinations of values belonging to at least one feasible 

element.

Consistency problematic can be extended, in the framework of 

combinatorial  problems exploiting  non-conventional  preferences, 

so as to take into account of preferential information. Simply, con-

sistency will not rely on feasibility but on best quality or best com-

promise. Hence, we won’t remove inconsistent values in the mean-

ing that they belong to no feasible solution, but rather because they 

belong to no preferred solution. In this case, we speak about pref-

erential consistency.

Without going into details, problems consisting in erasing preferen-

tially inconsistent values, from a constraint system and a compact 

representation of a preference relation, are called preferential con-

sistency problems. As in constraint satisfaction, several levels of 

preferential consistency can be defined, according to whether all or 

a  part  of  preferentially  inconsistent  information  is  deleted.  We 

named  global  preferential  consistency the  removing  of  all the 

preferentially inconsistent information.

Remark  2. In  a  non-conventional  preference  context,  each  used 

choice axiom (e.g. optimality, maximality, domination, …) identi-

fies a specific choice set (optimal set, maximal set, domination set, 

…) which are generally pairwise different (see § 2.1). This other 

parameter  specializes  preferential  consistency.  Thus,  we  speak 

about OPT-consistency for preferential consistency using optimality 

as choice axiom,  MAX-consistency for preferential consistency us-

ing maximality, and so on.

To better understand preferential consistency, in the following, 

we study in details  the case of  maximal spanning tree  problem. 

Consider then the following general computable problem, of pref-

erential consistency for maximal spanning trees of a graph:

GPC(ST/CBPR/MAX): Given an undirected graph G = (V, E) and a com-

pact representation I(!) of a preference relation ! on !(E), list 

the edges in E belonging to a maximal spanning tree for !, if 

such edges exist. Otherwise return ‘no’.

An edge e is called MAX-consistent for (G, I(!)) if there exists 

at  least one maximal spanning tree for (SST(G),  !) containing  e. 

Otherwise, it is called MAX-inconsistent for (G, I(!)).

In this article, we do not dwell on the computational complex-

ity of this problem. But there are great chances it is at least as diffi-

cult  as  ST/CBPR/MAX, with the sight of investigations in constraint 

programming [2, 19]. Yet, in order to better appreciate the using of 

this kind of computable problem in a DSS, we turn towards an effi-

ciently solvable sub-problem of ST/CBPR/MAX.

4 THE ST/TOSORT-VSMAX/MAX PROBLEM

4.1 Compact representation and TOSORT-VSMAX 
condition

From now, to point out an edges set, for example {a, b}, we adopt 

the notation  ab. Given an undirected graph  G = (V,  E) and a P-

acyclic preference relation !E on E, we consider the binary relation 

!K on !(E) defined as follow:

! x, y " !(E),  x !K y  #
$ a linear extension {e1, …, e|E|} of !E on E, verifying:

ei "E ej % i < j for all 1 & i, j & |E|, and

for every 1 & j & |E|,   ej ' x  %  (x ( {e1, …, ej–1}) ) 

{ej} contains a cycle

Figure 1.   Example of an undirected graph and a totally ordered preference 

relation on its edge set3.

Example  1.  The  Figure  1 illustrates  the  case  of  a  complete 

undirected graph G on 3 vertices, with a total order !E on E. Then, 

the binary relation !K verifies (Figure 2), in addition with reflexive 

arcs, that:  A "K B, for every A " " = {ab, abc} and B " !(E) \ ", 

because the only linear extension of !E is itself.

3 To avoid surcharges of the graphical representation, the reflexive arcs 
are not drawn.
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Figure 2.   The relation !K elaborated from (G, !E) of Figure 1.

The Figure 3 considers an undirected graph G = (V, E), with V 

= {!, ", #, $} and E = {a, b, c, d, h}; and a P-acyclic relation !E on 

the edges set E of G verifying, in addition of reflexive arcs: a "E h, 

c "E b, c "E d, d "E b, h "E b, c #E h, d #E h.

Then,  the  binary  relation  !K establishes  a  bipartition  {!, 

"(E) \ !} of "(E) with ! = {x % "(E) such that: acd & x or ach & 

x} and satisfies the following relations: ' (A, B) % ! ( ("(E) \ !), 

A "K B  and ' (A1, A2) % ! ( !, A1 #K A2.

Figure 3.   Example of an undirected graph and a P-acyclic preference rela-

tion on its edge set3.

Definition  1.  A preference relation  ! on  "(E) is called  TOSORT-

VSMAX for the couple (G, !E) iff: ' (x, y) % SST(G) ( SST(G) with x 

) y,

*
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!"!"
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Remark 3. The word TOSORT in the notation TOSORT-VSMAX points out 

the relation !K: the relation !E can be topologically sorted / the 

relation !E is P-acyclic / there exists a non-empty maximal set of 

edges for every non-empty edges subset of  E / there exist total 

orders extending !E. And the second word  VSMAX points out both 

conditions  of  this  definition  –  the  extension  condition  and  the 

translation of the indifference of  !K into indifference and incom-

parability of ! – which define a very strong version of maximality.

Example 2.  The Figure 4 illustrates a preference relation on "(E) 

satisfying  TOSORT-VSMAX for the couple (G,  !E) of  Figure 1. This 

illustration  shows  a  TOSORT-VSMAX relation  may  include  strict 

preference circuits.

For the Figure 3, the feasible spanning trees set is  SST(G) = {abd, 

abh,  acd,  ach,  adh,  bcd,  bch,  bdh};  Accordingly,  every  TOSORT-

VSMAX preference relation ! on "(E) satisfies:

*
+
, (%'

.',*2"34-#-5"#$)$,*6,&&'#'*',)/'#$$-#'$$$-*6$

$$$78%097:%70 ;<

#$%#$&

!"'(#$%#$&!" !!
.

Figure 4.   An example of TOSORT-VSMAX preference relation2 on the power-

set of E of Figure 1.

The preference relation !E on E is called the compact repres-

entation  of the  TOSORT-VSMAX relation  ! on  "(E).  Here are some 

properties:

Properties  1.   Given  a  couple  (G,  !E)  made  up  an  undirected 

graph  G = (V,  E) and a P-acyclic relation  !E on the edges set  E, 

then:

(a) Every TOSORT-VSMAX preference relation for (G, !E) identifies 

the same maximal set as the relation !K induced by !E.

(b) The existence of feasible spanning trees warranties the exist-

ence of a non empty maximal set for (SST(G), !K).

The proof is immediate. The relation !K is the minimum informa-

tion to know in order to identify the maximal set of  TOSORT-VSMAX 

preference relations. Now, we consider the following sub-problem 

of ST/CBPR/MAX:

ST/TOSORT-VSMAX/MAX: Given an undirected graph G = (V, E) and a 

compact representation  !E of a  TOSORT-VSMAX preference rela-

tion ! on "(E), return a maximal spanning tree for !, if such a 

solution exists. Otherwise return ‘no’.

We denote SST/TV/MAX(G,  !E) the set of possible maximal spanning 

trees outputted by an algorithm solving this problem.

Theorem  1.  The  ST/TOSORT-VSMAX/MAX problem can be solved in a 

polynomial time in the input size (G, !E).

Sketch of Proof: One algorithm consists in elaborating a linear ex-

tension {e1, …, e|E|} of !E on E (/ the TOPOLOGICAL SORT problem4 

[7, 22]); Next in assigning a utility u(e) to each edge e of E in order 

to satisfy the following condition: u(ei) > u(ei+1), 1 0 i 0 |E| – 1; for 

example, u(ei) = |E| – i. And, at last in solving the classic spanning 

tree problem (/ ST/1u/OPT) with the instance (G, u). The resulting 

maximum spanning  tree  is  then  also  a  maximal solution  for 

ST/TOSORT-VSMAX/MAX. !

4 In the rest of this article, we will have to use a particular algorithm solv-
ing this problem. We will consider the following one: increasingly and 
greedily number the maximal edges among the not yet numbered edges 
of E. The designed list of edges is then a linear extension of !E. 
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4.2 Multiobjective spanning tree problems based 
on topological sorting

Now we confront this problem to the classical maximum spanning 

tree problem, and its Pareto-based multiobjective version.

Example 3.  The classical problem of maximum spanning tree (! 

ST/"u/OPT)  can  be  polynomially  transformed  into  the  ST/TOSORT-

VSMAX/MAX problem. Indeed, for any spanning tree x of G, the sum 

of utilities of edges in x defines a total preorder !u on !(E):

# (x, y) $ !(E)!, x !u y  ! !
!""

##!$%!
!" $

##! $

The relation !u is TOSORT-VSMAX, and its compact representation !u
E 

is the preorder induced by u: # e, e’ $ E, e !u
E e’ ! u(e) % u(e’). 

The couple (G, !u
E) is then an instance of ST/TOSORT-VSMAX/MAX, and 

its solution set SST/TV/MAX(G, !u
E) = B(SST(G), !u). This assertion is 

easily provable by erasing the topological sorting part of the sketch 

of proof of Theorem 1.

The  ST/TOSORT-VSMAX/MAX problem can  be  used  to  model  and 

solve multicriteria problems. So, the multi-attribute utility function 

can be aggregated first to produce global preferences on the edges, 

and next to partially rank sets of edges. Here is an example:

Example  4.   The  ST/PARETO>TOSORT-VSMAX/MAX problem considers 

an undirected graph  G =  (V,  E)  and  a couple  (p,  u)  made up a 

positive number  p and a multi-attribute utility function  u from  E 

& {1, ..., p} to ". p is the number of considered criteria and u(e, k) 

is  the utility  of  the edge  e according  to  the  criterion  k.  In  this 

problem,  the  preference  information  (p,  u)  is  aggregated with 

Pareto dominance, in order to define a global preference relation 

!EP on each edge:

# e, e’ $ E,  e !EP e’  !  for every 1 ' k ' p, u(e, k)  ! u(e’, k)

Next, this preference relation on the edges is aggregated with the 

!K relation, to obtain a collective opinion !PK between the subsets 

of E.

Then we consider the instance (G, (2, u)) made up the undirec-

ted graph G = (V, E) of the Figure 3, and the bicriteria utility func-

tion u given by the following table:

Table 1.   Example of bicriteria utility function u(edge, criterion) on the 

edges of the undirected graph of the Figure 3.

edges

a b c d h

criterion 1 2 2 1 1 3

criterion 2 1 1 3 2 0

Figure 5.   The preference relation !EP on E provided by aggregation of u 

with the Pareto dominance3.

By aggregating u with the Pareto dominance, we obtain the prefer-

ence relation !EP on E given by the Figure 5. At last, by solving the 

ST/TOSORT-VSMAX/MAX problem on this instance (G,  !EP), we get the 

maximal set M(SST(G), !PK) = {abd, abh, acd, ach, bcd, bch}

Remark  4. Instead  of  using  the  Pareto dominance to  obtain the 

global preference relation !EP on the edges, we can apply any ag-

gregation rule AR on u. The only condition on AR is to provide a 

preference relation !EP having at least the P-acyclicity property.

In the multicriteria decision-making community [10], the multi-

attribute utility function u(e, k), with (e, k) $ E & {1, ..., p}, is usu-

ally aggregated with a simple sum per criterion, to produce a fam-

ily of  p individual utilities on the powerset  of edges. Next,  this 

family is aggregated, generally with the Pareto dominance, into a 

global preference, noted in this case !
"P

, on the sets of edges.

Example  5.  By running an algorithm solving the  ST/p"u>PARETO/ 

MAX problem on the instance (G, (2, u)) described in the Example 4, 

we obtain the maximal set  M(SST(G),  !
"P

) = {abh,  acd,  ach,  bcd, 

bch}, which is strictly included in M(SST(G), !PK).

The following theorem describes the relationship between the 

classical  hierarchical  aggregation  p"u>PARETO and  ours 

PARETO>TOSORT-VSMAX:

Theorem 2.  Given an undirected graph G = (V, E), and a couple  

(p,  u) made up a positive number p and a multi-attribute utility  

function u from E & {1, ..., p} to "; then every maximal solution for 

ST/p"u>PARETO/MAX is also a maximal solution for ST/PARETO>TOSORT-

VSMAX/MAX. Formally:

# x $ S
ST

(G),  x $ M(S
ST

(G), !
"P

)  (  x $ M(S
ST

(G), !
PK

) (1)

Before showing this theorem, here is a lemma which describes a 

property of the relation !K:

Lemma 1.  Given a couple (G = (V,  E),  !E) and an element  x $ 

!(E), then the relation !K is transitive and:

) y $ !(E) such that x !K y !  x is optimal in (!(E), !K)

!  x is maximal in (!(E), !K)

Moreover, if x $ SST(G), then:

) y $ SST(G) such that x !K y !  x is optimal in (SST(G), !K)

!  x is maximal in (SST(G), !K)

Proof: The demonstration of the optimality (first equivalence) is 

immediate. What about maximality (second equivalence)? If  x is 

optimal, then x is maximal. Now, what about the contrary case ? If 

x is maximal in (!(E), !K) then, there 2 cases:

If there exists a z such that x !K y, then x is optimal according to 

the first equivalence.

Otherwise (! if such a z does not exist), then # w $ !(E), x #K w 

! # w $ !(E), not(x !K w) and not(w !K x). Consequently, there 

is no optimal element in (!(E), !K). This assertion is equivalent to 

say that for every linear extension {e1, …, e|E|} of !E on E, and for 

every subset z of E, there exists a 1 ' j ' |E| verifying that:  ej * x 

and (x + {e1, …,  ej–1})  , {ej} is acyclic. This is possible, if and 

only if (V, E) is a tree and E is not in !(E). This is a contradiction.

Hence, at last, x is optimal in (!(E), !K)  !  x is maximal in (!(E), 

!K).

5
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The transitivity of !K is a direct consequence of the first equival-

ence. Next, both the last equivalences are true because (!(E),  !K) 

verifies the Arrow choice axiom [23]:

For any ", # ! !(E) and " " #,

If B(#, !K) # " $ % then B(#, !K) # " = B(", !K)

(every restriction of !(E) conserves the optimality). !

Proof (Theorem 2):  First of all, both the following assertions are 

false:

(a) & x, y ! SST(G),  x !PK y  '   x !(P y

(b) & x, y ! SST(G),  x !(P y  '  x !PK y

Indeed, for the assertion (a), it is sufficient to take the undirect-

ed graph of Figure 3, with the bicriteria utility function of Table 1.

The assertion (b) is false because PK only carries out the dicho-

tomy between the maximal set and its complementary. So, the pref-

erences between two non maximal elements are unknown.

We prove now the formulae (1). So, we reason by contradic-

tion: Suppose there exists an x ! SST(G) maximal for !(P, but not 

for !PK. This proposition is equivalent with the following one, ac-

cording to Lemma 1:

) x ! SST(G) such that:  [& y ! SST(G),  not(y "(P x)]  and

[& y ! SST(G),  not(x !PK y)]

By definition, not(x !PK y) * ) e1 ! E \ x, and ) e2 ! L(x + {e1}) 

verifying e1 "EP e2.

Now, if we take the spanning tree  y defined as follow:  y =  x + 

{e1} \ {e2}, then we have, because of the definition of e1 "EP e2:

& 1 , i , p, 
!"#!"#!"#!"# $

%&'

(

%&' ((

!"#!"#!"#!"#

"$""$"

+,+ --
!!

, and

) 1 , k , p, 
!"#!"#!"#!"# $

%&'

(

%&' ((

%"#%"#%"#%"#

"$""$"

+<+ --
!!

.

* y "(P x. This contradicts the maximality of  x in (SST(G),  !(P). 

Hence the result. !

In the following,  we propose an algorithm solving:  GPC(ST/TO-

SORT-VSMAX/MAX), the global preferential consistency problem asso-

ciated with ST/TOSORT-VSMAX/MAX.

5 GLOBAL PREFERENTIAL CONSISTENCY 
AND TOSORT-VSMAX

Instead of either listing all the maximal spanning trees, or finding 

such one tree, we will point out the removing of edges belonging to 

no maximal  spanning  tree.  Especially  here,  we are  interested in 

GPC(ST/TOSORT-VSMAX/MAX). Here is its definition:

GPC(ST/TOSORT-VSMAX/MAX): Let  G = (V,  E) be an undirected graph 

and  !E be a P-acyclic preference relation on E representing a 

TOSORT-VSMAX preference  relation  ! on  !(E).  Return  all  the 

edges of E belonging to a maximal spanning tree for !, if such 

edges exist. Otherwise return ‘no’.

Denote SGPC(ST/TV/MAX)(G, !E) " E, the edges set outputted by an al-

gorithm solving this problem. Then, by definition, we have the fol-

lowing equality:

SGPC(ST/TV/MAX)(G, !E) = !
!"#)*+*,+-./ &

'($

$

.!
. (2)

This equality is equivalent to the conjunction of the following as-

sertions:

(a) for  all  e ! SGPC(ST/TV/MAX)(G,  !E)  " E,  there  exists  x ! 

SST/TV/MAX(G, !E) " !(E), such that:   e ! x.

(b) for all x ! SST/TV/MAX(G, !E) " !(E),   x " SGPC(ST/TV/MAX)(G, !E).

The Figure 6 presents an algorithm solving this preferential con-

sistency problem.

GPCORDINALSTMAX1(G = (V, E): undirected graph, !E:

P-acyclic preference relation on E):

return {edges set, !"}

begin

(1) if ( NBCONNECTEDCOMPONENTS  (G) > 1 ) then  return !"  end if

(2) A " E / %
(3) B " E / E

(4) C(e) " E / %, for every e ! E

(5) while ( B $ % ) do

% loop invariants: A # B = %  and  B # C(e) = %
(6) e / CHOOSE  (M(B, !E))

(7) B / B \ {e}

(8) C(e) / 0
0

1

2

3
3

4

5
+!

" "" &

"")

0

%0&!0#

(9) if ( NBCONNECTEDCOMPONENTS  (V, C(e) + {e}) <

NBCONNECTEDCOMPONENTS  (V, C(e)) ) then

A / A + {e}

end if

(10) end while

(11) return A

end GPCORDINALSTMAX1

Figure 6. An algorithm solving the GPC(ST/TOSORT-VSMAX/MAX) problem.

This algorithm supposes we know:

6 Another  algorithm  NBCONNECTEDCOMPONENTS   solving  the counting 

problem of the connected components in an undirected graph. 

This problem is known solvable in a linear time (by a depth first 

search algorithm) for any given undirected graph (see e.g. [22, § 

6.3 p. 90]). 

6 A choice strategy CHOOSE   outputting an element of the input ex-

plicit set in the non-empty case. Otherwise, return ‘no’. 

Example 6.  By running GPCORDINALSTMAX1 on the instance given in 

Figure 1 and Figure 3, we obtain as result the respective edges sets 

{a, b} and E \ {b}.

We  denote  |(G,  !E)|  the  size  of  the  instance  (G,  !E)  of 

ST/TOSORT-VSMAX/MAX. This size can be formulated in terms of the 

vertices set cardinality m = |V| of graph G, the number of edges n = 

|E| in  G, and the number of arcs  p = |!E| in (E,  !E): Hence, |(G, 

!E)| is in O(m + n + p). Now, we remark that 0 , n , m! and 0 , p 

, n!. Hence, |(G, !E)| is in O(m4). We have the following results:

Property  2.   The algorithm  GPCORDINALSTMAX1 has  a  worst  case 

time complexity, which is linear in the size of the input (G, !E).

Proof:  It is simply sufficient to see that an order of magnitude for 

the worst case time complexity of this algorithm GPCORDINALSTMAX1 

only depends on the second loop (lines 5 to 10). The algorithm 

NBCONNECTEDCOMPONENTS  , solving the counting connected components 

problem in time linear in the size of its instance (a partial graph of 

6
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G), is then in O(m +  n). Consequently, the worst case time com-

plexity of the conditional instruction ‘if …end if’ (line 9) is about 

m + n. It is similar for:

! line 6, where the choice strategy necessitates a greedy search of 

maximal edge, solvable in the worst case in O(n)

! line 8, where the maximum number of possible unions is about 

cardinality of E, i.e. in O(n).

At last, the body of the 2nd loop runs in the worst case in O(m + n) 

times. Now, the number of loops is equal to the number of edges; 

and proves that the complexity of the algorithm GPCORDINALSTMAX1 

is in O((m + n)"n) # O(m4), i.e. linear in the input size |(G, !E)|. !

Theorem  3  The algorithm  GPCORDINALSTMAX1 returns the whole 

MAX-consistent edges (and only them) for maximal spanning trees  

of the ST/TOSORT-VSMAX/MAX problem, from an instance ((V, E), !E), if  

such trees exist. Otherwise returns ‘no’.

The logic underlying this algorithm consists in putting an edge e $ 

E in a best scenario of choice, in order to elaborate a linear exten-

sion of !E (= the minimal number assigned to e among the linear 

extensions). Such a best scenario consists in choosing e as soon as 

possible, during the topological sort. For that, the topological sort-

ing algorithm has to number every better edge  e’ than  e for  !E; 

next  the  edge  e’ is  numbered  iff  every  better  edge  than  e’ is 

numbered, and so on. In the best case, when e is numbered, if the 

number of connected components decreases when we add e to the 

already numbered edges, then e can be chosen to belong to a max-

imal spanning tree for a  TOSORT-VSMAX preference relation. Indeed, 

this best scenario may then be completed in a maximal spanning 

tree, by iteratively choosing any maximal remaining edge.

Before showing this theorem, here is a lemma which will help 

us in the demonstration.

Lemma 2.  Given an instance (G,  !E), with  !E P-acyclic, denote 

C(e)  the  edges  of  E for  which  there  exists  a  path  of  strict 

preferences towards e: C(e) = {f $ E such that: % f (1), …, f (p) $ E, 

with p & 0, and  f "E f (1) "E … "E f (p) "E e}. Then, for every A ' 

E,   C(e) \ A ( )  *  M(C(e) \ A, !E) ' M(E \ A,!E)

Proof:  First of all, let us clarify the set E \ C(e):

E \  C(e) = {f $ E such that: There exists  no path of strict prefer-

ences from f to e in (E, !E)}

   = {f $ E such that: There is no path of strict preferences 

from f to e1 in (E, !E), + e1 $ C(e)}.

Indeed, if such a path existed from f to  e1, and – by definition of 

C(e) – from e1 to e, then there would exist a path of strict prefer-

ences from f to e.

Show now lemma: Suppose that C(e) \ A ( ). Then every edge 

f $ M(C(e) \ A, !E) verifies: + f1 $ C(e) \ A,  not(f1 "E f)

*   There exists no path of strict preferences from f1 to f in 

(C(e) \ A, !E).

Hence, if some edges are added to C(e) \ A – in this case E \ (C(e) 

, A) – for which there exists no path of strict preferences from f2 $ 

E \ (C(e) , A) to e1 $ C(e) \ A, then it won’t also exist a path from 

f2 to f. At last,  + f $ M(C(e) \  A,  !E),  + f1 $ E \  A,  not(f1 "E f). 

This shows lemma. !

Proof (Theorem 3):  Firstly, we have the following equivalence, 

because of the Properties 1 (b) translated by the first line of the al-

gorithm: GPCORDINALSTMAX1(G, !E) = ‘no’ - SST(G) = ).

Then  point  out  on  the  first  part  of  the  proposition:  Suppose 

GPCORDINALSTMAX1(G, !E) ( ‘no’, and show – by help of Lemma 2 

– formulae (2):

GPCORDINALSTMAX1(G, !E) = !
!"#$%&%'&()* !"#$

$

&$
.

Direct inclusion: For any e $ GPCORDINALSTMAX1(G, !E) ' E, there 

exists x $ SST/TV/MAX(G, !E) ' !(E), such that:  e $ x. Indeed, such 

an x can be designed by using the strategy described in the previ-

ous remark with a topological sort of (E, !E). So, as long as we are 

not at an iteration k such that e is maximal in the set Bk of not yet 

numbered edges, then, during iterations  i <  k, the choice strategy 

consists in taking as current edge ei a maximal edge for (C(e) \ (E \ 

Bi), !E), with C(e) \ (E \ Bi) ' Bi. According to the above lemma, 

M(C(e) \ (E \ Bi), !E) ' M(Bi,!E). Therefore, this strategy is avail-

able, and the iteration k = |C(e)|. During the iteration k, given e de-

creases the number of connected components in C(e) – because e is 

in GPCORDINALSTMAX1(G, !E) and then verifies the condition of line 

9 in GPCORDINALSTMAX1 –, then e is chosen to be added to Ak–1, the 

current tree. Next, during iterations  i >  k, the topological sort al-

gorithm takes as current edge, any edge of  M(Bi,!E). At last, the 

elaborated linear extension can be associated to a utility function 

(see sketch of proof of Theorem 1) and next used as instance of an 

algorithm solving ST/.u/OPT, which necessarily returns a solution x 

( ‘non’, containing e and then maximal for (G, !E).

Figure 7.   Illustration for demonstration of Theorem 3.

Converse inclusion: For every x $ SST/TV/MAX(G, !E) ' !(E),

x ' SGPC(ST/TV/MAX)(G, !E). Indeed, reason by contradiction. Suppose 

that:

% x $ SST/TV/MAX(G, !E) and x / SGPC(ST/TV/MAX)(G, !E).

- % e 0 SGPC(ST/TV/MAX)(G,  !E)  although:  e $ x,  and  x $ 

SST/TV/MAX(G, !E).

- The number of connected components does not decrease if we 

add e in C(e), according to line 9 of GPCORDINALSTMAX1

- 1here exists in  C(e) an undirected path L(e) between both the 

ends of e.

7
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Legend:

Blue : L(e) is an undirected path in C(e) ' E between both the ends of 

e.

f
1
 and f

2
 are two edges of L(e) \ x
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1
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2
) are 2 undirected paths in x  between both the ends of 

respectively f
1
 and f

2
.

The edges of the bold path is included in x.
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So that e should be chosen during the design of x, because e ! x, it 

is necessary that e be maximal at an iteration k " |E|, if we use the 

Kruskal’s  algorithm to solve  ST/TO-SORT-VSMAX/MAX.  At  this  itera-

tion, e ! Ak, the tree at iteration k, and e decreases the number of 

connected  components  in  Ak–1.  If  e ! M(E,  !E),  then  e ! 

SGPC(ST/TV/MAX)(G, !E), this is a contradiction with the initial assump-

tion.  Accordingly,  C(e)  # $.  Moreover,  every edge of  C(e)  has 

already  been  chosen  in  the  scenario  of  the  topological  sort  al-

gorithm during iterations i <  k, in order that  e be maximal during 

the iteration k. It is sure that C(e) " x because it would exist an un-

directed path L(e) % {e} in x; that is contradictory with x is a tree. 

Hence C(e) \ x # $. And for every f ! C(e) \ x, f has not been ad-

ded to x because during the iteration i < k where it has been chosen, 

there already exists an undirected path L(f) in  Ai & x between the 

ends of f.

Now, the edge set (C(e)  ' x)  % (
(

)

*

+
+

,

-

!
!

!"#$

$%
!"#

"#  is an undirected 

path (or contains such a path) in x between the ends of e, making 

up with e an undirected path in  x (see  Figure 7). This contradicts 

the assumption  x is a tree. That demonstrates the converse inclu-

sion. !

6 CONCLUSION AND PERSPECTIVES

One of the limits, devolved upon decision processes based on list-

ing of preferred solutions suggested by Perny & Spanjaard [18] to 

solve  ordinal  combinatorial  problems,  was  the  intractability  of 

large size inputs. We introduced another kind of computable prob-

lems, preferential consistency ones. Their outputs can be processed 

in real-time by a human being (i.e. linear in the input size). These 

computable problems are based both on the notion of consistency 

pointing out by constraint programming (CP), and on the notion of 

choice investigated in decision aiding (DA). In the case of maximal 

spanning trees problems satisfying the TOSORT-VSMAX condition, we 

proposed  an  algorithm  solving  the  global  consistency  problem, 

with a linear worst case time complexity in its input size.

One of the aims of this article is to bring together the CP and 

OR-DA communities,  to  process  more  efficiently  combinatorial 

problems exploiting complex preferences. Their mutual contribu-

tions  open  a  new way  of  interactive  solving  of  semi-structured 

combinatorial problems. Consequently, the perspectives are numer-

ous:

At first, with preferential consistency: Global preferential consist-

ency can be used in an interactive decision process, where the user 

makes some local decisions (choice), and where the DSS is restric-

ted to  remove preferential  inconsistent  domain-values.  However, 

such support systems may not always warrant a preferred solution 

for the initial instance. Consequently, we have explored this way, 

for  example by identifying  domain-values  which  are  in  all  pre-

ferred solutions or, by investigating rational choice theory [23] to 

identify some sufficient properties so that the decision process al-

ways returns a preferred solution for the initial instance, if such a 

solution exists.

Next,  with  efficient  spanning  trees  problems  and  the  particular 

compact representation of preferences used in this article: We have 

been scrutinizing the concept  of  expressive power of a compact 

representation. Any kind of compact representations models only a 

subset of preference relations. For example, utility functions model 

only total preorders. In order to better understand the type of com-

pact representation used in this article, we focus our researches on 

its expressive power for spanning trees problems.

At last, with applications: What makes a good theory, it is its ap-

plicability to real  world problems.  The possible applications are 

numerous. And at this time, we work on an autonomous electrical 

network designing problem allowing several – not necessary car-

dinal – criteria. Shortly, these problems arise in isolated regions as 

some Pacific islands or in remote villages in rainforest. The isola-

tion  of  these  populations  implies  that  the  continuous  supply  of 

fossil fuels is very expensive to the community, and exorbitantly 

expensive if you wanted to connect to an existing electricity grid. 

Renewable energies form a more interesting both in terms of costs 

(a barrel of oil more and more expensive, and means of delivery 

prohibitive as  boat (sometimes pirogue),  helicopter  or plane),  in 

terms of noise and soil pollution, etc. These problems necessitate 

very complex preferential information as inhabitants opinions, cost, 

environmental and aesthetic criteria.
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Dynamic Symmetry Breaking Constraints
George Katsirelos1 and Toby Walsh2

Abstract. We present a general method for dynamically posting
symmetry breaking constraints during search. The basic idea is very
simple. Given any set of symmetry breaking constraints, if during
search a symmetry of one of these constraints is entailed and this
is consistent with previously posted symmetry breaking constraints,
then we post this constraint. The method works best with problems
where symmetry can be broken with a small number of symmetry
breaking constraints. We illustrate the method with two examples
where a polynomial number of symmetry breaking constraints break
an exponential number of symmetries. Like existing static meth-
ods for symmetry breaking, this symmetry breaking method benefits
from fast and effective constraint propagation. In addition, like exist-
ing dynamic methods for symmetry breaking, this symmetry break-
ing methods does not conflict with the branching heuristic. Initial
experimental results appear promising.

1 INTRODUCTION
Many search problems contain symmetries. For example, in schedul-
ing problems, we can have identical orders or machines. As a second
example, in workforce rostering problems, we can have equivalently
skilled personnel. As a third example, in bin packing problems, we
can have equal sized bins. Unless we take care, such symmetries will
increase the size of the search space. In some cases, symmetries in-
crease the size of the search space dramatically. For example, if we
have n identical machines, then every schedule can be permuted into
one of n! symmetric schedules. If this symmetry is not factored out of
search, we will waste a lot of time visiting symmetric search states.

There are a number of different methods commonly used to deal
with symmetry. For example, we can statically add constraints be-
fore search which eliminate some or all of the symmetric solutions,
or we can modify the search method so that it dynamically avoids
symmetric solutions. Static symmetry breaking methods are simple
to implement, work with any type of symmetry and tend to be highly
effective. A small number of constraints can often quickly eliminate
many symmetries. However, static methods have one disadvantage
compared to dynamic methods: we fix in advance which solutions
in each symmetry class are permitted, and branching heuristics may
conflict with this choice.

In this paper, we propose a general method for posting static sym-
metry breaking constraints dynamically and incrementally during
search. The posted symmetry breaking constraints are chosen to be
consistent with the initial choices of the branching heuristic. This
hybrid approach inherits good properties of both static and dynamic
methods for symmetry breaking: we profit from fast propagation of
the static symmetry breaking constraints, yet do not conflict with the
branching heuristic. This new method is likely to be effective when

1 NICTA, Sydney, Australia, email: george.katsirelos@nicta.com.au.
2 NICTA and UNSW, Sydney, Australia, email: tw@cse.unsw.edu.au.

either there is a small number of symmetries, or there are many sym-
metries but a small number of symmetry breaking constraints can
break this large number of symmetries. Like other general methods
for breaking symmetry, our method may be computationally expen-
sive when there is a large number of symmetries. Our goal therefore
is to identify common types of symmetry, like value interchangeabil-
ity, where we require only polynomial time to break an exponen-
tial number of symmetries. Alternatively, we can apply the general
method but restrict it to a polynomial number of symmetries.

2 BACKGROUND

A constraint satisfaction problem consists of a set of variables, each
with a domain of values, and a set of constraints specifying allowed
combinations of values for given subsets of variables. A solution
is an assignment of values to variables satisfying the constraints. A
common method to find a solution is backtracking search. Constraint
solvers typically prune their search space by enforcing a local consis-
tency property like domain consistency. A constraint is domain con-
sistent iff for each variable, every value in its domain can be extended
to an assignment that satisfies the constraint. We make a constraint
domain consistent by pruning values for variables which cannot be
in any solution. During the search for a solution, a constraint can
become entailed. A constraint is entailed when any assignment of
values left in the domain of the variables is a solution. For instance,
X1 < X9 is entailed if and only if the largest value in the domain of
X1 is smaller than the smallest value in the domain of X9.

Constraint satisfaction problems can contain symmetry. We will
consider two special types of symmetry. A variable symmetry is a
permutation of the variables that preserves solutions. Formally, a
variable symmetry is a bijective mapping, σ of the indices of vari-
ables such that if X1 = d1, . . . , Xn = dn is a solution then
Xσ(1) = d1, . . . , Xσ(n) = dn is also. A value symmetry, on
the other hand, is a permutation of the values that preserves solu-
tions. Formally, a value symmetry is a bijective mapping, θ of the
values such that if X1 = d1, . . . , Xn = dn is a solution then
X1 = θ(d1), . . . , Xn = θ(dn) is also. More generally, symmetries
can act simultaneously on variables and values. Our methods work
with such general types of symmetry.

3 AN EXAMPLE

The basic idea is as follows:

Given any set of symmetry breaking constraints, if during
search a symmetry of one of these constraints is entailed and
this is consistent with previously posted symmetry breaking
constraints, then we post this constraint so it holds also down
all future branches.
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We illustrate this with a simple example involving just 8 symmetries.
The magic squares problem is to label a n by n square so that the sum
of every row, column and diagonal are equal (prob019 in CSPLib). A
normal magic square contains the integers 1 to n2. The problem has
8 symmetries corresponding to the rotations and reflections of the
square. “Lo Shu”, the unique normal magic square up to symmetry
for n = 3, is an important object in ancient Chinese mathematics:

8 1 6
3 5 7
4 9 2

Consider a model with one variable for each label, an all-different
constraint over all variables, and constraints that each row, column
or diagonal adds up to n3+n

2 . We can rotate the solution given earlier
so that the smallest corner label is at top left, and then reflect in the
NW-SE diagonal so that the bottom left corner label is smaller than
the top right. This eliminates all degrees of freedom.

2 7 6
9 5 1
4 3 8

We can therefore break all symmetry with the following constraints:

X[1, 1] < X[1, n], X[1, 1] < X[n, 1], X[1, 1] < X[n, n],

X[n, 1] < X[1, n] (1)

Where X[1, 1] is the top left corner label, X[1, n] is the top right,
X[n, 1] is the bottom left and X[n, n] is the bottom right.

Any of the 8 symmetries of these ordering constraints would break
all symmetry. For instance, consider the variable symmetry that ro-
tates the magic square 90◦ clockwise and reflects in the NW-SE diag-
onal. This maps X[1, 1] onto X[n, 1], X[1, n] onto X[n, n], X[n, 1]
onto X[1, 1], and X[n, n] onto X[1, n]. Applying this variable sym-
metry to (1) gives:

X[n, 1] < X[n, n], X[n, 1] < X[1, 1], X[n, 1] < X[1, n],

X[1, 1] < X[n, n]

That is, the smallest corner label is now at bottom left, and the top
left is smaller than the bottom right. This set of constraints would
also break all symmetry.

We choose which of the 8 symmetries of (1) to use incrementally
during search. For example, suppose we begin search by assigning 1
to the bottom left corner:

? ? ?
? ? ?
1 ? ?

As the variables take all different values, X[1, 1] > 1, X[1, n] > 1,
X[n, 1] = 1 and X[n, n] > 1. Hence, at this point in search, the
following ordering constraints are entailed:

X[n, 1] < X[1, n], X[n, 1] < X[1, 1], X[n, 1] < X[1, n]

That is, the smallest corner label is at bottom left. This is a 90◦ rota-
tion anti-clockwise of the first three symmetry breaking constraints
given in (1). It is also a reflection in the NW-SE diagonal followed
by a 90◦ rotation anti-clockwise of (1). At this point, we do not need
to choose between these two symmetries. We simply post the three
entailed ordering constraints so that they hold on all future branches.
Note that the top left and bottom right corners are not yet ordered.
The branching heuristic is free to choose which is smaller.

Suppose, the branching heuristics instantiates the bottom row as
follows:

? ? ?
? ? ?
1 5 9

Now X[1, 1] < 9 as variables take all-different values and
X[n, n] = 9. Hence, at this point, the following ordering constraint
is entailed:

X[1, 1] < X[n, n]

That is, the top left corner is smaller than the bottom right. This or-
dering constraint is consistent with the three ordering constraints al-
ready posted; the four ordering constraints can be obtained by reflect-
ing (1) in the NW-SE diagonal and then rotating 90◦ anti-clockwise.
We therefore post this fourth ordering constraint so that it holds on
all future branches. All 8 symmetries are now broken in line with the
choices of the branching heuristic. Backtracking will find the unique
solution with the bottom left corner smallest, and the top left smaller
than the bottom right:

4 3 8
9 5 1
2 7 6

In the rest of the paper, we describe two instances of this dynamic
method. In each, we post symmetry breaking constraints incremen-
tally during search that are consistent with the choices made by the
branching heuristic. Whilst we give specific examples, the method is
general and can be applied to all types of symmetry breaking con-
straints. For instance, the method works with specialized symmetry
breaking constraints like those used for breaking row or column sym-
metries [3]. It also works with general purpose symmetry breaking
constraints like the “lex-leader” constraints [1].

4 INTERCHANGEABLE VALUES
We consider an example where dynamically posting symmetry
breaking constraints during search is especially simple. A common
type of value symmetry is when values are interchangeable. For ex-
ample, when coloring the vertices in a graph, the colors (values) are
interchangeable. Suppose we have n variables, X1 to Xn taking in-
terchangeable values from 1 to m. Based on [8], we can statically
break such symmetry by converting it into variable symmetry and
ordering the introduced variables. We begin by channelling into vari-
ables, Zj representing the indices at which values first occur:

Xi = j ⇒ Zj ≤ i

Zj = i ⇒ Xi = j

Where 1 ≤ i ≤ n, 1 ≤ j ≤ m, and Zj ∈ [1, n + m). We then break
all symmetry by posting the ordering constraints:

Z1 < Z2 < Z3 < . . . < Zm (2)

These ordering constraints enforce “value precedence” [5]. That is,
they ensure that the first occurrence of j is before that of k for j < k.

Example 1 Consider the following assignment:

X1, X2, . . . , X6 = 1, 1, 2, 1, 3, 2

In this case, Z1 = 1, Z2 = 3 and Z3 = 5. Thus (2) is satisfied and
the assignment obeys value precedence.

40



Consider, on the other hand, the symmetric assignment in which
we interchange 2 and 3:

X1, X2, . . . , X6 = 1, 1, 3, 1, 2, 3

In this case, Z2 = 5 and Z3 = 3 so (2) is not satisfied. This assign-
ment therefore does not satisfy value precedence.

As an alternative to posting (2), we can break symmetry by posting
any symmetry of (2). To be precise, if σ is any permutation of 1 to
m, we can break all symmetry by posting:

Zσ(1) < Zσ(2) < Zσ(3) < . . . < Zσ(m)

That is, the first occurrence of σ(j) is before that of σ(k) for j < k.
For instance, we could post the following symmetry of (2):

Z1 < Zm < Z2 < Zm−1 < . . .

This ensures 1 first occurs before m, which itself first occurs before
2, etc. It is simple to post incrementally a symmetry of (2) during
search. We post the channelling constraints at the start of search as
they are invariant to symmetry. Then, if at any point during search
Zj < Zk is entailed, we post Zj < Zk so it holds on all future
branches. To ensure transitivity of the Zj variables, we maintain do-
main consistency on the channelling and ordering constraints. We
call this DynamicV alOrder.

Example 2 Consider a constraint satisfaction problem with 4 in-
terchangeable values. Suppose the branching heuristic first assigns
X1 = 3. The channelling constraints ensure Z3 = 1, Z1 > 1,
Z2 > 1 and Z4 > 1. Hence Z3 < Z1, Z3 < Z2 and Z3 < Z4 are
entailed. We therefore post these symmetry breaking ordering con-
straints so they hold on all future branches. These ensure that 3 is
the first value used in any assignment.

Suppose the branching heuristic next assigns X2 = 3 and X3 =
1. The channelling constraints ensure Z1 = 3, Z2 > 3 and Z4 > 3.
Hence Z1 < Z2 and Z1 < Z4 are entailed. We therefore post these
ordering constraints so they hold on all future branches. At this point:

Z3 < Z1 < Z2, Z1 < Z4

These constraints ensure that we only consider assignments in which
3 is used before 1, and 1 before 2 and 4. Note that values 2 and 4 are
still interchangeable. The branching heuristic is free to choose which
occurs fist.

Suppose we now backtrack. The channelling and symmetry break-
ing constraints leave no other choices for X1, and just one other
choice for X2, namely X2 = 1. Other assignments are symmetric to
previously considered assignments (e.g. X1 = 3, X2 = 2 is symmet-
ric to X1 = 3, X2 = 1, whilst X1 = 1, X2 = 1 is symmetric to
X1 = 3, X2 = 3).

We prove that the DynamicV alOrder method breaks all sym-
metry. A symmetry breaking method is sound if it leaves at least one
solution in each symmetry class, and complete if it leaves at most
one solution.

Theorem 1 DynamicV alOrder is a sound and complete symme-
try breaking method for interchangeable values.

Proof: Soundness follows quickly from the soundness of the under-
lying static symmetry breaking method. We have a relaxation that
can only permit more assignments. Note that by maintaining domain

consistency on the symmetry breaking constraints, we can always ex-
tend to a total ordering. Completeness also follows quickly from the
completeness of the underlying static symmetry breaking method.
Suppose we visit a complete assignment. Then we post ordering con-
straints for all used values. Suppose we now visit a second complete
assignment that is in the same symmetry class. This contradicts one
of the symmetry breaking constraints fixed by the first complete as-
signment. Hence, we cannot visit more than one complete assign-
ment in each symmetry class. !

The method easily extends to partial interchangeability where val-
ues partition into equivalence classes, and values within each equiv-
alence class are freely interchangeable. If at any point during search,
Zj < Zk is entailed where j and k are in the same equivalence class,
then we post Zj < Zk so it holds on all future branches.

5 VALUE PRECEDENCE
Our second example is more complex but provides additional prop-
agation. Suppose we again have n variables, X1 to Xn taking in-
terchangeable values from 1 to m. As in the last section, we shall
eliminate value interchangeability by enforcing a symmetry of value
precedence. In [15], a global value propagator is proposed for the
precedence constraint. Unlike the static method used in the last sec-
tion, this propagator enforces domain consistency so prunes all pos-
sible symmetric values (see Theorem 5 in [16] for an example of
symmetric values which are not pruned by the static method). The
propagator in [15] uses a simple decomposition that we adapt to post
symmetry breaking constraints incrementally.

We introduces n + 1 variables, Qi for i ∈ [0, n] that record the
largest value used up to the index i. We set Qi by posting:

Q0 = 0, Qi = max(Qi−1, Xi) (3)

We then ensure value precedence by posting:

Qi+1 ≤ 1 + Qi (4)

(3) and (4) break all symmetry due to interchangeable values.

Example 3 Consider again:

X1, X2, . . . , X6 = 1, 1, 2, 1, 3, 2

Then, by (3):

Q0, Q1, . . . , Q6 = 0, 1, 1, 2, 2, 3, 3

This satisfies (4). On the other hand, consider again the symmetric
assignment in which we interchange 2 and 3:

X1, X2, . . . , X6 = 1, 1, 3, 1, 2, 3

Then, by (3):

Q0, Q1, . . . , Q6 = 0, 1, 1, 3, 3, 3, 3

This does not satisfy (4).

To post such symmetry breaking constraints incrementally during
search, we take the somewhat counter-intuitive step of introducing
more symmetry into the problem. We observe that value precedence
can use any ordering on the values. For example, it could insist that
the first occurrence of 3 is before that of 1, and that of 1 before that
of 2. We introduce an ordering on values incrementally during search
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that is consistent with the branching heuristic. To define this new
ordering, we introduce m variables, Pj . The constraints will ensure
Pj = k if and only if the value j is in the kth position in the value
precedence ordering. To break all symmetry, we post:

Q0 = 0, Qi = max(Qi−1, PXi), Qi+1 ≤ 1 + Qi,

Q1 = 1, ALLDIFF(P1, . . . , Pm), PXi ≤ 1 + Qi−1 (5)

Qi now contains the maximum position in the ordering defined by
Pj of all the values used up to index i.

These constraints introduces m! variable symmetries into the
problem since the total order defined by Pj can correspond to any
of the m! permutations of 1 to m. For instance, one total ordering is
given by:

P1 = 1, P2 = 2, P3 = 3 . . . , Pm = m (6)

This will ensure 1 is the first value to occur (P1 = 1), then 2 (P2 =
2), then 3 (P3 = 3), etc. Alternatively, we might have one of the m!
symmetries of (6) like:

P1 = 1, P2 = 3, P3 = 5, . . . , Pm = 2

This symmetry ensures 1 is the first value to occur (P1 = 1), then m
(Pm = 2), then 2 (P2 = 3), etc.

We choose which symmetry of (6) to post incrementally dur-
ing search. To do this, we maintain domain consistency on (5) and
keep any prunings on the Pj when backtracking. We call this the
DynamicPrecedence method. The method again easily extends
to partial interchangeability where values partition into equivalence
classes.

Example 4 Consider a constraint satisfaction problem with 4 in-
terchangeable values. Suppose the branching heuristic first assigns
X1 = 3. From (5), we have Q1 = 1 and P3 = 1. As P3 = 1, and Pj

take all-different values, P1 > 1, P2 > 1 and P4 > 1. Value prece-
dence thus ensures that 3 is the first value used in any assignment.
Suppose the branching heuristic next assigns X3 = 1. From (5), we
have Q2 ≤ 2, and thus 2 ≤ P1 ≤ 3. That is, the value 1 occurs 2nd
or 3rd in the precedence ordering. This is to be expected. If X2 = 1
or 3 then it occurs 2nd, whilst if X2 = 2 or 4 then it occurs 3rd.

Suppose we backtrack and next try X3 = 2 instead. From (5), we
have 2 ≤ P2 ≤ 3. That is, the value 2 also occurs 2nd or 3rd in the
precedence ordering. Since we kept all prunings on Pj from the first
branch, we still have 2 ≤ P1 ≤ 3. Thus P1 and P2 have two values
between them. Propagating the all-different constraint then ensures
P1 ∈ {2, 3}, P2 ∈ {2, 3}, P3 = 1, P4 = 4. At this point in search,
value precedence ensures the value 3 occurs first, then 1 and 2 in
either order, and the value 4 is the last of the interchangeable values
to occur.

We prove that the DynamicPrecedence method breaks all sym-
metry.

Theorem 2 DynamicPrecedence is a sound and complete sym-
metry breaking method for interchangeable values.

Proof: Similar to DynamicV alOrder. Note that by maintaining
domain consistency on ALLDIFF(P1, . . . , Pm), we can always con-
struct a solution for the Pj . !

6 EXPERIMENTS
We implemented the symmetry breaking methods described in this
paper in Gecode 2.0.1 and evaluated them on two problems: Schur
numbers and graph coloring problems. Experiments were run on an
2-way Intel Xeon with 6MB of cache and 4 cores in each proces-
sor, running at 2GHz. Our hypothesis was that dynamic symmetry
breaking methods would be less sensitive to the branching heuristic
compared to static methods.

6.1 GRAPH COLORING
In our first experiments, we used graph coloring. Given a graph
G = 〈V, E〉, we want to label each vertex v ∈ V with a color
c(v), such that if (u, v) ∈ E then c(u) %= c(v), using the smallest
possible number of colors. We model this as an optimization prob-
lem with a variable for each vertex. The value of a variable is its
assigned color. We post not-equals constraints among variables cor-
responding to neighboring vertices. All values in this problem are in-
terchangeable. We break symmetry either with a static value prece-
dence constraint [15] or with the DynamicPrecedence method.
The DynamicV alOrder method proved significantly slower espe-
cially on the harder problems. The results for two different value
orderings, lexicographic and inverse lexicographic, are shown in the
top of Table 1. All methods use the fail-first variable ordering heuris-
tic.

We notice that the static symmetry breaking method is affected
significantly by the value ordering. When using an inverse lexico-
graphic value ordering, the static method performs uniformly worse
than when using a lexicographic value ordering. The only exceptions
to this are very easy instances and the instance school1, in which
it finds a better solution. On the other hand, the dynamic method
is largely unaffected by the value ordering and performs approxi-
mately the same with both branching heuristics. It is the best method
in some cases, sometimes by a significant factor (e.g. dsjc1251gb
and school1). In addition, it is never significantly slower that the
best performing method. As predicted, the pruning from static sym-
metry breaking constraints can interfere with the fail first heuristic,
guiding search away from easy to find solutions. In contrast, dynamic
methods impose no symmetry breaking at the start of search, and thus
do not prevent the branching from finding a good coloring quickly.

6.2 SCHUR NUMBERS
In our second experiment, we used problems based on Schur num-
bers. The Schur number S(k) is the largest integer n such that [1, n]
can be partitioned into k sets with a, b and c placed in the same par-
tition only if a + b %= c. We turn this into a hyper-graph coloring
problem by fixing n and minimizing k. We use a variable Xi for
each integer 1 ≤ i ≤ n, and assign Xi = j iff i is placed in the
jth partition. Each variable’s domain is therefore [1, k]. We post not-
all-equals constraints for each triplet Xa, Xb, Xc where a + b = c.
Clearly all values are interchangeable, as we can swap two partitions
of any solution without violating any constraints. We again break
symmetry either with a static value precedence constraint or with the
DynamicPrecedence method. Results are shown at the bottom of
Table 1. As hypothesized, the performance of the dynamic method
is more robust to changes in the branching heuristic than the static
method. Irrespective of the branching heuristic, the dynamic method
explores an almost identical search tree to the lexicographic heuristic
with static symmetry breaking. By comparison, with static symmetry

42



Problem Static symmetry breaking Dynamic symmetry breaking
Lex Inverse Lex Lex Inverse Lex

k t (f/p) b (f/p) k t (f/p) b (f/p) k t (f/p) b (f/p) k t (f/p) b (f/p)

david 10 0.09 / - 135 / - 10 0.44 / - 667 / - 10 0.42 / - 0 / - 10 0.43 / - 0 / -
dsjc1251gb 4 222.02 / 533031 / 4 328.59 / 808114 / 4 29.97 / 65776 / 4 33.27 / 65776 /

223.41 536151 329.75 810870 31.88 69766 35.39 69766
fullins3 5 0.08 / - 96 / - 5 0.28 / - 520 / - 5 0.18 / - 0 / - 5 0.17 / - 0 / -
geom50a 8 1.25 / 9.18 15726 / 77246 8 0.06 / 8.55 176 / 61755 8 0.08 / 1.32 0 / 6721 8 0.07 / 1.32 0 / 6721
miles250 7 0.31 / - 242 / - 7 1.29 / - 1151 / - 7 1.41 / - 0 / - 7 1.36 / - 0 / -
myciel4 4 0.01 / 0.02 0 / 202 4 0.01 / 0.02 38 / 162 4 0.01 / 0.02 0 / 188 4 0.01 / 0.02 0 / 188
myciel5 5 0.01 / 23.21 0 / 287203 5 0.05 / 23.12 177 / 287252 5 0.06 / 29.22 0 / 288622 5 0.06 / 29.3 0 / 288622
r501g 2 0.02 / 0.02 7 / 10 2 0.07 / 0.07 199 / 201 2 0.07 / 0.07 12 / 15 2 0.07 / 0.07 12 / 15
r505gb 9 0.29 / 13.53 2196 / 100199 9 0.08 / 13.98 349 / 98586 9 0.06 / 0.12 6 / 257 9 0.07 / 0.12 6 / 257
school1 39 5.51 / - 590 / - 27 221.33 / - 37886 / - 21 56.41 / - 0 / - 21 62.36 / - 0 / -
zeroini1 48 0.75 / - 0 / - 50 8.01 / - 2921 / - 48 13.26 / - 0 / - 48 11.46 / - 0 / -

schur-30 4 2.24 / 2.38 20432 / 21091 4 0.69 / 0.83 5024 / 5691 4 2.50 / 2.64 20433 / 21095 4 2.51 / 2.66 20433 / 21095
schur-35 4 14.58 / 137197 / 4 163.36 / 1039774 / 4 16.75 / 137198 / 4 17.42 / 137198 /

14.77 137859 163.55 1040443 16.95 137863 17.62 137863
schur-40 6 0.05 / - 38 / - 5 0.11 / - 328 / - 6 0.05 / - 38 / - 6 0.05 / - 38 / -

Table 1. Static versus dynamic symmetry breaking. The table has four sections: static symmetry breaking constraints with lexicographic value ordering, static
symmetry breaking constraints with inverse lexicographic value ordering, dynamic symmetry breaking constraints with lexicographic value ordering, and

dynamic symmetry breaking constraints with inverse lexicographic value ordering. Each of the sections shows the number of colors k in the best solution found
within the timeout, the time and the number of branches needed to find the best solution and to prove optimality. “-” indicates that no solution was found (resp.

optimality was not proven) within the timeout. The best results for each instance are in bold.

breaking, the inverse lexicographic heuristic is faster on schur-30
and schur-40, but is less successful on schur-35.

7 RELATED WORK

Puget proved that symmetric solutions can be eliminated by the addi-
tion of static constraints [6]. Crawford et al. presented the first gen-
eral method for constructing static constraints for breaking variable
symmetries [1]. Their “lex-leader” method constructs a symmetry
breaking constraint for each symmetry which ensures that any solu-
tion found is lexicographically less than any of its symmetries. Craw-
ford et al. also argued that it is NP-hard to eliminate all symmet-
ric solutions in general. There are two weaknesses to the lex-leader
method. First, it requires as many symmetry breaking constraints as
symmetries. Second, it may conflict with the branching heuristic.
Puget and Walsh independently extended the lex-leader method to
value symmetries [11, 14]. The full set of lex-leader constraints can
often be simplified. For example, if we have an array of decision vari-
ables with row symmetry (that is, the rows can be permuted), the ex-
ponential number of lex-leader constraints simplifies to a linear num-
ber of lexicographical ordering constraints between rows [13, 3]. As
a second example, for problems where variables are symmetric and
must take all different values, Puget has shown that the lex-leader
constraints simplify to a linear number of ordering constraints [9].

A number of dynamic methods have been proposed to deal with
symmetry. For instance, SBDS posts symmetry breaking constraints
dynamically during search [4]. SBDS can be seen as instance of the
more general method proposed here. A limitation of SBDS is that it
adds a symmetry breaking constraint for each unbroken symmetry.
As there can be an exponential number of symmetries, this can be
prohibitive. One of our main insights is that we can post other types
of symmetry breaking constraint dynamically during search. A small
number of symmetry breaking constraints may be adequate for spe-
cial symmetries (e.g. those due to interchangeable values) or special
classes of problems (e.g. problems where variables are all-different).
Another dynamic method for breaking symmetry is SBDD [2]. This
checks if a node of the search tree is symmetric to some previously
explored node. Finally, Roney-Dougal et al. gave a dynamic method
to construct a GE-tree, a search tree without value symmetry [12]. A

weakness of both these dynamic methods is that they do not prop-
agate their symmetry breaking constraints. It has been shown that
propagation between the problem constraints and the static symme-
try breaking constraints can reduce search exponentially [16].

There are a number of other approaches for posting static symme-
try breaking constraints dynamically during search. Puget’s STAB
method adds lex-leader constraints for the stabilizers of the current
partial assignment (that is, for those symmetries which are not yet
broken) [7]. Since the whole symmetry group stabilizes the empty
assignment, only a subset of the stabilizers can be chosen at the root
when the symmetry group is large. By comparison, our method does
not post any symmetry breaking constraints at the root as branching
decisions have not yet forced any to be chosen. In addition, STAB
only posts lex-leader constraints. One of our insights is that we can
post any type of symmetry breaking constraint during search. Puget
has also proposed dynamic lex constraints [10]. These are lex-leader
like constraints in which the ordering used within the lexicographi-
cal constraint is identical to the variable ordering used by the branch-
ing heuristic. However, Puget’s method performs poorly when there
are large number of variable symmetries. For example, whilst a lin-
ear number of ordering constraints will break the symmetry intro-
duced by interchangeable varialbes, Puget’s method posts a symme-
try breaking constraint for each of the exponential number of symme-
tries. In addition, unlike the method proposed here, Puget’s method
is limited to posting lex-leader like constraints.

8 CONCLUSIONS

We have presented a general method for dynamically and incremen-
tally posting symmetry breaking constraints during search. The basic
idea is very simple. Given any set of symmetry breaking constraints,
if during search a symmetry of one of these constraints is entailed
and this is consistent with previously posted symmetry breaking con-
straints, then we post this symmetry breaking constraint so it holds
on all future branches. We illustrated the method with two examples
where a polynomial number of symmetry breaking constraints can
break an exponential number of symmetries. Both examples elimi-
nate all symmetry due to interchangeable values. The first is simpler
whilst the second is more complex but provides more propagation.
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This hybrid approach inherits good properties of both dynamic and
static symmetry breaking methods: we have fast and efficient prop-
agation of the posted symmetry breaking constraints, yet we do not
conflict with the branching heuristic. We conjecture that this new
method will be effective when either there is a small number of sym-
metries, or there are many symmetries but only a small number of
symmetry breaking constraints are needed to break symmetry. Ini-
tial experimental results appear promising. In future work, we intend
to develop such hybrid methods for other special types of symmetry
where a small number of constraints can break symmetry.
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Revisiting the Generalized Among Constraint

Polina Makeeva1 and Radoslaw Szymanek2

Abstract.

This work concentrates on improving the strength and efficiency

of the consistency algorithm for the general version of the Among

constraint. We present an algorithm which achieves generalized arc

consistency (GAC) when the general Among constraint takes the

shape of some of its simpler versions. We provide a consistency

algorithm with pruning strength higher than that of Among encod-

ing using other constraints. We focus on re-using previous compu-

tation when possible and reducing the amount of work performed

upon backtracking. The judicious use of trailling and re-computation

contributes significantly towards the algorithm efficiency. The ex-

perimental results show that our implementation of Among achieves

shorter runtimes when compared to a decomposition of Among con-

straint into simpler constraints.

1 Introduction

Global constraints have an essential role in Constraint Programming

(CP). They allow the use of propagation algorithms based on mathe-

matical properties of constraints. Among is a global constraint often

used in the resource allocation problems, like car sequencing ([1],

[8]) or rostering problems. One example is a nurse rostering prob-

lem [4] where the goal is to find a timetable for nurses in a hospi-

tal. This timetable has to satisfy constraints such as the presence of

at least two nurses for every night shift and a sufficient number of

days-off per week so each nurse has time to rest. In our work we are

mostly interested in the extension of the Among constraint usefull for

modeling the resource allocation problems when the set of resources

is not known in advance. For example, the nurse rostering problem

where you can hire only several nurses out of all available nurses and

construct the schedule oriented on the future subset of nurses.

In our work we concentrate on a binary branching scheme in

search. The motivation for the choice of binary branching are numer-

ous. First, binary branching is commonly used in industry solvers.

Second, there is a number of research work (e.g. [5]) which advo-

cates the use of a binary branching scheme. Binary branching is more

general as it does not prohibit switching to a different variable after

exploring only one variable-value pair. However, it requires propa-

gating the effects of failure. We strongly believe that the benefits of

propagating the effects of failure outweighs the cost.

The remainder of this paper is organized as follows. Section 2

presents some definitions as well as a short introduction to (multi)set

variables. Section 3 presents formal definitions of different versions

of the Among constraint. Section 4 presents the consistency algo-

rithm. The implementations details of this algorithm are presented

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, email:
polina.makeeva@epfl.ch

2 Artificial Intelligence Laboratory (LIA), École Polytechnique Fédérale de
Lausanne (EPFL), Switzerland, email: radoslaw.szymanek@epfl.ch

in Section 5. The experimental results are presented in section 6. Fi-

nally, section 7 concludes the paper.

2 Formal Background

A constraint satisfaction problem (CSP) is a 3-tuple P =̂ 〈X ,D, C〉
where X is a finite set of variables X =̂ {x1, . . . , xn}, D is a set of

finite domains D =̂ {D(x1), . . . , D(xn)} where the domainD(xi)
is the finite set of values that variable xi can take, and C is a set of
constraints C =̂ {c1, . . . , cm}. Each constraint ci is defined by the

ordered set scope(ci) of the variables it involves, and a set sol(ci) of
allowed combinations of values. An assignment of values to the vari-

ables in scope(ci) satisfies ci if it belongs to sol(ci). A solution to a

CSP is an assignment to each variable with a value from its domain

such that every constraint in C is satisfied.
A set variable has a domain which is a set of sets of values.

We denote a set variable as S. We use multiple representation of
a set variable, in particular, we use a bound representation of a

set variable. The lower bound of S, denoted by lbS, contains the
definitive elements. The upper bound of S, denoted by ubS, con-
tains the potential elements of S. This representation admits S be-

ing equal to any set between lbS and ubS. For example, let the
domain of the set variable S be equal to {{v1, v2}, {v2, v3}}.
Then the lower bound of S is the intersection of possible values

lbS = {v2} and the upper bound of S is a union of possible val-

ues ubS = {v1, v2, v3}. Note that such a representation is weaker
than the complete representation since it suggests that S has a do-

main equal to {v2}, {v1, v2}, {v2, v3}, or {v1, v2, v3}. We use set
variables only for the purpose of the algorithm presentation. This and

other representations of set variables were presented and compared

in [6].

In order to discuss the strength of the propagation algorithm we

introduce below the definitions used in previous research work. A

constraint ci is Generalized Arc Consistent (GAC) iff, for any vari-

able xi in scope(ci) assigned to any value fromD(xi), there exists
an assignment to all variables from scope(ci) such that this assign-
ment belongs to sol(ci). This is the highest level of consistency a
constraint can achieve. If the problem consists of only one constraint

then achieving GAC implies that no wrong decision is taken during

the search. Constraint ci is Bounds Consistent (BC) iff, for any vari-

able xi in scope(ci), if xi is assigned its maximum or minimum

value from D(xi) then there exists an assignment to all variables in
scope(ci) such that this assignment belongs to sol(ci).

3 Among Constraint

The Among constraint counts the number ofX variables that take a

value from a specific set of valuesS. The counter variable is denoted
by N . We consider variable X to be covered by S if X takes a
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value from S. The different versions of Among constraints steam
from different ways of expressingS. The simplest version of Among
[1] for which GAC can be obtained in polynomial time is depicted

below. It represents set S as a list of integers si.

Among([X1, .., Xn], [s1, .., sm], N) iffN = |{i|∃j.Xi = sj}|

The algorithm presented in [3] maintains GAC on

Among([X1, .., Xn], [s1, .., sm], N) and runs in O(n · d) where d
is the maximum domain size. In this paper we present this algorithm

only in the context of a special case of the general Among constraint.

Two generalizations were presented for the Among constraint [3].

In the first extension, the fixed list of si integers is replaced with a

set variable S. In the second extension, instead of using a set vari-
able S, the Among constraint employs a list of variables [Y1, .., Ym]
to specify the set of values S. From now on, we will use the term

Among constraint to denote the second generalization of the Among

constraint.

More formally, we have:

Among([X1, .., Xn], [Y1, .., Ym], N) iffN = |{i|∃j.Xi = Yj}|

This constraint can be represented with the help of the first extension:

Among([X1, .., Xn], S, N) iff

(N = |{i|∃j.Xi = Yj}|) and S =
⋃

Y

{Y }

where S is a set variable.
The second generalization of the Among constraint represents S

using a list of variablesY . In our previous example, the domain of the
set variable S equals to {{v1, v2}, {v2, v3}}. Making Y = [Y1, Y2],
where Y1 ∈ {v1, v3}, Y2 ∈ {v2} encodes exactly that domain. As
previously stated lbS = {v2} and ubS = {v1, v2, v3} allow S to

be equal to one of the following sets {v2}, {v1, v2}, {v2, v3}, and
{v1, v2, v3}. However, the representation of S using bounds and

a list of Y ’s imposes that S can not be equal to value {v2} since
v2 /∈ D(Y1). The value {v1, v2, v3} for S is also impossible due to
the fact that there are only two Y ’s. The value lbS can be actually

precomputed as the union of groundedY ’s as depicted in Equation 1.
Indeed, ifD(Yi) = {v1} then the value v1 will appear in every set

of the domain of S, thus, it will appear in the intersection of all
possible values of S, which is exactly lbS. Moreover, equation 1
should be treated as an internal constraint within Among constraint.

This equation expresses the relationship which must hold eventually.

If lbS contains an element v1 for which none of Y ’s is grounded
to, then at least one of Y ’s would have to be eventually equal to v1.

lbS = ∪Yi is groundedYi (1)

The algorithm for Among that uses a set variable was presented

in [3] and it was shown that the level of consistency achieved by this

propagation algorithm is incomparable to BC. We used this algorithm

as a starting point of our implementation, where instead of S we

use directly list [Y1, .., Ym] and construct a lower bound on S (lbS)
and an upper bound on S (ubS) out of Y’s. The usage of Y’s as
the representation of S provides more accuracy than bounds repre-
sentation. The bounds representation cripples the pruning strength of

the consistency algorithm. Using both representations, where bounds

representation is used only internally allows to strengthen the prun-

ing capabilities of the Among constraint consistency function. The

changes to any set representation are reflected on the other as soon

as possible.

4 Consistency Algorithm

The consistency algorithm is presented in Algorithm 1. It consists

of three parts provided as separate algorithms. The first part is con-

cerned with pruning the domain of the X’s. If the set variable S is

fixed, then this part behaves exactly as the algorithm for the simple

Among. It is presented in the subsection 4.1.

Algorithm 1 Consistency function

Input: X,Y,N

Output: X,Y,N

1: Alg.2(X, Y, N, lbS, ubS)

2: Alg.3(lbS,ubS,N,X)

3: Alg.4(lbS, ubS, X, Y, N, FutureDomY)

The second part of the consistency algorithm reasons about the do-

main ofN . This algorithm, which is presented in subsection 4.2, has
also its own special case when the domains of all X’s are fixed. Fi-

nally, the third part of the consistency algorithm prunes the domains

of the Y’s and it is presented in subsection 4.3. The third part uses

a variable FutureDomY that is initialized at the first consistency

execution to an empty domain.

In both special cases mentioned above the propagation algorithm

for the Among constraint presented in this paper achieves GAC. We

will use these two special situations to illustrate the functionality of

the first and the second part of the consistency algorithm.

4.1 Pruning the domain of X’s

4.1.1 Pruning the domain of X’s when S is fixed

If during search the set variable S becomes fixed (it happens, for

example, when all Y ’s are grounded), then the general Among con-
straint is transformed into a simple Among constraint because lbS =
ubS = S. The algorithm that achieves GAC for the simple Among

has been published in [3]. This algorithm does the following:

• It counts the number of X’s that are already covered (lb0)
• It counts X’s that can be potentially covered byS (ub0)
• It restrictsN to values between lb0 and ub0
• IfN is equal to lb0 then it subtracts S from the domains ofX that

can still be covered by S.
• IfN is equal to ub0 then it intersects the domain of X’s which can
be potentially covered by S with S.

ubS = lbS = {1, 2, 3}
X1, .., X4 ∈ {1, 2}
X5, X6 ∈ {3, 4}

Figure 1. Set representation of the example

The example, depicted in Figures 1, 2, and 3, illustrates the behav-

ior of the algorithm for this special case. The initial domains of X’s

and values for lbS and ubS are depicted by Figure 1. The circles on
the right of Figure 1 are the graphical representations of the domains

2
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of the variables. For example the set variableS = {1, 2, 3} contains
the domain of X1 = {1, 2}, thus the circle representing variable S
contains the circle that represents variableX1. From the domains of

the X’s and the set variable S it can be deduced that lb0 is equal to 4
and ub0 is equal to 6.
Figure 2 presents a particular case when N is equal to lb0. This

situation triggers pruning of the domains of the X’s. Since the num-

ber of X’s that need to be covered is already reached thenX5 and

X6 cannot be covered. Therefore the values of the set variableS are
removed from the domains ofX5 and X6. This pruning makes both

variablesX5 and X6 equal to 4.

Suppose N = 4, then we
already reached the desired

number of X’s.

Condition (N = lb0)
is triggered, which forces

the exclusion of S from

D(X5), D(X6).
⇒ X5 = 4, X6 = 4
Constraint is satisfied.

Figure 2. N is equal to lb0

On the other hand, Figure 3 presents a situation when N is equal

to ub0. This situation also triggers pruning of the domains of the X’s.
Since all the remaining X’s which are not yet covered have to be cov-

ered, then the values from the domains of X5 and X6 which do not

belong to set variable S are removed. This makes both variables X5

and X6 equal to value 3.

Suppose N = 6, then
we want to cover all pos-

sible X’s. Condition (N =
ub0) is triggered, which

forces the exclusion of the

complement of S from

D(X4), D(X5).
⇒ X5 = 3, X6 = 3
Constraint is satisfied.

Figure 3. N is equal to ub0

4.1.2 Pruning the domain of the X’s. General case

When S is not fixed it is assumed that it can take any value between
the lower and upper bounds (lbS ⊆ S ⊆ ubS). Thus, we can use the
previously described algorithm with the following modifications:

• In order to calculate the number of X’s that are already covered,

we count the number of X’s such thatD(X) ⊆ lbS. Indeed, the
elements of lbS must be present inS, thus, X’s that already belong
to lbS will belong to S as well. (Alg.2 line 3)

• To calculate the number of X’s that potentially might be covered

we count the X’s such thatD(X)∩ubS $= ∅. This is also correct,
since any element of ubS might be present in S, thus, contribute
to N . (Alg.2 line 4)

Algorithm 2 Prune the domain of X

Input: X, Y, N

Output: lbS, ubS, X

1: lbS := ∪Y groundedY
2: ubS := ∪D(Y )
3: lb0 := |{Xi|D(Xi) ∈ lbS}|
4: ub0 := |{Xi|D(Xi) ∩ ubS $= ∅}|
5: if (lb0 = min(N) = max(N) ) then
6: forXi|D(Xi) ⊆ lbS do
7: D(Xi) := D(Xi)\lbS
8: end for

9: end if

10: if (ub0 = min(N) = max(N) ) then
11: forXi|D(Xi) ∩ ubS $= ∅ do
12: D(Xi) := D(Xi) ∩ ubS
13: end for

14: end if

The difference with the previous simpler case is that when N is

equal to lb0, lbS is subtracted from all not yet covered X’s. Moreover,
ifN is equal to ub0 then domain of eachX is intersected with ubS.
In all other cases for which the value of N is between lb0 and ub0
Algorithm 2 does no pruning, exactly as other algorithms previously

published in the literature.

4.2 Pruning the domain of N

4.2.1 Pruning the domain of N. X’s are fixed

If during the search allX’s are fixed then only the part of the consis-
tency algorithm which finds a proper S to cover the desired number
of X’s is active. The Among constraint becomes an instance of the
knapsack problem where for every element v ∈ ubS we know the

exact number of X’s that will be covered if we choose to include v
in S. The algorithm presented in [7] achieves GAC, however it is ex-
pensive in terms of computation time. The following examplewill be

used to present how we can transform the multiknapsack propagation

algorithm to fit the special case of the Among constraint.

We construct a graph where the non horizontal edges represent the

number of X’s covered if the value represented by the given column

is included in S. The horizontal edges in column vi correspond to

decision of not including element vi in S. The number of X’s that
will be covered by vi if vi is included into S is denoted by tan(vi).
The slope of the diagonal edge depends on tan(vi).
Figure 4 illustrates this construction. The thick lines specify the

allowed edges in order to reach the weightN ∈ {5..8}. We see that
no horizontal edge is ever taken in the column of v1, meaning that

this value must be included in S. This graph can be also used to
reason about the possible domain of variableN . In this example, the
value 6 must be removed from the domain ofN .
This example shows that in the simple case when all X’s are

grounded the multiknapsack propagation algorithm is an efficient

method to track the relationship between the variables Y’s and N.

In the next section we will analyze more general example (all X’s are

grounded except for one) and decide how usefull this algorithm can

be in a general situation.

3
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lbS = {}
ubS = {v1, v2, v3}
x1, .., x4 ∈ {v1}
x5, .., x7 ∈ {v2}
x8 ∈ {v3}
N ∈ {5..8}

N=0

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

N=9

v1 v2 v3

(a)

Figure 4. Knapsack graph. All X’s are grounded.

4.2.2 Prune the domain of N. General case

For the general case, consider Figure 5. All X’s are grounded except

for one. The domain of x8 has changed to {v2, v3}. The number of
X’s that will be covered if v2 is included in S (tan(v2)) is 2 or 3, and
tan(v3) is 0 or 1. We clearly see that for every element inubS, both
horizontal and diagonal arcs can be taken, thus, no pruning can be

done. Yet, without v1 included in S we can cover only 4 remaining
X’s, thusN ≥ 5 can not be reached.

lbS = {}
ubS = {v1, v2, v3}
x1, .., x4 ∈ {v1}
x5, .., x7 ∈ {v2}
x8 ∈ {v2, v3}
N ∈ {5..8}

N=0

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

N=9

v1 v2 v3

(b)

Figure 5. Knapsack graph. All X’s are grounded except for one.

This example shows that the algorithm does not achieveGAC when

not all X’s are grounded. However, it still triggers a pruning the do-

main of N . Pruning the domain ofN can have significant influence

on the domains of other variables. It is clearly visible in case of the

simple Among constraint (as it was explained in subsection 4.1), in

which most propagation is triggered whenN is grounded and equal

to lb0 (Alg.2 line 5) or ub0 (Alg.2 line 10).
This is why we decide to change the construction of the graph in

order leave the possibility to prune the domain of N . In terms of

Figure 6. Projection of the knapsack graph to the N axis

the knapsack problem, the particular situation we consider implies

that the weight of any element is equal to its benefit. Therefore, it is

possible to make a projection of such graphs directly on the domain

of N , thus, avoiding expensive construction of the graph.
Figure 6 demonstrates the projection technique applied on the pre-

vious example. First, the application of this projection technique on

the elements of lbS always gives one single interval (because the

decision of not including vi into S, a horizontal arc in the knap-
sack graph, is not available). This interval has a lower bound equal

to lb0, that is the number of X’s that are already covered by lbS.
The upper bound is the number of X’s that intersect lbS, glb0 =
|{Xi|D(Xi) ∩ lbS} $= ∅| (Alg.3 line 2). Therefore, the potential
domain of N (potentialDomN) is initialized to [lb0, glb0](Alg.3
line 9). Afterward, the algorithm iterates through only the ele-

ments v ∈ ubS\lbS (Alg.3 line 10). For our particular example,

potentialDomN is initially equal to an interval [0, 0] as both lb0
and glb0 are equal to zero. Unlike in the simple case when all X’s
are grounded, tan(v2) is now an interval [3, 4]. Despite tan(v2)
not being determined it is possible to find lower and upper bounds

for it. An upper bound is, trivially, the occurrence of v2 in the do-

mains of X’s.max(tan(v2)) = occrncyV inX(v2) (Alg.3 line 12)
A lower bound is a number of new X’s which will be definitely cov-

ered if we include v2 into S. min(tan(v2)) = lb(v2) − lb0 (Alg.3
line 11). The main loop of Algorithm 3 computes for every element

v ∈ ubS\lbS and for every interval in potentialDomN the new in-

Algorithm 3 Prune the domain of N

Input: lbS, ubS, N, X

Output: N

1: lb0 := |{Xi|D(Xi) ⊆ lbS}|
2: glb0 := |{Xi|D(Xi) ∩ lbS} $= ∅|
3: ub0 := |{Xi|D(Xi) ∩ ubS $= ∅}|
4: min(N) := max(min(N), lb0)
5: max(N) := min(max(N), ub0)
6: if (max(N) < min(N) ) then
7: fail

8: end if

9: potentialDomN := {[lb0, glb0]}
10: for (v ∈ ubS \ lbS) do
11: lb(v) = |{Xi|D(Xi) ∈ lbS ∪ {v}}|
12: occrncyV inX(v) = |{Xi|v ∈ D(Xi)}|
13: for interval ∈ potentialDomN do
14: newMin = min(interval)+lb(v) − lb0
15: newMax = max(interval)+occrncyV inX(v)
16: potentialDomN = potentialDomN∪ {[newMin, newMax]}
17: end for

18: end for

19: D(N) := D(N) ∩ potentialDomN
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terval which needs to be added to potentialDomN . The function
min(interval) and max(interval) denote the minimal and maxi-
mal values within the given interval. Figure 6 depicts the execution of

the main loop for our example. The potential domain ofN is steadily

growing. Note that if two intervals ofpotentialDomN share the end

point, then they are merged together. The worst case complexity of

the algorithm for constructingD(N) is equal toO(|D(N)| · |ubS|).

4.3 Prune the domain of Y

The construction and maintenance of the complete knapsack graph

in order to perform additional pruning of the domains of the Y’s

variables is an expensive operation. In addition, this pruning is of-

ten weak and is weakened even more if not all the X’s are grounded.

In this section we will explain pruning within lbS and ubS that

uses the information calculated during the pruning of the domain

of N .
For every element v ∈ ubS\lbS we ask:

• Whether the number of X’s that will become covered after includ-

ing v into S is greater than the upper bound ofN . More formally,
if lb(v) > max(N) (Alg.4 line 8) then v can never enter S, thus
we must remove v from every domain of Y in order to remove it

from ubS.(Alg.4 line 9, 12)
• Whether there is enough X’s to reach the lower bound ofN if v is
not covered. More formally, if ub(v) < min(N) (Alg.4 line 16)
then v must be present in lbS. (Alg.4 line 17)

As previously stated, lbS is computed as a union of grounded Y’s
(Equation1). Therefore, as soon as vi is included in lbS, then, at least
one Yj has to be equal to vi eventually. All such elements vi ∈ lbS
that are not yet covered by at least one Yj are added to a special set

called FutureDomY (Alg.4 line18).

For each element vi ∈ FutureDomY , the algorithm counts the
occurency of vi among domains of Y’s.(Alg.4 line 23) If the occur-

rence of vi is equal to zero then the constraint is in inconsistent state

(Alg.4 line 28). If the occurrence of vi is exactly one then the algo-

rithm grounds the Yj whose domain contains vi to vi, because no

other Yj can possibly take this value(Alg.4) line 24. This is followed

by the removal of vi from FutureDomY .

4.4 Level of consistency

The example presented in the section 4.2.2 shows that BC is not

stronger than the propagation algorithm.

x1, .., x4 ∈ {v1} Y1 ∈ {v1, v3}
x5, .., x7 ∈ {v2} Y2 ∈ {v2, v3}
x8 ∈ {v2, v3} N ∈ {5..8}

The algorithm prunes 6 out of the domain of N , whereas a BC
algorithm will do nothing. We also saw in subsection 4.1 that in

the case when all Y’s are grounded general Among becomes sim-

ple Among and the propagation algorithm achieves GAC. On the

other hand, the next example shows that the algorithm does not en-

force BC.

X1 ∈ {3}, X2 ∈ {1..2}, X3, X4 ∈ {1}

Y1 ∈ {1..2}, Y2 ∈ {2..3}, N = 2

This problem has only one solution :

X1 = 3, X2 = 2, X3, X4 = 1, Y1 = 2, Y2 = 3, N = 2

Algorithm 4 Prune the domain of Y

Input: lbS, ubS, X, Y, N, FutureDomY

Output: Y, ubS, FutureDomY

1: lb0 := |{Xi|D(Xi) ∈ lbS}|
2: ub0 := |{Xi|D(Xi) ∩ ubS #= ∅}|
3: for (v ∈ ubS \ lbS) do
4: lb(v) = |{Xi|D(Xi) ∈ lbS ∪ {v}}|
5: ub(v) = |{Xi|D(Xi) ∩ ubS\{v} #= ∅}|
6: end for

7: for (v ∈ ubS \ lbS) do
8: if (lb(v) > max(N) ) then
9: ubS := ubS\{v}
10: for Y ∈ [Y1, .., Ym] do
11: if (v ∈ D(Y ) ) then
12: D(Y ) := D(Y )\{v}
13: end if

14: end for

15: end if

16: if (ub(v) < min(N) ) then
17: lbS := lbS ∪ {v}
18: FutureDomY := FutureDomY ∪ {v}
19: end if

20: end for

21: for Y ∈ [Y1, .., Ym] do
22: for (v ∈ FutureDomY ) do
23: if (|{Y |v ∈ D(Y )}| = 1) then
24: D(Y ) := {v}
25: FutureDomY := FutureDomY \{v}
26: end if

27: if (|{Y |v ∈ D(Y )}| = 0) ) then
28: fail

29: end if

30: end for

31: end for

The consistency algorithm will not do any pruning whereas a BC

algorithm will prune 1 from X2, as well as 1 from Y1 and 2 from Y2.

By watching every case when the pruning can be potentially trig-

gered we can explain why Algorithm 1 does not enforce BC.

Alg.2 :

lbS = {}
ubS = {1, 2, 3}
lb0 = 0, ub0 = 4
The pruning is not triggered becauseN is

neither equal to lb0, nor to ub0
Alg.3 :

PotentialDomN = {0..4}
No further pruning sinceD(N) ⊆ PotentialDomN .

Alg.4 :

lb(1) = 2, ub(1) = 2
lb(2) = 0, ub(2) = 4
lb(3) = 1, ub(3) = 3
The pruning is not triggered because neither

condition lb[v] > max(N), nor condition
ub[v] < min(N) is satisfied.

The difficulty of pruning 1 from the domain ofX2 lies in reasoning

about the number of other X’s already grounded to 1 and the value

of N , which becomes too much case-specific. Algorithm 4, on the

other hand, cannot prune 1 from the domain ofY1 because it believes
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in the solution in which X3, X4 are covered and cannot prune 2

from the domain of Y2 because the value 3 is not yet included in

FutureDomY .
Therefore, the level of consistency achieved by the presented prop-

agation algorithm is incomparable to BC. At the same time the al-

gorithm is stronger than the similar algorithm for the multiset vari-

able S, presented in [3], which does not prune the middle values of
domain of S.
Even though the question whether BC for general Among is

tractable or not remains open, the series of experiments showed that

on average the algorithm provides a stronger consistency function

as it reduces the number of search nodes, as well as runtime when

compared to an Among decomposition.

5 Iterative properties of the algorithm

This section presents how computation of different data structures

can be performed iteratively. We discuss the properties of these data

structures which makes reusing possible. Afterwards, we illustrate

the potential of reuse on one particular example. The consistency

function of Among constraint is called each time there is a change in

the domain of a variable that is in the scope of the constraint. In the

worst case, the consistency function is called multiple times in every

node of the search tree. This makes the reuse of previously computed

information crucial in order to speed up the consecutive execution of

the consistency functions.

The consistency function uses extensively variables such as lbS,
lb0, ubS, and ub0. In this section, we use subscripts to indicate the
corresponding depth of the search level. For example, lbS0 indicates

the value of lbS at the root level (0) of the search tree. It is possible
to reuse previous values for the above variables, computed at level L,

when computing their values at the level L+1. The following list

provides the properties of the data structures and how they can be

used to speed up computation.

• ∀L lbSL ⊆ lbSL+1

lbS can only expand with the depth of the search tree. The pro-

gressing search can only decrease the domain of Y’s, therefore

lbS can only grow as it collects more and more grounded Y’s.
• ∀L lb0L+1 ≥ lb0L

lb0L = |D(X)L ⊆ lbSL| increases with the depth of the search
tree. Since the following holdsD(X)L+1 ⊆ D(X)L and lbSL ⊆
lbSL+1 then lb0L+1 ≥ lb0L

• ∀L ubSL+1 ⊆ ubSL

ubS is equal to the union of Y’s. The progressing search can only
decrease the domain of Y’s therefore ubS can only decrease with
the depth of the tree.

• ∀L ub0L ≥ ub0L+1

The progressing search can only decrease the number of X’s that

intersect with ubS, as ubS and domain of X’s can only shrink.

Therefore, ub0 can only decrease with the depth of the tree.

Based on these properties of the lbS, lb0, ubS, ub0 we make a fol-
lowing conclusion. If some Xi in some search node at depth L had

its domainD(Xi)L ⊆ lbSL then for any child node this relation will

hold. Thus, we do not have to re-check it in any child node. Similarly,

if the relation D(Xj)L ∩ ubSL = ∅ holds at level L it will hold for
any child nodes.

We can, thus, keep track of such variables Xi and recalculate

lb0 and ub0 only for the remaining variables, which we call ac-
tive X’s. In order to remember which X’s do need to be re-checked,

we could either put them into some special list (but that would use

too much memory), or make the separation in the original list of

[X1, X2...., Xn] by moving variable Xi, which belongs to lbS, to
the left side of the array. On the other hand, variablesXj , that do not

intersect ubS, can be moved to the right side of the array. The active
X’s, which can influence lb0 or ub0, will be grouped in the middle
of the array starting from the position lb0 + 1 to position ub0. Now,
in order to calculate lb0L+1 we calculate lb0 only for the active X’s
and add it to lb0L. To calculate ub0L+1 we calculate the number of

X’s that do not intersect ubS among active X’s and subtract it from
ub0L .

Note that this requires storing values of lb0 and ub0 for every level
of the search tree, which has only a constant cost. The worst case

complexity of computing the mentioned data structures in a search

node remains O(n). However, the constant in front is reduced. Imag-

ine a child node L + 1 on the left branch of the decision tree. It
has lb0L+1 = lb0L + 1, and ub0L+1 = ub0L with an Xi such

that D(Xi)L+1 ⊆ lbSL+1 placed on the position lb0L + 1. If the
process backtracks to depth L then the consistency algorithm uses

lb0L and ub0L to determine active X’s thereforeXi becomes active

again, since it is placed in between lb0L and ub0L.Therefore, the

backtracking requires only the restoration of old values for lb0 and
ub0.
The following figures will illustrate the reuse of previous computa-

tions on the simple example used earlier. Figure 7 presents the initial

values for the input parameters of the Among constraint as well as

computed values for internal data structures.

x1, .., x4 ∈ {v1} Y1 ∈ {v1, v3}
x5, .., x7 ∈ {v2} Y2 ∈ {v2, v3}
x8 ∈ {v2, v3} N ∈ {5..8}

Figure 7. Initial values

At the first search node, Algorithm 3 prunes the value 6 out of the

domain ofN . Algorithm 4 concludes that without value v1 included
in lbS it is not possible to reach the minimal bound of N , so v1 is
included in lbS as well as Y1 is assigned value v1. Figure 8 presents

the value of different parameters as well as the order of X’s after

executing the consistency function at the first search node.

Figure 8. Search node 1

Figure 9 presents the inferences made by the consistency function

while in the second search node. In this node, the algorithm initially

works with four active X’s : X5, .., X8. The search has grounded
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variable N to value 5. Therefore, the algorithm 4 concludes that

value v2 must be excluded from ubS, thus, Y2 becomes immedi-

ately equal to v3. The value v2 was removed from ubS because if
it were included in lbS then it would coverX5, X6, and X7, which

(together with X1, .., X4 ) makes N > 5. The variables are rear-
ranged andX5, X6, andX7 are placed after position ub0 = 5. This
is simply done by swapping X5 and X8 and changing value of ub0
to 5. Then Algorithm 2 enters the special case whenN = ub0, thus,
it grounds X8 to v3. The search continues to find other solutions

therefore it backtracks to the previous search level.

Figure 9. Search node 2

After backtracking, the current state of the search and variables

is depicted in Figure 10. The right child node at the level 1 uses

X’s from position 5 to 8, but in the order determined by the previ-

ous consistency function executions :X8, X6, X7, X5. Trivially, the

reordering does not affect the result of the algorithms. Algorithm 4

concludes that without value v2 included into lbS the lower bound of
N cannot be reached. Value v2 is included in lbS and must be cov-
ered by some Y. The occurrence of value v2 among Y’s is equal to

one, which means that only Y2 can be equal to v2. Therefore, Algo-

rithm 4 grounds Y2 to v2. The regrouping technique is applied again,

variablesX6, X7, and X5 are swapped one by one with the only re-

maining active variable X8. Each swap increases the value of lb0.
The obtained order of X’s is as follows :X1..X4, X6, X7, X5, X8.

Figure 10. Search node 3

The search nodes four and five are depicted in Figure 11. In both

cases, only one active X remains. The fourth search node assignsX8

to v2 which leads toN being grounded to value 8. On the other hand,

the fifth search nodes remove v2 from the domain ofX8 making N
equal to 7. In both search nodes, as soon asX8 is assigned a value

it is no longer active, making lb0 and ub0 equal indicating that the
constraint is satisfied.

Figure 11. Search node 4 and 5

This section, up to now, has only discussed about better organi-

zation of X’s variables. A similar approach can be used for vari-

ables Y’s. These variables may influence only the sets lbS, ubS
and FutureDomY . lbS is a union of grounded Y ′s, which can-
not change any further, and the rest of Y’s are active. It is possible

to organize the active Y’s to be in the right side of the array as was

done for the X’s.

On the other hand ubS is a union of domains of all Y’s. If value v
is pruned out of the domain of Yj and there exists another Yk such

that v ∈ D(Yk), then ubS stays unchanged and the execution of

the consistency function is not necessary. The FutureDomY is a

union of v such that the occurrence of v in Y’s is more than 1. If

value v is pruned out of the domain of Yj then the algorithm needs

to check again if there are more than one variable equals to value

v. The consistency algorithm does not compute set ubS neither set

FutureDomY in an iterative manner. It always recomputes them

even if they could be computed iteratively by maintaining the occur-

rence representation of the sets. We choose to recompute these sets

to reduce overall time, especially visible in case of ubS.

5.1 Detaching a variable from a constraint

By default, the consistency algorithm of a constraint is called as

soon as the domain of one of the constraint variables is pruned. If

the change to the variable domain does not cause any further prun-

ing then there was no benefit in executing the consistency function.

There are number of techniques to discover situations when there is

no further pruning possible without the need to execute the consis-

tency function.

We consider variable Xi to be attached to constraint Cj if Xi ∈
scope(Cj). Any changes to D(Xi) force the re-execution of the
consistency algorithm. On the other hand, if in search node s the
variable Xi is detached from the constraint Cj , then, for the whole
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search subtree rooted at s the change of D(Xj) will not cause the
re-execution of the consistency function. Upon backtracking to the

search node above s the variable x will be reattached back to the
constraint. To gain in efficiency it is important to recognize such

variables as soon as possible. As it was discussed in the previous

sections, ifD(Xi) at search node s belongs to lbS then for any child
node of s this relationship will hold. Therefore,Xi can be safely de-

tached from the constraint. Similarly, if the domain of someXi does

not intersect ubS then it can be detached from the constraint.

6 Experimental Results

In this section we present the results of experiments. We compare

the computation time and the number of search nodes of Among ver-

sus an Among decomposition. Both approaches, the Among and the

Among decomposition, were implemented/evaluated within JACOP

framework for number of different setups. Each problem instance

was solved using randomly generated order of variables. The same

order was used for both solving approaches but the order of variables

could differ across different instances as for each instance a random

generation was performed. All experiments have been performed on

the same hardware, namely a Pentium 4, and runtimes were collected

as a total number of CPU-seconds that the process spent in user mode

(measured with the help of the time command in RedHat Linux).

We encode Among with the following decomposition. It employs

a number of constraints (e.g. Sum, Reified, Max) as well as additional

variables (e.gBi):

Among([X1, ..., Xn], [Y1, ..., Ym], N) iff

∀i ∈ {1, .., n} j ∈ {1, .., m}Bij = 1

⇐⇒ Xi = Yj ∈ S ∧
∑

i∈{1,..,n}

(maxj∈{1..m}Bij) = N

where eachBi is a Boolean variable indicates ifXi is equal to Yj .

6.1 Increasing the number of X’s

In the first series of experiments the problems were gener-

ated randomly with the sequence of variables [X1, X2, ..., Xn],
[Y1, Y2, ..., Ym] where m - ( the number of Y’s ) remain constant

( m = 5 ) and n - the number of X’s increased from 3 to 25

(3,5,7,...,25). Each domain of X’s and Y’s consists of 2 random in-

tervals and the total size of the domain never exceeds 7 elements.

The domain of variableN consists of 2 or 3 random intervals drafted

from the domain {0..n}. Each combination of parameters was tested
10 times with different random seeds giving 120 experiments.

Figure 12 presents the number of search nodes needed to solve a

problem instance with Among constraint versus Among decompo-

sition. A cross (+) corresponds to one problem instance. The y-axis

indicates the number of the search nodes of the Among approach and

the x-axis indicates the number of the search nodes for Among de-

composition. Both axes are plotted in a logarithmic scale. The diago-

nal solid line corresponds to the function y = x. The crosses situated
on the diagonal line correspond to the problem instances that had the

same number of search nodes in both, Among constraint and Among

decomposition approaches. The dashed line corresponds to the func-

tion y = x/2. All the crosses situated under this line have at least
2 times fewer search nodes in the search tree for Among than the

Among decomposition approach. The dot-dashed line corresponds

to the function y = x/7. All the crosses under this line indicate in-
stances for which the Among approach was at least seven timesmore

efficient in terms of search nodes than the Among decomposition ap-

proach.
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Figure 12. Number of nodes needed to find all solutions to the problem

Because of the logarithmic scale the cross distribution is close to

the diagonal. Yet, only in 28.5% of the tests, Among was less than 2

times better than the decomposition. In 63% of tests, Among was at

least 2 times better but less than 7 times better than the decomposition

and in 8.5% of the tests Among was 7 times better than the decom-

position. In order to compare the strength of propagation for Among

and the Among decomposition we also plot the number of wrong de-

cisions (round points) for the same set of problems. A wrong decision

corresponds to an inconsistent leaf search node. In our experiments

we used the definitions of search node, backtrack, and wrong deci-

sion as it was presented in [2]. Due to the logarithmic scale that ig-

nores values 0 we have added value 1 to all wrong-decision numbers.

Figure 12 shows that in 26% of the tests the general Among reaches

GAC (value 100 corresponds to zero wrong decisions). Generally, the

number of wrong decisions is significantly smaller for Among. There

are instances that had 6 orders of magnitude more wrong decisions

for the decomposition. The Among decomposition had zero wrong

decision only in 3% of the tests.

Figure 13 presents the execution time of Among versus the Among

decomposition. The y-axis indicates the number of seconds needed

to solve the problem with the Among constraint, while the x-axis

indicates the number of seconds needed to solve the problem with

the Among decomposition. In 34.5% of the tests Among was slower

than the Among decomposition. However, Among constraint needs

more time than the Among decomposition only for small problems,

which require less than 5 seconds to find all solutions. As soon as the

number of variables increases the advantage of using Among versus

the Among decomposition is clearly visible. In 33.4% of the tests

Among was faster than the decomposition but less than 2 times faster.

In 24.6% of the tests Among was at least 2 times faster and at most 7

times faster than the decomposition and in 7.5% of the tests general

Among was 7 times faster than the decomposition.
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Figure 13. CPU time needed to find all solutions

6.2 Increasing the number of Y’s

In the second series of experiments we kept the number of X’s con-

stant (=5) and increased the number of Y’s from 3 to 25 (3,5,7,..25).

The results of the experiments are presented in Figure 14. Simi-

larly to the first series of experiments, a ”+” point corresponds to one

problem instance. The y-axis indicates the number of search nodes

of Among and the x-axis indicates the number of search nodes of the

Among decomposition.
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Figure 14. Number of nodes needed to find all solutions

Figure 14 shows that the problems with increasing number of Y’s

are harder than those from the first series of experiments. In 76.5%
of the tests, Among had at most 2 times fewer search nodes than

the Among decomposition. The remaining instances were solved by

Among with up to 7 times fewer search nodes than the Among de-

composition. The circles represent the number of wrong decisions

(plus one, due to the logarithmic scale). In 30% of the tests Among

reached GAC, while the Among decomposition reached GAC only in

3.5% of the tests.

Figure 15 shows the execution time of Among versus the Among

decomposition. In 64% of the tests Among was worst than the de-

composition. However, again the majority of instances which are
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Figure 15. CPU time needed to find all solutions

solved faster by the Among decomposition are simple and can be

solved relatively fast. In 36% of the tests Among was better and in

around 10% of the tests Among was at least twice better than the de-

composition. These results show that in case of increasing number of

Y ’s, the constraint becomes less tight as there is a less dramatic de-
crease in search nodes despite maintaining the significant reduction

in wrong decisions.

7 Conclusions

In this work, we presented the design and implementation details

of the Among constraint. Our implementation was compared to an

Among decomposition for a wide range of different problem in-

stances. We showed how to apply different techniques to improve

the efficiency of the consistency function. Our studies shows that,

even without reaching BC, the proposed consistency algorithm does

an efficient pruning and for difficult problems it wins significantly

against the Among decomposition. Moreover, it is quite common that

the consistency function achieves GAC as the search tree contains no

wrong decisions, while looking for all solutions.
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Flow-Based Propagators for the SEQUENCE
and Related Global Constraints1

Michael Maher2 and Nina Narodytska3 and Claude-Guy Quimper4 and Toby Walsh5

Abstract. We propose new filtering algorithms for the SEQUENCE
constraint and several extensions which are based on network flows.
Our propagator for the SEQUENCE constraint enforces domain con-
sistency in O(n2) time down a branch of the search tree. This im-
proves upon the best existing domain consistency algorithm by a fac-
tor of O(log n). The flows used in these algorithms are derived from
a linear program. Some of them differ from the flows used to prop-
agate global constraints like GCC since the domains of the variables
are encoded as costs on the edges rather than capacities. Such flows
are efficient for maintaining bounds consistency over large domains
and may be useful for other global arithmetic constraints.

1 Introduction

Graph based algorithms play a very important role in constraint pro-
gramming, especially within propagators for global constraints. For
example, Regin’s propagator for the ALLDIFFERENT constraint is
based on a perfect matching algorithm [14], whilst his propagator for
the GCC constraint is based on a network flow algorithm [15]. Both
these graph algorithms are derived from the bipartite value graph, in
which nodes represent variables and values, and edges represent do-
mains. For example, the GCC propagator finds a flow in such a graph
in which each unit of flow represents the assignment of a particu-
lar value to a variable. In this paper, we identify a new way to build
graph based propagators for global constraints: we convert the global
constraint into a linear program and then convert this into a network
flow. These encodings contain several novelties. For example, vari-
ables domain bounds can be encoded as costs along the edges. We
apply this approach to the SEQUENCE family of constraints. Our re-
sults widen the class of global constraints which can be propagated
using flow-based algorithms. We conjecture that these methods will
be useful to propagate other global constraints.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables,
each with a finite domain of values, and a set of constraints specify-
ing allowed combinations of values for subsets of variables. We use
capital letters for variables (e.g. X , Y and S), and lower case for
values (e.g. d and di). A solution is an assignment of values to the

1 NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the
Australian Research Council.

2 NICTA and UNSW, Sydney, Australia
3 NICTA and UNSW, Sydney, Australia
4 Ecole Polytechnique de Montreal, Montreal, Canada
5 NICTA and UNSW, Sydney, Australia

variables satisfying the constraints. Constraint solvers typically ex-
plore partial assignments enforcing a local consistency property us-
ing either specialized or general purpose propagation algorithms. A
support for a constraint C is a tuple that assigns a value to each vari-
able from its domain which satisfies C. A bounds support is a tuple
that assigns a value to each variable which is between the maximum
and minimum in its domain which satisfies C. A constraint is domain
consistent (DC) iff for each variable Xi, every value in the domain
of Xi belongs to a support. A constraint is bounds consistent (BC) iff
for each variable Xi, there is a bounds support for the maximum and
minimum value in its domain. A CSP is DC/BC iff each constraint is
DC/BC. A constraint is monotone iff there exists a total ordering ≺
of the domain values such that for any two values v, w if v ≺ w then
v is substitutable for w in any support for C.

We also give some background on flows. A flow network is a
weighted directed graph G = (V, E) where each edge e has a ca-
pacity between non-negative integers l(e) and u(e), and an integer
cost w(e). A feasible flow in a flow network between a source (s)
and a sink (t), (s, t)-flow, is a function f : E → Z+ that satisfies
two conditions: f(e) ∈ [l(e), u(e)], ∀e ∈ E and the flow conser-
vation law that ensures that the amount of incoming flow should be
equal to the amount of outgoing flow for all nodes except the source
and the sink. The value of a (s, t)-flow is the amount of flow leav-
ing the sink s. The cost of a flow f is w(f) =

∑
e∈E w(e)f(e). A

minimum cost flow is a feasible flow with the minimum cost. The
Ford-Fulkerson algorithm can find a feasible flow in O(φ(f)|E|)
time. If w(e) ∈ Z, ∀e ∈ E, then a minimum cost feasible
flow can be found using the successive shortest path algorithm in
O(φ(f)SPP ) time, where SPP is the complexity of finding a
shortest path in the residual graph. Given a (s, t)-flow f in G(V, E),
the residual graph Gf is the directed graph (V, Ef ), where Ef =
{e with cost w(e) and capacity 0..(u(e) − f(e)) | e = (u, v) ∈
E, f(e) < u(e)}

⋃
{e with cost − w(e) and capacity 0..(f(e) −

l(e)) | e = (u, v) ∈ E, l(e) < f(e)}. There are other asymptoti-
cally faster but more complex algorithms for finding either feasible
or minimum-cost flows [2].

In our flow-based encodings, a consistency check will correspond
to finding a feasible or minimum cost flow. To enforce DC, we there-
fore need an algorithm that, given a minimum cost flow of cost w(f)
and an edge e checks if an extra unit flow can be pushed (or removed)
through the edge e and the cost of the resulting flow is less than or
equal to a given threshold T . We use the residual graph to construct
such an algorithm. Suppose we need to check if an extra unit flow
can be pushed through an edge e = (u, v). Let e′ = (u, v) be the
corresponding arc in the residual graph. If w(e) = 0, ∀e ∈ E, then it
is sufficient to compute strongly connected components (SCC) in the
residual graph. An extra unit flow can be pushed through an edge e
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iff both ends of the edge e′ are in the same strongly connected com-
ponent. If w(e) ∈ Z, ∀e ∈ E, the shortest path p between v and u in
the residual graph has to be computed. The minimal cost of pushing
an extra unit flow through an edge e equals w(f) + w(p) + w(e). If
w(f)+w(p)+w(e) > T , then we cannot push an extra unit through
e. Similarly, we can check if we can remove a unit flow through an
edge.

3 The SEQUENCE Constraint
The SEQUENCE constraint was introduced by Beldiceanu and Con-
tejean [5]. It constrains the number of values taken from a given
set in any sequence of k variables. It is useful in staff rostering to
specify, for example, that every employee has at least 2 days off in
any 7 day period. Another application is sequencing cars along a
production line (prob001 in CSPLib). It can specify, for example,
that at most 1 in 3 cars along the production line has a sun-roof.
The SEQUENCE constraint can be defined in terms of a conjunc-
tion of AMONG constraints. AMONG(l, u, [X1, . . . , Xk], v) holds
iff l ≤ |{i|Xi ∈ v}| ≤ u. That is, between l and u of the
k variables take values in v. The AMONG constraint can be en-
coded by channelling into 0/1 variables using Yi ↔ (Xi ∈ v)
and l ≤

∑k
i=1 Yi ≤ u. Since the constraint graph of this encod-

ing is Berge-acyclic, this does not hinder propagation. Consequently,
we will simplify notation and consider AMONG (and SEQUENCE)
on 0/1 variables and v = {1}. If l = 0, AMONG is an ATMOST
constraint. ATMOST is monotone since, given a support, we also
have support for any larger value [6]. The SEQUENCE constraint is
a conjunction of overlapping AMONG constraints. More precisely,
SEQUENCE(l, u, k, [X1, . . . , Xn], v) holds iff for 1 ≤ i ≤ n −
k + 1, AMONG(l, u, [Xi, . . . , Xi+k−1], v) holds. A sequence like
Xi, . . . , Xi+k−1 is a window. It is easy to see that this decomposi-
tion hinders propagation. If l = 0, SEQUENCE is an ATMOSTSEQ
constraint. Decomposition in this case does not hinder propagation.
Enforcing DC on the decomposition of an ATMOSTSEQ constraint
is equivalent to enforcing DC on the ATMOSTSEQ constraint [6].

Several filtering algorithms exist for SEQUENCE and related con-
straints. Regin and Puget proposed a filtering algorithm for the
Global Sequencing constraint (GSC) that combines a SEQUENCE and
a global cardinality constraint (GCC) [17]. Beldiceanu and Carlsson
suggested a greedy filtering algorithm for the CARDPATH constraint
that can be used to propagate the SEQUENCE constraint, but this may
hinder propagation [3]. Regin decomposed GSC into a set of variable
disjoint AMONG and GCC constraints [16] but this decomposition
also hinders propagation. Bessiere et al. [6] encoded SEQUENCE us-
ing a SLIDE constraint, and give a domain consistency propagator
that runs in O(ndk−1) time. van Hoeve et al. [13] proposed two fil-
tering algorithms that establish domain consistency. The first is based
on an encoding into a REGULAR constraint and runs in O(n2k) time,
whilst the second is based on cumulative sums and runs in O(n3)
time. Finally, Brand et al. [9] studied a number of different encodings
of the SEQUENCE constraint. Their asymptotically fastest encoding
is based on separation theory and enforces domain consistency in
O(n2 log n) time down the whole branch of a search tree. One of
our contributions is to improve on this bound.

4 Flow-based Propagator for the SEQUENCE
Constraint

We will convert the SEQUENCE constraint to a flow by means of a lin-
ear program (LP). We shall use SEQUENCE(l, u, 3, [X1, . . . , X6], v)

as a running example. We can formulate this constraint simply and
directly as an integer linear program:

l ≤ X1 + X2 + X3 ≤ u,

l ≤ X2 + X3 + X4 ≤ u,

l ≤ X3 + X4 + X5 ≤ u,

l ≤ X4 + X5 + X6 ≤ u

where Xi ∈ {0, 1}. By introducing surplus/slack variables, Yi and
Zi, we convert this to a set of equalities:

X1 + X2 + X3 − Y1 = l, X1 + X2 + X3 + Z1 = u,

X2 + X3 + X4 − Y2 = l, X2 + X3 + X4 + Z2 = u,

X3 + X4 + X5 − Y3 = l, X3 + X4 + X5 + Z3 = u,

X4 + X5 + X6 − Y4 = l, X4 + X5 + X6 + Z3 = u

where Yi, Zi ≥ 0. In matrix form, this is:





1 1 1 0 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1









X1

...
X6
Y1
Z1

...
Y4
Z4





=





l
u
l
u
l
u
l
u





This matrix has the consecutive ones property for columns: each
column has a block of consecutive 1’s or −1’s and the remaining
elements are 0’s. Consequently, we can apply the method of Veinott
and Wagner [1] (also described in Application 9.6 of [2]) to simplify
the problem. We create a zero last row and subtract the ith row from
i + 1th row for i = 1 to 2n. These operations do not change the set
of solutions. This gives:

A !X = !b,

where

A =





1 1 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1




,

!X =
(
X1, . . . , X6, Y1, Z1, . . . , Y4, Z4

)T
,

!b =
(
l, u− l, l − u, u− l, l − u, u− l, l − u, u− l,−u

)T

This matrix has a single 1 and −1 in each column. Hence, it de-
scribes a network flow problem [2] on a graph G = (V, E) (that
is, it is a network matrix). Each row in the matrix corresponds to a
node in V and each column corresponds to an edge in E. Down each
column, there is a single row i equal to 1 and a single row j equal
to -1 corresponding to an edge (i, j) ∈ E in the graph. We include
a source node s and a sink node t in V . Let b be the vector on the
right hand side of the equation. If bi is positive, then there is an edge
(s, i) ∈ E that carries exactly bi amount of flow. If bi is negative,
there is an edge (i, t) ∈ E that caries exactly |bi| amount of flow.
The bounds on the variables, which are not expressed in the matrix,
are represented as bounds on the capacity of the corresponding edges.

The graph for the set of equations in the example is given in Fig-
ure 1. A flow of value 4u− 3l in the graph corresponds to a solution.
If a feasible flow sends a unit flow through the edge labeled with Xi

then Xi = 1 in the solution; otherwise Xi = 0. Each even numbered
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vertex 2i represents a window. The way the incoming flow is shared
between yj and zj reflects how many variables Xi in the j’th win-
dow are equal to 1. Odd numbered vertices represent transitions from
one window to the next (except for the first and last vertices, which
represent transitions between a window and nothing). An incoming
X edge represents the variable omitted in the transition to the next
window, while an outgoing X edge represents the added variable.
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Figure 1. A flow graph for SEQUENCE(l, u, 3, [X1, . . . , X6], v)

Theorem 1 For any constraint SEQUENCE(l, u, k, [X1, . . . , Xn], v),
there is an equivalent network flow graph G = (V, E) with
5n − 4k + 5 edges, 2n − 2k + 3 + 2 vertices, a maximum
edge capacity of u, and an amount of flow to send equal to
f = (n − k)(u − l) + u. There is a one-to-one correspondence
between solutions of the constraint and feasible flows in the network.

The time complexity of finding a maximum flow of
value f is O(|E|f) using the Ford-Fulkerson algorithm
[10]. Faster algorithms exist for this problem. For exam-
ple, Goldberg and Rao’s algorithm finds a maximum flow in
O(min(|V |2/3, |E|1/2)|E| log(|V |2/|E| + 2) log C) time where
C is the maximum capacity upper bound for an edge [12]. In our
case, this gives O(n3/2 log n log u) time complexity.

We follow Régin [14, 15] in the building of an incremental filtering
algorithm from the network flow formulation. A feasible flow in the
graph gives us a support for one value in each variable domain. Sup-
pose Xk = v is in the solution that corresponds to the feasible flow
where v is either zero or one. To obtain a support for Xk = 1−v, we
find the SCC of the residual graph and check if both ends of the edge
labeled with Xk are in the same strongly connected component. If
so, Xk = 1− v has a support; otherwise 1− v can be removed from
the domain of Xk. Strongly connected components can be found in
O(|E|) = O(n), because the number of edges in the flow graph for
the SEQUENCE constraint is linear in n by Theorem 1.

The total time complexity for initially enforcing DC is O(n((n−
k)(u − l) + u)) if we use the Ford-Fulkerson algorithm or
O(n3/2 log n log u) if we use Goldberg and Rao’s algorithm.

Still following Régin [14, 15], one can make the algorithm incre-
mental. Suppose during search Xi is fixed to value v. If the last com-
puted flow was a support for Xi = v, then there is no need to re-
compute the flow. We simply need to recompute the SCC in the new
residual graph and enforce DC in O(n) time. If the last computed
flow is not a support for Xi = v, we can find a cycle in the residual
graph containing the edge associated to Xi in O(n) time. By push-
ing a unit of flow over this cycle, we obtain a flow that is a support

for Xi = v. Enforcing DC can be done in O(n) after computing
the SCC. Consequently, there is an incremental cost of O(n) when a
variable is fixed, and the cost of enforcing DC down a branch of the
search tree is O(n2).

5 Soft SEQUENCE Constraint
Soft forms of the SEQUENCE constraint may be useful in prac-
tice. The ROADEF 2005 challenge [19], which was proposed and
sponsored by Renault, put forwards a violation measure for the
SEQUENCE constraint which takes into account by how much each
AMONG constraint is violated. We therefore consider the soft global
constraint, SOFTSEQUENCE(l, u, k, T, [X1, . . . , Xn], v). This holds
iff:

T ≥
n−k+1∑

i=1

max(l − Si, Si − u, 0), (1)

where Si =
∑k−1

j=0 (Xi+j ∈ v)
As before, we can simplify notation and consider

SOFTSEQUENCE on 0/1 variables and v = {1}.
We again convert to a flow problem by means of a lin-

ear program, but this time with an objective function. Consider
SOFTSEQUENCE(l, u, 3, T, [X1, . . . , X6], v). We introduce vari-
ables, Qi and Pi to represent the penalties that may arise from vi-
olating lower and upper bounds respectively. We can then express
this SOFTSEQUENCE constraint as follows. The objective function
gives a lower bound on T .

Minimize
4∑

i=1

(Pi + Qi) subject to :

X1 + X2 + X3 − Y1 + Q1 = l, X1 + X2 + X3 + Z1 − P1 = u,

X2 + X3 + X4 − Y2 + Q2 = l, X2 + X3 + X4 + Z2 − P2 = u,

X3 + X4 + X5 − Y3 + Q3 = l, X3 + X4 + X5 + Z3 − P3 = u,

X4 + X5 + X6 − Y4 + Q4 = l, X4 + X5 + X6 + Z3 − P4 = u

where Yi, Zi, Pi and Qi are non-negative. In matrix form, this is:

Minimize
∑4

i=1(Pi + Qi) subject to:

A !X = !b,

where

A =





1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1





!X =
(
X1, . . . , X6, Y1, Z1, . . . , Y4, Z4, Q1, P1, . . . , Q4, P4

)T
,

!b =
(
l, u, l, u, l, u, l, u

)T

If we transform the matrix as before, we get a minimum cost net-
work flow problem.

Minimize
∑4

i=1(Pi + Qi) subject to:
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A !X = !b,

where
A =

[
A1 | A2 | −A2

]

A1 =





1 1 1 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 −1 0 0 1 0
0 0 0 0 0 0
0 0 −1 0 0 1
0 0 0 0 0 0
0 0 0 −1 −1 −1





A2 =





−1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 −1





!X =
(
X1, . . . , X6, Y1, Z1, . . . , Y4, Z4, Q1, P1, . . . , Q4, P4

)T

!b =
(
l, u− l, l − u, u− l, l − u, u− l, l − u, u− l,−u

)T

The flow graph G = (V, E) for the transformed system is pre-
sented in Figure 2. Dashed edges have cost 1, while other edges have
cost 0. The minimal cost flow in the graph corresponds to a minimal
cost solution to the system of equations.
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Figure 2. A flow graph for SOFTSEQUENCE(l, u, 3, t, [X1, . . . , X6])

Theorem 2 For any constraint SOFTSEQUENCE
(l, u, k, t, [X1, . . . , Xn], v), there is an equivalent network
flow graph. There is a one-to-one correspondence between solutions
of the constraint and feasible flows of cost less than or equal to t.

Thus, if the minimal cost flow is greater than max(dom(T )),
then the SOFTSEQUENCE constraint is inconsistent. The mini-
mal cost flow can be found in O(|V ||E| log log U log |V |C) =
O(n2 log n log log u) time [2]. Consider the edge (u, v) in the resid-
ual graph associated to variable Xi and let k(u,v) be its residual cost.
If the flow corresponds to an assignment with Xi = 0, pushing a
unit of flow on (u, v) results in a solution with Xi = 1. Symmetri-
cally, if the flow corresponds to an assignment with Xi = 1, pushing
a unit of flow on (u, v) results in a solution with Xi = 0. If the
shortest path in the residual graph between v and u is k(v,u), then
the shortest cycle that contains (u, v) has length k(u,v) + k(v,u).
Pushing a unit of flow through this cycle results in a flow of cost

c + k(u,v) + k(v,u) which is the minimum-cost flow that contains
the edge (u, v). If c + k(u,v) + k(v,u) > max(dom(T )), then no
flows containing the edge (u, v) exist with a cost smaller or equal to
max(dom(T )). The variable Xi must therefore be fixed to the value
taken in the current flow. Following Equation 1, the cost of the vari-
able T must be no smaller than the cost of the solution. To enforce
bounds consistency on the cost variable, we increase the lower bound
of dom(T ) to the cost of the minimum flow in the graph G.

To enforce DC on the X variables efficiently we can use
an all pairs shortest path algorithm on the residual graph. This
takes O(n2 log n) time using Johnson’s algorithm [10]. This
gives an O(n2 log n log log u) time complexity to enforce DC
on the SOFTSEQUENCE constraint. The penalty variables used for
SOFTSEQUENCE arise directly out of the problem description and
occur naturally in the LP formulation. We could also view them as
arising through the methodology of [20], where edges with costs are
added to the network graph for the hard constraint to represent the
softened constraint.

5.1 Soft ATMOSTSEQ Constraint

In many cases, we have only upper bounds and not lower bounds
on the frequency of the occurrence of values (i.e. l = 0). For in-
stance, this is the case in car sequencing problems. This can be used
to simplify propagation. For example, there is a simple propagator to
enforce DC on the soft ATMOSTSEQ constraint in just O(n2k) time
down a branch of the search tree. Consider the assignment which as-
signs each Xi the smallest value in its domain. Due to monotonicity
of the ATMOSTSEQ constraint any other solution X ′

i will be greater
or equal to this minimal assignment: Xi ≤ X ′

i , i = 1, . . . , n. The
violation measure is a monotonically non-decreasing function of the
Xi. Consequently, the violation cost for any other solution is greater
or equal to the violation cost of this minimal assignment. Hence, if
the violation cost for the minimal assignment is greater than the up-
per bound on the cost variable then the constraint is inconsistent. To
enforce DC on soft ATMOSTSEQ, we can use the failed literal test.
If a value is pruned from the domain of Xi, then it takes O(k) time
to update the cost value of the minimal assignment and O(nk) time
to perform the failed literal test for n Boolean variables. Hence, the
total time complexity is O(n2k) down a branch of the search tree.

6 Generalized SEQUENCE Constraint

To model real world problems, we may want to have dif-
ferent size or positioned windows. For example, the window
size in a rostering problem may depend on whether it in-
cludes a weekend or not. An extension of the SEQUENCE con-
straint proposed in [13] is that each AMONG constraint can
have different parameters (start position, l, u, and k). More pre-
cisely, GEN-SEQUENCE( !p1, . . . , !pm, [X1, X2, . . . , Xn], v) holds
iff AMONG(li, ui, ki, [Xsi , . . . , Xsi+ki−1], v) for 1 ≤ i ≤ m
where !pi = 〈li, ui, ki, si〉. Whilst the methods in Section 4 easily
extend to allow different bounds l and u for each window, dealing
with different windows is more difficult. In general, the matrix now
does not have the consecutive ones property. It may be possible to re-
order the windows to achieve the consecutive ones property. If such
a re-ordering exists, it can be found and performed in O(m + n + r)
time, where r is the number of non-zero entries in the matrix [8].
Even when re-ordering cannot achieve the consecutive ones prop-
erty there may, nevertheless, be an equivalent network matrix. Bixby

57



and Cunningham [7] give a procedure6 to find an equivalent network
matrix, when it exists, in O(mr) time. In these cases, the method
in Section 4 can be applied to propagate the GEN-SEQUENCE con-
straint in O(n2) time down the branch of a search tree.

Not all GEN-SEQUENCE constraints can be expressed as network
flows. Consider the GEN-SEQUENCE constraint with n = 5, identi-
cal upper and lower bounds (l and u), and 4 windows: [1,5], [2,4],
[3,5], and [1,3]. We can express it as an integer linear program:





1 1 1 1 1
−1 −1 −1 −1 −1
0 1 1 1 0
0 −1 −1 −1 0
0 0 1 1 1
0 0 −1 −1 −1
1 1 1 0 0
−1 −1 −1 0 0








X1
X2
X3
X4
X5



 ≥





l
−u
l
−u
l
−u
l
−u



 (2)

Applying the test described in Section 20.1 of [18] to Example 2, we
find that the matrix of this problem is not equivalent to any network
matrix.

However, all GEN-SEQUENCE constraint matrices satisfy a
weaker property: total unimodularity. A matrix is totally unimodu-
lar iff every square non-singular submatrix has a determinant of +1
or −1. The advantage of this property is that any totally unimodular
system of inequalities with integral constants is solvable in Z iff it is
solvable in R.

Theorem 3 The matrix of the inequalities associated with
GEN-SEQUENCE constraint is totally unimodular.

In practice, only integral values for the bounds li and ui are
used. Thus the consistency of a GEN-SEQUENCE constraint can
be determined via linear programming techniques in O(n3.5 log u)
time. Using the failed literal test, we can enforce DC at a
cost of O(n5.5 log u) down the branch of a search tree for any
GEN-SEQUENCE constraint. This is too expensive to be practi-
cal. We can, instead, exploit the fact that the matrix for each
GEN-SEQUENCE constraint has the consecutive ones property for
rows (before the introduction of slack/surplus variables). Corre-
sponding to the row transformation for matrices with consecutive
ones for columns is a change-of-variables transformation into vari-
able Sj =

∑j
i=1 Xi for matrices with consecutive ones for rows.

This gives the dual of a network matrix. This is the basis of an en-
coding of SEQUENCE in [9] (denoted there CD). Consequently that
encoding extends to GEN-SEQUENCE. Adapting the analysis in [9]
to GEN-SEQUENCE, we can enforce DC in O(nm + n2 log n) time
down the branch of a search tree.

In summary, for a compilation cost of O(mr), we can enforce
DC on a GEN-SEQUENCE constraint in O(n2) down the branch of
a search tree, when it has a flow representation, and in O(nm +
n2 log n) when it does not.

7 SLIDINGSUM Constraint
The SLIDINGSUM constraint [4] is a generalization of the
SEQUENCE constraint from Boolean to integer variables,
which we extend to allow arbitrary windows. SLIDINGSUM
([X1, . . . , Xn], [ !p1, . . . , !pm]) holds iff li ≤

∑si+ki−1
j=si

Xi ≤ ui

holds where !pi = 〈li, ui, ki, si〉 is, as with the generalized
SEQUENCE, a window. The constraint can be expressed as a linear
program P called the primal where W is a matrix encoding
the inequalities and the bounds on each variable are given by

6 Another procedure is given in [18].

ai ≤ Xi ≤ bi. Since the constraint represents a satisfaction
problem, we minimize the constant 0.

min 0




W
−W

I
−I



 X ≥





l
−u
a
−b










P (3)

The dual D is however an optimization problem.

min
[
−l u −a b

]
Y

[
W T −W T I −I

]
Y = 0

Y ≥ 0





D (4)

Von Neumann’s Strong Duality Theorem states that if the primal
and the dual problems are feasible, then they have the same objective
value. Moreover, if the primal is unsatisfiable, the dual is unbounded.
The SLIDINGSUM constraint is thus satisfiable if the objective func-
tion of the dual problem is zero. It is unsatisfiable if it tends to nega-
tive infinity.

Note that the matrix W T has the consecutive ones property on the
columns. The dual problem can thus be converted to a network flow
using the same transformation as with the SEQUENCE constraint.
Consider the dual LP of our running example 2:

Minimize
−

∑4
i=1 liYi +

∑4
i=1 uiY4+i −

∑5
i=1 aiY8+i +

∑5
i=1 biY13+i

subject to:

A!Y = !b,

where

A =

( 1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
1 1 0 1 −1 −1 0 −1 0 1 0 0 0 0 −1 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 1 0 0 0 0 −1 0 0
1 1 1 0 −1 −1 −1 0 0 0 0 1 0 0 0 0 −1 0
1 0 1 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 −1

)
,

!Y =
(
Y1, . . . , Y18

)T
,

!b =
(
0, . . . , 0

)T
.

Our usual transformation will turn this into a network flow prob-
lem:

Minimize
−

∑4
i=1 liYi +

∑4
i=1 uiY4+i −

∑5
i=1 aiY8+i +

∑5
i=1 biY13+i

subject to

A!Y = !0,

where

A =




1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0 0
0 0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0
0 0 0 −1 0 0 0 1 0 0 −1 1 0 0 0 1 −1 0
0 −1 0 0 0 1 0 0 0 0 0 −1 1 0 0 0 1 −1
−1 0 −1 0 1 0 1 0 0 0 0 0 −1 0 0 0 0 1



 ,

!Y = (Y1, . . . , Y18)
T .

The flow associated with this example is given in Figure 3. There
are n + 1 nodes labelled from 1 to n + 1 where node i is connected
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to node i + 1 with an edge of cost −ai and node i + 1 is connected
to node i with an edge of cost bi. For each window !pi, we have an
edge from si to si + ki with cost −li and an edge from si + ki to
si with cost ui. All nodes have a null supply and a null demand. A
flow is therefore simply a circulation i.e., an amount of flow pushed
on the cycles of the graph.

1 2 3 4 5 6
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4 u
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u
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1
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4

b
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5

Figure 3. Network flow associated to the SLIDINGSUM constraint posted
on the running example.

Theorem 4 The SLIDINGSUM constraint is satisfiable if and only
there are no negative cycles in the flow graph associated with the
dual linear program.

Proof: If there is a negative cycle in the graph, then we can push an
infinite amount of flow resulting in a cost infinitely small. Hence the
dual problem is unbounded, and the primal is unsatisfiable. Suppose
that there are no negative cycles in the graph. Pushing any amount
of flow over a cycle of positive cost results in a flow of cost greater
than zero. Such a flow is not optimal since the null flow has a smaller
objective value. Pushing any amount of flow over a null cycle does
not change the objective value. Therefore the null flow is an optimal
solution and since this solution is bounded, then the primal is satis-
fiable. Note that the objective value of the dual (zero) is in this case
equal to the objective value of the primal. "

The flow graph has O(n) nodes and O(n + m) edges. Testing
whether there is a negative cycle takes O(n2 + nm) time using the
Bellman-Ford algorithm. We can use this consistency test to con-
struct an efficient bounds consistency propagator. We find for each
variable Xi the smallest (largest) value in its domain such that as-
signing this value to Xi does not create a negative cycle. We com-
pute the shortest path between all pairs of nodes. Johnson’s algorithm
solves the all-pair shortest path problem in O(|V |2 log |V |+ |V ||E|)
time which in our case gives O(n2 log n + nm) time. Suppose
that the shortest path between i and i + 1 has length s(i, i + 1),
then for the constraint to be satisfiable, we need bi + s(i, i +
1) ≥ 0. Since bi is a value potentially taken by Xi, we need to
have Xi ≥ −s(i, i + 1). We therefore assign min(dom(Xi)) ←
max(min(dom(Xi)),−s(i, i + 1)). Similarly, let the length of the
shortest path between i + 1 and i be s(i + 1, i). For the constraint to
be satisfiable, we need s(i + 1, i) − ai ≥ 0. Since ai is a value
potentially taken by Xi, we have Xi ≤ s(i + 1, i). We assign
max(Xi) ← min(max(Xi), s(i + 1, i)). It is not hard to prove
this is sound and complete, removing all values that cause negative
cycles. Following [9], we can make the propagator incremental us-
ing the algorithm by Cotton and Maler [11] to maintain the shortest
path between |P | pairs of nodes in O(|E|+ |V | log |V |+ |P |) time
upon edge reduction. Each time a lower bound ai is increased or an

upper bound bi is decreased, the shortest paths can be recomputed in
O(m + n log n) time.

8 Soft SLIDINGSUM Constraint
The soft SLIDINGSUM constraint is an extension of
the SLIDINGSUM constraint. The soft SLIDINGSUM
([X1, . . . , Xn], [ !p1, . . . , !pm], T ) introduces a violation variable T
and is defined as follow.

T ≥
m∑

i=1

max(li −
si+ki−1∑

j=si

Xj ,
si+ki−1∑

j=si

Xj − ui, 0) (5)

To express the soft SLIDINGSUM constraint as a linear program,
we introduce penalty variables for each inequality associated to the
hard SLIDINGSUM, namely, Qi and Pi, i = 1, . . . , m and minimize
the sum of penalty variables:

min
m∑

i=1

Qi + Pi (6)

si+ki−1∑

j∈si

Xj + Qi ≥ li ∀ 1 ≤ i ≤ m (7)

si+ki−1∑

j∈si

−Xj + Pi ≥ −ui ∀ 1 ≤ i ≤ m (8)

Xi ≥ ai, −Xi ≥ −bi, Qi ≥ 0, Pi ≥ 0 (9)

Rewriting system (6)– (9) in the matrix form, we obtain primal
linear program P:

min eT Q + eT P




W Im 0
−W 0 Im

In 0 0
−In 0 0
0 Im 0
0 0 Im








X
Q
P



 ≥





l
−u
a
−b
0
0










P (10)

where In is the n × n identity matrix, l and u are the vectors con-
taining the m values li and ui, a and b are the vectors containing the
n lower and upper bounds ai and bi, and e is the vector of dimension
m with all components set to one.

The dual problem D corresponding to the primal problem P (sys-
tem (10)) is

min
[
−l u −a b 0 0

]T
Y




W T −W T In −In 0 0
Im 0 0 0 Im 0
0 Im 0 0 0 Im



 Y =




0
e
e





Y ≥ 0






D (11)

where Y is a vector of 4n + 2m dual variables.
The dual problem D can be transformed using row operations to

obtain the consecutive ones property on the columns of the matrix.
Note that W T already has the consecutive ones property. For each of
the first m columns, one needs to obtain ones between the last entry
in W T set to one and the identity matrix under W T . This is done

59



by selecting the row in the identity matrix whose corresponding col-
umn is set to one and adding this row to every row above until the
consecutive ones property is reached on this column. The principle
applies to the m following columns except that the last m equations
are negated to obtain columns with negative ones. The following 2n
columns already had the consecutive ones property and remain un-
changed during the transformation. The last 2m columns are mod-
ified but still satisfy the consecutive ones property. Using the same
technique for the SEQUENCE constraint, we obtain a system that can
be solved using a network flow algorithm.

Theorem 5 There is a one-to-one correspondence between solu-
tions of the soft SLIDINGSUM constraint and feasible flows of cost
less than or equal to the upper bound of T .
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Figure 4. Network flow associated with the soft SLIDINGSUM constraint
posted on the running example. The edge capacities are written in square
brackets [] to differentiate them from the edge costs. Bold edges show a

possible flow in the network.

Figure 8 shows the flow graph for the soft version of the running
example in Section 7. Note that the flow graphs for the hard and soft
SLIDINGSUM constraints have a very similar structure. Consider the
flow graph for the SLIDINGSUM constraint in the running example
(Figure 3). It includes arcs that correspond to original variables X
and are labeled −ai or bi, i = 1, . . . , n and arcs that correspond
to linear inequalities and are labeled −li or ui, i = 1, . . . , m. The
flow graph for the soft SLIDINGSUM constraint contains the same
arcs for variables, however, each of the inequality arcs is split into
two arcs by introducing a node with unit demand or supply7. This
leads to a difference between the two flow graphs: the flow graph
for the SLIDINGSUM constraint has zero flow circulation, while the
flow graph for the soft SLIDINGSUM constraint contains a flow of
value m. Note that the capacity of each edge connecting either the
source or the sink to other nodes is exactly 1. However, the capaci-
ties of the other edges in the flow network are not bounded. There-
fore, these edges can carry several units of flow in a feasible min-
imum cost flow, which makes a flow-based BC propagator for the
7 Note that, in contrast to the soft SEQUENCE constraint, this flow graph is

not obtained by the methodology of [20].

soft SLIDINGSUM constraint more computationally expensive com-
pared to the hard case. The flow graph for the soft SLIDINGSUM
constraint has O(n + m) nodes and O(n + m) edges. The mini-
mal cost flow can be found in O(|V | log |E|(|E| + |V | log |V |) =
O((n + m)2 log2(n + m)) time [2]. The BC filtering algorithm for
the soft SLIDINGSUM constraint works exactly the same as for the
soft SEQUENCEconstraint (Section 5), except that finding all pairs of
shortest paths is replaced with finding all pairs of minimal cost flows.
Hence, the total time complexity of the flow-based BC filtering al-
gorithm is O(n(n + m)2 log2(n + m)).

9 Cyclic SEQUENCE constraint
In rostering problems, we may wish to produce a cyclic schedule
which can be repeated, say, every four weeks. We therefore con-
sider a cyclic version of the SEQUENCE constraint. More precisely,
CYCLICSEQUENCE(l, u, k, [X1, . . . , Xn], v) ensures that between l
and u variables in Xi to X1+(i+k−1 mod n) takes values in the set v
for 1 ≤ i ≤ n.

The cyclic SEQUENCE constraint can be expressed with a lin-
ear program. Consider, for example, the primal linear system for
CYCLICSEQUENCE(l, u, 2, [X1, . . . , X3], v).




1 1 0
−1 −1 0
0 1 1
0 −1 −1
1 0 1
−1 0 −1




(

X1
X2
X3

)
≥




l
−u
l
−u
l
−u



 (12)

Unfortunately, the matrix at the left-hand side of system (12) is not
totally unimodular, because it contains a submatrix with the determi-
nant equal to 2.




1 1 0
0 1 1
1 0 1





Hence, methods employing a network flow or its dual, as in Sec-
tions 4 and 6, are not directly applicable to Cyclic SEQUENCE.

10 Experimental Results
To evaluate performance of our filtering algorithms we carried out a
series of experiments on random problems. The experimental setup
is similar to that in [9]. The first set of experiments compares per-
formance of the flow-based propagator FB on single instance of the
SEQUENCE constraint against the HPRS propagator (the third prop-
agator in [13]), the CS encoding of [9], and the AMONG decomposi-
tion AD of the SEQUENCE constraint. The second set of experiments
compares the flow-based propagator FBS for the SOFTSEQUENCE
constraint and its decomposition into soft AMONG constraints. Ex-
periments were run with ILOG 6.1 on an Intel Xeon 4 CPU, 2.0 Ghz,
4G RAM. Boost graph library version 1.34.1 was used to implement
the flow-based algorithms.

10.1 The SEQUENCE constraint
For each possible combination of n ∈
{500, 1000, 2000, 3000, 4000, 5000}, k ∈ {5, 15, 50},
∆ = u − l ∈ {1, 5}, we generated twenty instances with
random lower bounds in the interval (0, k − ∆). We used random
value and variable ordering and a time out of 300 sec. We used
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the Ford-Fulkerson algorithm to find a maximum flow. Results for
different values of ∆ are presented in Tables 1- 2 and Figure 5. First
of all, we notice that the CS encoding is the best on hard instances
(∆ = 1) and the AD decomposition is the fastest on easy instances
(∆ = 5). This result was first observed in [9]. The FB propagator
is not the fastest one but has the most robust performance. It is
sensitive only to the value of n and not to other parameters, like the
length of the window(k) or hardness of the problem(∆). As can be
seen from Figure 5, the FB propagator scales better than the other
propagators with the size of the problem. It appears to grow linearly
with the number of variables, while the HPRS propagator displays
quadratic growth.

n k AD CS HPRS FB
500 7 8 / 2.13 20 / 0.13 20 / 0.35 20 / 0.30

15 6 / 0.01 20 / 0.09 20 / 0.30 20 / 0.29
50 2 / 0.02 20 / 0.07 20 / 0.26 20 / 0.28

1000 7 4 / 0.01 20 / 0.71 20 / 2.36 20 / 1.18
15 2 / 0.59 20 / 0.38 20 / 2.06 20 / 1.17
50 1 /0 20 / 0.28 20 / 1.48 20 / 1.14

2000 7 4 / 0.04 20 / 4.25 20 / 18.52 20 / 4.76
15 0 /0 20 / 1.84 20 / 15.19 20 / 4.56
50 1 /0 20 / 1.16 20 / 13.24 20 / 4.42

3000 7 3 / 0.07 20 / 15.14 20 / 64.04 20 / 10.44
15 1 /0 20 / 5.49 20 / 51.04 20 / 11.90
50 0 /0 20 / 2.61 20 / 35.48 20 / 10.12

4000 7 3 / 0.12 20 / 30.87 20 / 132.73 20 / 23.25
15 0 /0 20 / 14.44 20 / 123.60 20 / 18.61
50 1 /0 20 / 4.78 20 / 93.98 20 / 18.97

5000 7 1 /0 20 / 64.05 15 / 262.17 20 / 36.09
15 0 /0 20 / 24.46 17 / 211.17 20 / 34.59
50 0 /0 20 / 8.24 19 / 146.63 20 / 31.66

TOTALS
solved/total 37 /360 360 /360 351 /360 360 /360

avg tm for solved 0.517 9.943 60.973 11.874
avg bt for solved 17761 429 0 0

Table 1. Randomly generated instances with a single SEQUENCE
constraint and ∆ = 1. Number of instances solved in 300 sec / average time

to solve.

n k AD CS HPRS FB
500 7 20 / 0.01 20 / 0.58 20 / 0.15 20 / 0.44

15 20 / 0.01 20 / 0.69 20 / 0.25 20 / 0.44
50 18 / 0.02 20 / 0.20 20 / 0.37 20 / 0.42

1000 7 20 / 0.03 20 / 4.33 20 / 0.99 20 / 1.70
15 20 / 0.03 20 / 4.68 20 / 1.83 20 / 1.70
50 10 / 0.05 20 / 1.24 20 / 2.73 20 / 1.69

2000 7 20 / 0.07 20 / 32.41 20 / 7.19 20 / 6.62
15 20 / 0.07 20 / 39.71 20 / 14.89 20 / 6.63
50 5 / 5.19 20 / 9.52 20 / 13.71 20 / 6.94

3000 7 20 / 0.14 20 / 104.68 20 / 23.85 20 / 14.96
15 20 / 0.16 20 / 125.11 20 / 44.67 20 / 15.21
50 5 / 0.29 20 / 22.73 20 / 66.61 20 / 14.61

4000 7 20 / 0.25 17 / 251.56 20 / 55.70 20 / 29.34
15 20 / 0.22 5 / 179.41 20 / 112.99 20 / 26.99
50 9 / 0.34 20 / 50.52 17 / 141.25 20 / 26.67

5000 7 20 / 0.36 0 /0 20 / 109.18 20 / 46.42
15 20 / 0.36 6 / 160.99 17 / 215.97 20 / 45.97
50 9 / 0.48 20 / 108.34 11 / 210.53 20 / 44.88

TOTALS
solved/total 296 /360 308 /360 345 /360 360 /360

avg tm for solved 0.236 52.708 50.698 16.200
avg bt for solved 888 1053 0 0

Table 2. Randomly generated instances with a single SEQUENCE
constraint and ∆ = 5. Number of instances solved in 300 sec / average time

to solve.

∆ = 1 ∆ = 5
n k ADS FBS ADS FBS

50 7 6 / 19.30 7 / 27.91 20 / 0.01 20 / 2.17
15 8 / 36.07 13 / 20.41 11 / 49.49 10 / 30.51
25 6 / 0.73 10 / 23.27 10 / 6.40 10 / 7.41

100 7 1 /0 3 / 7.56 19 / 10.50 18 / 16.51
15 0 /0 5 / 6.90 3 / 0.01 3 / 7.20
25 0 /0 5 / 4.96 5 / 19.07 5 / 23.99

TOTALS
solved/total 21 /120 43 /120 68 /120 66 /120

avg tm for solved 19.463 18.034 13.286 13.051
avg bt for solved 245245 343 147434 128

Table 3. Randomly generated instances with 4 soft SEQUENCEs. Number
of instances solved in 300 sec / average time to solve.

10.2 The Soft SEQUENCE constraint

We evaluated performance of the soft SEQUENCE constraint on ran-
dom problems. For each possible combination of n ∈ {50, 100},
k ∈ {5, 15, 25}, ∆ = {1, 5} and m ∈ {4} (where m is the number
of SEQUENCE constraints), we generated twenty random instances.
All variables had domains of size 5. An instance was obtained by se-
lecting random lower bounds in the interval (0, k−∆). We excluded
instances where

∑m
i=1 li ≥ k to avoid unsatisfiable instances. We

used a random variable and value ordering, and a time-out of 300
sec. All SEQUENCE constraints were enforced on disjoint sets of car-
dinality one. Instances with this set of parameters are hard instances
for SEQUENCE propagators [9]. To relax these instances, we allow to
violate the SEQUENCE constraint with a cost that has to be less than
or equal to 15% of the length of the sequence. Experimental results
are presented in Table 3. As can be seen from the table, the FBS

algorithms is competitive with the decomposition into soft AMONG
constraints on easy problems and outperforms the decomposition on
hard problems.

We observed that the FBS propagator is very slow for the soft
SEQUENCE constraint. Note that the number of backtracks of FBS

is three order of magnitude smaller compared to ADS . We profiled
the algorithm and found that it spends most of the time performing
the all pairs shortest path algorithm. Unfortunately, this is difficult
to compute incrementally because the residual graph can be different
on every invocation of the propagator.

11 Conclusion

We have proposed new filtering algorithms for the SEQUENCE con-
straint and several extensions including the soft SEQUENCE and gen-
eralized SEQUENCE constraints which are based on network flows.
Our propagator for the SEQUENCE constraint enforces domain con-
sistency in O(n2) time down a branch of the search tree. This im-
proves upon the best existing domain consistency algorithm by a fac-
tor of O(log n). We also introduced a soft version of the SEQUENCE
constraint and propose an O(n2 log n log log u) time domain consis-
tency algorithm based on minimum cost network flows. These algo-
rithms are derived from linear programs which represent a network
flow. They differ from the flows used to propagate global constraints
like GCC since the domains of the variables are encoded as costs on
the edges rather than capacities. Such flows are efficient for main-
taining bounds consistency over large domains. Experimental results
demonstrate that the FB filtering algorithm is more robust than exist-
ing propagators. We conjecture that similar flow based propagators
derived from linear programs may be useful for other global arith-
metic constraints.
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Figure 5. Randomly generated instances with a single SEQUENCE constraints for different combinations of ∆ and k.
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