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1 Introduction

We consider a set of variables X = {z1,...,z,} and a set of values D. Each
variable z; is associated to a domain dom(z;) C D and each value v € D is
associated to a cardinality set K (v). An assignment satisfies the extended global
cardinality constraint (extended-GCC) if each variable z; is instantiated to a
value in its domain dom(z;) and if each value v € D is assigned to k variables
for some k € K(v). Extended-GCC differs from normal GCC by its sets of
cardinality K (v) that can be any set of values. In normal GCC, as introduced
by Régin [2], these cardinality sets are restricted to intervals.

Enforcing domain consistency consists in verifying for each value v in a vari-
able domain dom(z;) if there is an assignment satisfying the extended-GCC such
that z; = v. This is equivalent to determining if the extended-GCC is satisfiable
when the domain of the variable is bounded to a single value, i.e. dom(z;) = {v}.
We show that determining if the extended-GCC is satisfiable is NP-complete by
reduction to the SAT problem and therefore enforcing domain consistency on
the extended-GCC is NP-hard.

2 Extended-GCC as a Matching in a Graph

As demonstrated by Régin [1], an extended-GCC instance can be represented by
a bipartite graph G = (LU R, E). Let the left-nodes of the bipartite graph be
L = X the variables of the problem. Let the right-nodes of the bipartite graph
be R = D the values of the problem. There is an edge (z;,v) € E if and only if
v € dom(x;).

A generalized matching [4] M is a subset of E such that all variables z; € L
is adjacent to one edge in M and each node v € R is adjacent to k edges in M
for some k € K (v).

A generalized matching M represents a solution of the extended-GCC. There
is obviously a matching M if and only if the extended-GCC is satisfiable. In the
next section, we show that determining if a generalized matching exists is NP-
complete.



3 Reduction to the SAT problem

Consider a 3-SAT problem defined by a list of variables X = {X7,...X,}, a list
of literals £ = {z;,~x; | X; € X} and a list of clauses C' = {C},...C)y,} where
C; C L are the set of literals of the clause. We want to assign the value true or
false to the literals in £ such that all clauses have at least one literal assigned
to true.

From a SAT problem, we construct the bipartite graph G = (LU R, E) as
follows. For each literal [; in a clause C;, we create one left-node S(Cj,l;) € L
and one right-node d(Cj, ;) € R. For each clause C; we create a left-node C; € L
and for each variable X; we create another left-node X; € L. Finally, we add to
the graph a right-node I; € R for each literal ;.

We connect the left-nodes in L to the right-nodes in R as follows. We start
with an empty set of edges E = (). For each clause C; and each literal I; € Cj,
we add the edges (C;,d(Cy,15)), (S(Ci,1;),d(Cs, 1)) and (S(Ci,15),1;). For each
variable z; € X we add the edges (X;,z;) and (X;, —x;). Finally, we set the
cardinality of each right-node in L as follows: K (d(C;,1;)) = {0,1} and K(I;) =
{0, k; + 1} where k; is equal to the number of clauses containing the literal /; or
more formally k; = |{C; € C | l; € C;}|. Figure 1 shows the part of graph G
that is related to variable X;.

The intuition of the reduction is simple. A generalized matching in G corre-
sponds to a solution to the SAT problem. If (X;,z;) € M then x; = true and if
(X;,—x;) € M then z; = false. All clause nodes C; must be matched to another
node. They can only be matched with an edge (Cj,d(C,1;)) if I; = true.

Lemma 1. Let l; € {xz;,—x;}, the edge (X;,1;) belongs to M if and only if
S(Cj,l;) € M for all C;.

Proof. The nodes S(C},l;) € E and the node X; are the only nodes connected
to node [;. Since we have K(l;) = {0,k; + 1} and k; + 1 is equal to the number
of nodes connected to [;, either all edges adjacent to [; belong to M or no
edges adjacent to [; belong to M. Therefore for all nodes S(Cj,l;) we have
(X)) e M = S(Cj,li)EM. O

Lemma 2. Letl; € {z;,~x;}. If the edge (C;,d(C;,1;)) belongs to a generalized
matching then (X;,1;) also belongs to this generalized matching.

Proof. Suppose the edge (C;,d(C;,1;)) belongs to the generalized matching M.
Since the cardinality of node d(Cj,l;) is {0,1} and edge (Cj,d(C;,15)) is adja-
cent to this node, no more edges in M can be adjacent to node (Cj,d(Cj,15)).
Therefore the edge S(Cj,1;) has no other choice to be matched with node ;. By
Lemma 1 we obtain that (X;,l;) belongs to M. O
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Fig. 1. Part of graph G related to variable X;.



Lemma 3. SAT is satisfiable if and only if there exists a generalized matching
M in graph G.

Proof. (=) Suppose SAT is satisfiable, we construct a matching by pointing
each node C; to a node d(C},l;) such that literal /; is true in the SAT solution.
Other left-nodes in L are matched according to Lemma 2 and Lemma 1.

(«) Consider a generalized matching M. For all variables X; € X, we have
either the edge (X, z;) or (X;, —x;) in M. We say that literal [; is true if the edge
(Xi,1;) belongs to M and false if the edge does not belong to M. For all clause
Cj, we have an edge (C;,d(Cj,1;)) in M for some l; € {z;, ~x;}. This implies by
Lemma 2 that [; is true and therefore clause C; is satisfied. Therefore all clauses
are satisfied by the variable assignments given by the edges (X;,1;) O

4 Conclusion

Lemma 3 shows that determining the satisfiability of extended-GCC is NP-
complete and therefore enforcing domain consistency on the extended-GCC is
NP-hard.
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