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Abstract — Mixed-Initiative-Systems (MIS) are hybrid decision-making systems in which human and machine collaborate in order to 
produce a solution. This paper described an MIS adapted to business optimization problems. These problems can usually be solved in less 
than an hour as they show a linear structure. However, this delay is unacceptable for iterative and interactive decision-making contexts 
where users need to provide their input. Therefore, we propose a system providing the decision-makers with a convex hull of optimal 
solutions that minimize/maximize the variables of interest. The users can interactively modify the value of a variable and the system is able 
to recompute a new optimal solution in a few milliseconds. Four real-time reoptimization methods are described and evaluated. We also 
propose an improvement to this basic scheme in order to allow a user to explore near-optimal solutions as well. Examples showing real case 
of how we have exploited this framework within interactive decision support software are given. 

Keywords — Linear optimization; Mixed-initiative systems; Supply chain optimization; Human-machine interaction; Tactical planning. 

1. Introduction 
Most decision-making systems (e.g. planning or scheduling systems) found in enterprises lie on one of the following 

paradigms. The first one is fully automated systems. It is typically the case when an algorithm is used to find an optimal 
solution to the decision problem. In other cases, the planning is done by a human expert, sometimes with the help of a visual 
interface allowing him to get real time feedback regarding his decisions and choices. Surprisingly, quite a few optimization 
problems are planned manually as such. Indeed, automated planning tools are lacking of a political sensitivity or, more 
generally, do not take into consideration many important soft constraints that are often quite difficult to model (constraints that 
even human does not realize they exists before he sees a solution violating them).  

Mixed-Initiative- Systems (MIS) [1, 2] are hybrid decision-making systems in which human and machines collaborate in 
order to produce a solution. Most MIS-related research is done by the A.I. community and applies to discrete combinatorial 
optimization problems. The goal of our research is to propose MIS methods adapted to business optimization problems 
showing a linear structure, like mid-term/long-term production planning problems. Our approach may be suitable to many kind 
of industry as it is more problem oriented than industry oriented. It is particularly well suited for problems where human are 
involved in making a final decision (fine-tuning of the solution by a human is required, or human want to perform what-if 
analysis). In both situation real-time support by the system (instead of hour-long reoptimization) is needed. 

 

Preliminary notions regarding MIS and supply chain optimization are provided in Section 2. The proposed Mixed-Initiative 
system for linear optimization is described and evaluated for a real-size industrial supply chain problem in Section 3. Section 4 
introduces optimality tolerance for an improved flexibility in exploring solutions. Finally, Section 5 shows how we have 
exploited this framework within decision support software and presents recent industrial applications. Section 6 concludes the 
paper. 

2. Preliminary Notions  

2.1. Mixed-Initiative Systems (MIS) 

The motivation behind MIS is that human and machines show different strength [3]. Human has an implicit knowledge of 
the problem that cannot always be formalized. Human guidance can improve the performance of search algorithms [4]. 
Moreover, the decision-maker is often unaware of a constraint or an issue till he sees it in the solution proposed by the machine. 
In this context, involving the human in the search for the solution has some values.  

The idea of involving human in model optimization can be traced back to as early as 1971 with the work of Benayoun et al. 
[5] in the context of multiobjective optimization. As mentioned by some authors [6, 7], it is now well accepted that man-
machine interaction can be valuable in solving complex optimization problems. Depending on the context, MIS provide 
different benefits. In some situations, the solution is produced using less computation time because the user can guide the 
search according to his intuition [4]. This is because humans generally outperform computers in visual perception and strategic 



thinking. In other contexts, the main interest is for the final solution to get a better acceptance level by decision-makers because 
it is more in line with informal objectives of the company/decision maker. It is also easier for decision makers to justify and 
improve solutions in which they participate, and they can implement their preferences and knowledge of the real world without 
complex and sometimes near-impossible mathematical modeling. Although in theory it is possible to increase user confidence 
in a solution through the use of explanation functions, building such functions is a difficult task for the designer of a decision-
support system [8]. 

Meignan et al. [6] present an extensive review and a classification of interactive optimization methods in operations 
research. Their review allowed them to enumerate five classes of interactive optimization approaches. The authors explain that 
interactive reoptimization aims at adjusting the global solution when local changes are made by the user to a given solution. As 
all constraints are still enforced, local changes are propagated to the global solution through reoptimization [9]. Some 
interactive reoptimization methods are reported in [10]. In these cases, a reoptimization procedure is applied after a 
modification of the solution by the decision maker. This is done by freezing into the problem the modifications made by the 
user before optimizing again. This type of approach is not suitable when the optimization itself takes a long time. Moreover, 
adding constraints time and time again while interactively finding a satisfying solution can remove a lot of liberty for the solver 
to find solutions with good objective value. On the other hand, only fixing the last modifications made cannot ensure all 
previous changes made will be respected. Among examples, Williams et al. [11] are using game-based experiments to assess 
the potential of “human in the loop” optimization in the context of debris collection problems. In their approach, the user can 
adjust the multiple objectives themselves and tools are available to create a solution and give instant feedback on the solution 
they are building. 

Most MIS- related researches target discrete combinatorial optimization problems such as timetabling [12], space mission 
planning and scheduling [13, 14, 15], air traffic control [16], military applications [17, 18] etc. Different application domains 
present unique challenges. One concern is the diversity of the planning and scheduling constraints that appears in many 
domains. Smith et al. [19] have developed a computerized framework which allows building mixed initiative systems tailored 
to specific domain requirements. Their system was primarily used in the planning and scheduling of force deployment. Mixed-
Initiative Systems have not yet made their way into business management systems such as those used for Supply Chain 
Management (SCM). We believe the main reasons are that (1) most of these situations can be modeled as linear optimization 
problems for which good algorithms exists, and (2) methods developed for classical A.I. planning could not easily be applied to 
those kind of problems.  

2.2. Supply chain optimization  

The goal of our research is to propose MIS methods adapted to business problems showing a linear structure model, such as 
supply chain optimization problems. Supply chains are formed by a set of business units that collaborate to produce goods.  
Tactical supply-chain planning consists of computing the amount of products to produced, consumed, stored or transported for 
each period of a given time frame with a precise objective to optimize. Common objectives are costs minimization or profit 
maximization [20, 21]. Tactical supply-chain planning is a very important concern in the forest-products industry [22]. A single 
business unit produces many products at the same time from a single piece of raw material. This leads to an important 
interdependency between business units (e.g. forest operations supply many different types of industries at the same time, a 
sawmill supplies lumber to remanufacturing plants as well as chips to paper mills, etc.). Many mathematical models have been 
proposed [23, 24] but most of the time they do not exploit decision makers’ intuition and preferences.  

These problems are typically solved using commercially available software like IBM ILOG CPLEX. They can solve 
problems having several hundreds of thousands variables in a few minutes, thanks to well-known algorithms like Dantzig’s 
simplex method [25]. 

One shortcoming of these solvers is that they usually return one and only one solution for a given problem (defined as a set 
of variables, constraints and an objective function) – although thousand of alternative optimal solutions may exist. Most of the 
time, the returned solution is inadequate as the problem specification does not take into account the contextual and political 
information known only to the decision maker [4]. It is indeed very difficult in a mathematical model to consider all the 
preferences of the user. Moreover, the decision maker does not know exactly all the constraints; he “discovers” some when he 
sees solutions violating them. 

Although the solution produced by the solver often contains hundreds of thousands of variables, in practice the decision-
maker analyzes the solution by consulting only a few charts, each one containing a few dozens of variables (e.g. 52 variables 
matching the 52 weeks in the year). An example of this type of chart is provided in Figure 1. 



 
Figure 1. Example of a chart used by decision-makers to analyze the solution of a supply chain optimization problem. This chart could be for example the 

quantity of a product family to be delivered in a given market over the next 12 months. 

When the solution does not satisfy the requirements of the decision maker (e.g. he does not like the value for a specific 
variable), the mathematical model has to be modified and reoptimized so that a new solution can be found (Figure 2). 
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Figure 2. Typical process of finding a suitable solution 

Not only is this process very long (solving an integrated supply chain planning problem may easily take up to 60 minutes), 
this is also a frustrating iterative process because when the decision-maker is not satisfied by a variable’s value, he never knows 
if the variable is really constrained to that specific value in order for the solution to be optimal, or if exists other optimal 
solutions with other values for that variable. He does not have the choice but to run new optimizations. 

3. Proposed Mixed-Initiative Framework for Linear Optimization Problems 
A good Mixed-Initiative System for linear optimization would provides the user with information regarding whether or not 

the variables of interest are constrained to a certain value in order for the solution to be optimal. It also allows the user to 
interactively modify the value of a variable and see, in real-time, how the other variables should be modified in response to that 
modification. 

The system we propose allows the user to visualize an implicit sub-space of optimal solutions for a given set of variables. 
The user can interactively increase or decrease the value of a variable and the system reacts by computing and displaying, in 
real time, the new sub-space of optimal solutions (Figure 3). 
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Figure 3. MIS concept applied to linear programming 

The variables of interest may vary from decision maker to decision maker. This must be determined with the user for which 
the decision support system is setup. These variables are typically aggregation variables (ex: quarterly sales by market; 
production line usage per month). Good representation of these variables (in Excel charts for example) must be set such that it 
is manageable from a human point of view. 



3.1. Obtaining and displaying a sub-space of optimal solutions  

To palliate the fact that classical solvers return a single solution, we proceed as follows. We use a classical solver to 
compute an optimal solution for the problem P. Once the optimal objective value is known, we search for other optimal 
solutions. We create a new instance P’ by augmenting the instance P with a constraint forcing the objective value to be equal to 
the optimal value found for P. The space of feasible solutions of P’ is therefore equivalent to the space of optimal solutions of 

P. For each of the n variables xi displayed on the graph, we search for a solution is  that minimizes xi and a solution is  that 

maximizes xi while preserving the optimality of the solutions. These 2n computations can be performed in parallel using a 
supercomputer1 

Then, one can display on the chart (see Figure 4) the range of optimality for each variable xi (the minimum and maximum 
values the variable can take in an optimal solution).  

 
Figure 4. An optimal solution with range of optimality for the variables. 

Moreover, it is possible to construct an “average” solution to be displayed to the user by summing the 2n solution vectors 
and dividing the result by the scalar 2n. The validity of this process relies on the concept of convexity that we present bellow. 

A n-dimensional vector represents the values assigned to n variables, and therefore a solution to a problem. A vector also 
represents a point in an n-dimensional space. Let x and y be two n-dimensional vectors. A linear combination is the weighted 
sum of two or more vectors, e.g. x yα β+ . A linear combination is affine if the sum of the weights equals one, e.g.  

( )1x yα α+ − . Any point on the line passing by the points x and y is an affine combination of x and y. A linear combination is 

convex if it is affine and if each weight is non-negative, e.g. ( )1x yα α+ −  for [ ]0,1α ∈ . The points that can be obtained by a 
convex combination of x and y are those on the segment connecting x to y. A space S is convex if any convex combination of 
two points in S is also in S. 

Theorem 1 is a well-known result in the linear programming literature (e.g. [26]). It shows how an optimal solution to a 
linear program can be obtained from the convex combination of distinct optimal solutions. We reproduce the proof of the 
theorem as it shows the properties we will exploit in our system. 

Theorem 1 : The convex combination of two optimal solutions of a linear program is also an optimal solution. 

The space { }, 0S x Ax b x= ≤ ≥ contains the feasible solutions of a linear program. Let x S∈ and y S∈ be two solutions. 

We show that any convex combination of x and y belongs to S. 

A(αx + (1 - α) y) = αAx + (1 - α) Ay 

 ≤ αb + (1 - α) b since α ∈ [0, 1] 

 = b 

Suppose that x and y are two optimal solutions to the linear program, i.e. x maximizes the scalar product Tc x and so does y. 
Let  T T*c c x c y= =  be the optimal cost. We show that any convex combination of x and y is also an optimal solution. £ 

The convex hull of a set of points { }1, , nX x x=
r rK  is the space containing all convex combinations of the points in X. 

Formally, we note 

                                                             
1 If parallel computing is not available, a single computer can run overnight prior to using the interactive tool. 
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From Theorem 1, if the points 1, , nx xr rK  are optimal feasible solutions to a linear program, then all points in 

( )1conv , , nx xr rK  are optimal feasible solutions. 

In our system, the convex hull of the solutions is and is  that minimize and maximize each of n variables form a subspace 

of optimal solutions.  

3.2. Real-time convex combination of optimal solutions  

A chart like the one depicted in Figure 4 allows the user to see the flexibility (range of optimality) he has for any of the variable 
of interest. He can thus change the value of a variable within the optimality range of that variable, for example by dragging up 
or down the top of a bar in the chart. The system should then adjust the value taken by the other variables such that the solution 
is still optimal. Normally, this operation would require a lengthy complete re-optimization of the problem. Based on Theorem 
1, it is possible to compute a new optimal solution by generating new convex combination of the optimal solutions obtained 
from the previous section. To find a solution with a given variable assigned to a specific value, it is sufficient to compute a new 
convex combination of extreme solutions. If this could be done in real-time, we could instantly refresh the chart and display the 
impact of the user modification on the other variables. The user could thus navigate through the solutions space, successively 
modifying several variables until a suitable solution is found. 

Figure 5 illustrate this idea for a small problem with two variables. The polygon shows the set of convex combination 
formed by optimal solutions minimizing and optimizing each of the variables2.  

 
Figure 5. Available optimal zone using convex combinations. 

When the user modifies a variable, we do not just want to find any point in the sub-space such that the modified variable 
takes the desired value; we want to find a solution such that the other variables move as little as possible so that the overall 
system appears to be stable. If it would not be the case, then any modification made to a variable could offset the previous 
modifications made to the other variables and it would never be possible for the user to converge to a satisfactory solution.  

Given a solution x, a variable xi, and a value v, finding a new solution xʹ  where i ix v xʹ = ≠  while changing as little as 
possible the values of the other variables is an optimization problem.  

We propose four approaches to solve this optimization problem. Each of them is a trade-off between responsiveness and 
stability.  

Definition 1: Responsiveness refers to the computation time needed to obtain a new solution each time the decision-maker 
modifies a variable. It determines the time before the software can display the new optimized solution. 

Definition 2: Stability is the property of computing a new solution that is as close as possible from the current solution.  

While responsiveness guarantees that the software reacts in real-time to the changes of the decision maker, stability ensures 
that the software does not move the solution away from the choices that the decision maker previously made.  

Responsiveness is measured in milliseconds. Stability is given by the Euclidean distance between the original solution x and 
the modified solution x’. 

                                                             
2 This example (Figure 5) also shows that there could be optimal solutions not covered by this sub-space. This is why we say that the user navigate in a space 
(formed by convex combination of our extreme solutions) that is in reality a sub-space of the optimal solutions. 



Since responsiveness is an important criterion, we exclude the method of resolving the original problem from scratch. We 
restrict ourselves to find a solution in the convex hull of the 2n precomputed solutions 1 1, , , ,n ns s s sK , a much smaller problem 
then the original one. Here are the proposed methods. 

1. Minimizing the Euclidean distance. This method aims at finding in the convex hull ( )1 1conv , , , ,n ns s s sK  the solution 
whose Euclidean distance is the closest to x. Let S  be the 2n n×  matrix whose columns are the solutions 1 1, , , ,n ns s s sK . The 
solution we are looking for is a convex combination of these solutions. We are therefore looking for a vector  such that 

x Sαʹ = , 
2

1
1

n
ii

α
=

=∑ , and 0iα ≥ . Moreover, we want ixʹ  to be equal to v. We obtain the following quadratic problem where 

ie is the vector with null components except for the thi  one that is equal to one, 1
r

is the vector with all components equal to 
one, and 0

r
is the null vector: 

 min || x - Sα ||2 

 s.t. e!!Sα =    v 

  1Tα =    1 

  α ≥    0 

The squared Euclidean distance 2x Sα−  can be rewritten as T T T T2S S x S x xα α α− + . The problem is a semidefinite 
program. The objective function is quadratic and convex and the constraints are linear. Solvers like CPLEX can solve this 
problem using an interior point algorithm. 

2. Minimizing the maximum distance. Even though semidefinite problems can be efficiently solved, they are more 
computationally demanding than linear programs. We propose another approach that is likely to be faster. Rather than 
minimizing the Euclidean distance between the new and the former solution, we minimize the maximum distance between 
two variables, i.e. we minimize max j j jg x xʹ= − . The linear program we present is inspired from the previous one. Once 
more, we compute the vector α that expresses x’ in terms of a convex combination of the 2n solutions stored in the columns 
of S ( x Sαʹ = ). The two first constraints of this linear program force the variable g to be at least as large as j jx xʹ − . The 
unknown of this problem are the vector α  and the gap variable g. 

 min  g 

 s.t. Sα - 1g ≤ x 

  -Sα - 1g ≤ -x 
  e!!Sα = v 

  1Tα =    1 

  α ≥    0 

This problem can be solved using the simplex method, which is usually faster than the interior point method used for 
semidefinite problems of the previous approach. The obvious drawback is that the objective function is not completely in line 
with our stability metric. Even if we minimize the distance between the two variables that are the furthest apart, we do not 
minimize the distance between the other variables. A solution x’ where all variables are changed by the same amount would be 
equivalent to a solution where only the variable xi is modified.  

3. A bipolar heuristic. We introduce a third method that focuses on responsiveness. The bipolar heuristic is a very fast 
way to compute a new solution. Given that the decision maker wants to set the variable xi to the value v, we compute the 
unique convex combination  𝑥! =  𝛼𝑠! + (1 −  𝛼)𝑠!  such that 𝑥′! = 𝑣. To do so, we set 𝛼  𝑠!!  −  𝑣 /( 𝑠!!  −  𝑠!!) where 𝑠!! 
and 𝑠!! are the values of xi in the precomputed solutions that minimize and maximize xi. The geometric interpretation of this 
method is that we choose x’ to be the intersection of the segment connecting  𝑠! to 𝑠! and the plane 𝑥′! = 𝑣. 

This solution is by far the most responsive one, as it does not involve any solver. However, it does not take into account the 
stability metric. Indeed, a small change on the variable 𝑥! can produce big changes on the other variables of the solution. For 
example, consider an example in the plane where we have [ ]1 1,0s = − , [ ]1 1,0s = , [ ]2 0, 1s = − , and [ ]2 0,1s =  (see Figure 6). 

Let the current solution be [ ]0.5, 0x = . A small move of variable x2 from 0 to ε causes the solution to change for [ ]0,x εʹ =  

even though the solution [ ]0.5,x εʹ =  is a better choice. 

↵



 
Figure 6.  Illustrating the bipolar method stability drawback. 

4. The triangular heuristic. To palliate to the non-stability of the previous approach, we propose the triangular heuristic. 
First, this method determines whether the variable xi is increased (v > xi) or decreased (v < xi). If the variable is increased, we 
compute the unique convex combination between the current solution x and 𝑠! that intersects the plane 𝑥! = 𝑣. If the variable 
is decreased, we compute the unique convex combination between the current solution x and 𝑠!  that intersects the plane 𝑥! =
𝑣. In other words, if the decision-maker increases xi, we set 

𝑥! = 𝛼𝑥 + 1 −  𝛼 𝑠! 
where 

𝛼 =  
𝑠!!  −  𝑣
𝑠!!  −  𝑥!

 

If the decision maker decreases the variable xi, we set 

𝑥! = 𝛼𝑥 + 1 −  𝛼 𝑠! 
where 

𝛼 =  
𝑠!!  −  𝑣
𝑠!!  −  𝑥!

 

Going back to the example of Figure 6 where x = [0.5, 0]. Increasing x2 by ε  sets the new solution to [ ]0.5 / 2,x ε εʹ = − . 
This is significantly more stable that the bipolar heuristic. 

There is a second difference between the bipolar heuristic and the triangular heuristic. The bipolar heuristic can only 
produce a solution that lies on a segment connecting a solution 𝑠! to a solution 𝑠! for a given j. The triangular heuristic can 

produce any solution in the convex hull ( )1 1conv , , , ,n ns s s sK . Indeed, there exists a sequence of movements that the decision 
maker can make in order to reach any solution in the convex space. 

Property 1: A sequence of movements made with the triangular heuristic from a solution x can reach any solution in the 
convex hull ( )1 1conv , , , ,n ns s s sK . 

Proof. Let x’ be the final solution in ( )1 1conv , , , ,n ns s s sK . Let S be the matrix whose columns are the extreme points of the 

convex hull. There exists a non-negative vector α whose components sum to one and that satisfies x’ = Sα. We prove by 
induction on the number of non-null components in α that any x’ is reachable from a sequence of triangular movements. 

Suppose that there exists a single non-null component in α. This component is equal to one and we have x’= 𝑠!  or x’= 𝑠! 
for some j. Increasing the value of xj in the current solution to its maximum or minimum makes the triangular heuristic fix the 
new solution to x’. 

Suppose that one can reach any solution x = Sα with k > 0 non-null components in α, we prove that one can also reach any 
solution x’ = Sα with k + 1 non-null components in β. Let x’ = Sβ  be a solution with k + 1 non-null components in β. Let j be 
the index of any non-null component in β. We construct the vector α as follows. 

𝑎! =  
0 if 𝑖 =  𝑗
𝛽!

1 − 𝛽!
if 𝑖 ≠ 𝑗  



The solution x = Sα is reachable since it has only k non-null components. Moreover, let 𝑠 ∈ 𝑠! ,  𝑠!  be the solution 
associated to the component βj. It is possible to move from the solution x to x’ using the triangular heuristic since this relation 
holds. 

𝑥! = 1 −  𝛽! 𝑥 +  𝛽!𝑠 = 𝑆𝛽 

This is the relation computed when the decision maker changes the value of 𝑥! to 𝑥′!. £ 

Property 1 ensures that any solution in the convex hull can be reached. 

 
Figure 7.  Illustrating the triangular method. 

3.3. Evaluation of the proposed approaches 

The industrial partner for the following case study was looking to put in place an efficient process for integrated sales and 
operation planning (S&OP). As part of this process is the use of a large scale linear programming model with over 200,000 
variables and 100,000 constraints introduced in [21]. This model generates a unified tactical plan for the production and 
distribution network. This plan is divided in fifty two weekly periods and integrates decisions pertaining to production, 
distribution and sales. 

3.3.1. Industrial case 

Production. Lumber production from sawmills involves three main processes: sawing, drying and planing. The sawing 
process is divergent as a single product entering the production line gets transformed into several different products. Different 
production recipe can be chosen in order to influence the products’ basket that gets produced. Lumber drying is done by batch 
in large kilns and the process can lasts from 2 to 5 days depending on several factors like the species, lumber dimension and 
original moisture content. Kiln drying may be preceded by an air drying operation that can lasts from 2 to 18 weeks. Finally, 
the planing is the process that gives the lumber its finish and exact dimension. Because of the wood characteristics and defects, 
not two lumber units entering the planing process are exactly identical. It is therefore impossible to precisely predict the final 
products exiting the planing process given a set of input products. Historical production planing data are used to estimate the 
production of a given input product. Tactical production planning helps determining, for each sawmill in the network and for 
each week, the sawing recipe to use, the volume of each sawed product to air dry, the volume of each product to kiln dry and 
the volume of each product to plane along with the planing recipe to use. 

Sales. In the North American forest products industry, lumber market prices follow a seasonal pattern. The tactical planning 
model takes this into account and may suggest producing in advance some quantities of a given product that will be sold at a 
later time during the year when the market price is more profitable. It also considers the limited volume that can be sold in 
given markets per product per period. The user running the model can also constrains the percentage of the production that goes 
to service each market.  

Distribution. The company runs three sawmills in the province of Quebec in Canada and makes use of two distribution 
centers in the eastern United States and one in Quebec. It is not always required for the lumber products to go through a 
distribution centre to reach a market, but it is sometimes more economical. Transportation can also occur between mills as in 
the company’ network, not all sawmills have planing capability. From a sawmill with no planing capability, the dry lumber can 
either be moved to another sawmill with planing capability or it can be transported to a distribution centre or be sent directly to 
a customer. The model help determine where to send the lumber along with the transportation mode to use which can be either 
by trucks or by rail. 

Planning the overall network of sawmills taking into consideration market requirement, price fluctuation, production 
capacity and transportation alternatives and costs is not an easy task. To solve to optimality this complete problem can take up 
to 45 minutes using CPLEX, one of the leading software to solve linear programming models. 



3.3.2. Experiments 

The main purpose of these experiments was to evaluate the behavior of the system in terms of stability and responsiveness 
metrics (as defined in Section 3.2) for the proposed approaches.  

We first generated an optimal solution for the industrial case introduced previously. Then, we simulated the situation where 
the decision-maker visualizes various charts with different number of variables on them (1, 10, 20, 30, 40, and 52 variables). 
For each variable we computed its range of optimality. We then simulated the situation where the decision-maker asks for 
modification of some variable values. We tested the behavior of the system for small modifications (the variable is increased or 
decreased by a gap corresponding to 7% of its range of optimality), medium modifications (45% of the range) and large 
modifications (75% of the range). 

After each modification, an optimal solution is computed using one of the four approaches and we measure responsiveness 
(computation time) and stability (Euclidean distance between original and recomputed solutions). 

3.3.3. Results  

Figure 8 provides results for responsiveness of the system (in milliseconds). We recall that solving the original problems 
each time a modification is asked by the user would require a 45 minutes for each modification. Using the proposed approaches 
the worst case observed was a recomputation time of 600 milliseconds (minimization of the Euclidean Distance approach), see 
subfigure i. We were not expecting this method to perform so well because of the computation time required to solve a 
quadratic optimization problem. Nonetheless, it appears the problem is small enough to provide good performance.  

 
Figure 8. Solution recomputation time (in milliseconds) in reaction to small (i), medium (ii) and large (iii) variable value modifications,  

according to the number of variables displayed. 

However, as expected, computation time rapidly grows with the number of variable displayed on the charts. Clearly, in a 
situation where the decision maker would be visualizing 4 or 5 charts with 52 variables on each of them, the Euclidean 
approach would not meet our real-time expectations. 

Subfigures i, ii, and iii show that the size of the modification asked by the user has a strong effect on the responsiveness of 
the Euclidean approach. The larger the modification is (in terms of % of the optimality range) the easier is the computation of 
the new solution. The explanation is the following. In the extreme case where the user constrains the variable to take its value
ix , the system is limited to the solutions corresponding to an extreme point of our convex hull. Said otherwise, there is not 

much exploration to perform. 

The responsiveness of the method that minimizes the maximum distance is not affected by how much a variable is changed. 
Its linear optimization problem is small and easy to solve – although it is of not as efficient as the heuristic methods. However, 
those three approaches meat our real-time expectations. 

Figure 9 shows the Euclidean distance between the original and the recomputed solution after a small (i), medium (ii) or 
large (iii) modification and according to the number of variables displayed. The method that minimizes the Euclidean distance 
always offers the best results. 



 
Figure 9. Euclidean distance between the original and recomputed solution after a small (i), medium (ii) or large (iii) variable value modification, according 

to the number of variables displayed. 

As expected from Section 3.2, the bipolar heuristic gives the worst results. Small modifications of a variable value 
(subfigure i) lead to huge modifications to other variables. Even worse, the beta-testers considered unacceptable that the new 
solutions are computed without any consideration for changes they made previously.  

For small modifications (subfigure i), minimization of the maximum distance or using the triangular heuristic provides 
stability very close to the Euclidean approach. Actually, for the minimization of the maximum distance, results on the chart are 
indistinct from those of the Euclidean approach. 

However, minimizing the maximum distance sometimes leads to the problematic situation discussed in Section 3.2, i.e. the 
largest change is minimized but the other variables move for no valid reason. The triangular heuristic does not have this 
drawback.  

We then analyzes the impact of small, medium and large modifications (comparing subfigures i, ii and iii). The larger the 
modification asked by the user is, the more the different approaches give similar results. As discussed previously, large 
modifications to a variable value lead to a very small space of optimal solutions to which all the approaches are restricted. 

We can summarize this section by saying the minimization of the maximal distance and the bipolar heuristics both have 
drawbacks in terms of solution stability. The minimization of the Euclidean distance is optimal regarding this aspect. It should 
be used in situations where the decision-makers based their decision on the analysis of a small subset of variables (typically a 
chart with a dozen of variables) although the optimization problem can have hundreds of thousands of variables. If the 
decision-makers need to simultaneously analyze and modify charts with hundreds of variables, the triangular heuristic should 
be used as our experiments reported near optimal performance. 

4. Introducing optimality tolerance 
The proposed method so far allows exploring optimal solutions. Decision makers may be interested in exploring near-

optimal solutions too (as the data used to model the problem are often rough estimates, it would be pointless to exclude 
solutions that decrease profit by only a few dollars). A naïve approach could be the following. When computing solutions 
minimizing/maximizing a given variable, we tolerate a gap between the new solution’s profit and the optimal solution of the 
original problem. However, this approach would not work very well when using the triangular heuristic. Interaction with the 
system revealed frequent cases where adjusting a variable to values within the optimal space would return a near-optimal 
solution while some existing optimal solutions would clearly be a better choice. We aim to explain the cause of this behavior 
and propose another approach. When computing a new solution with the triangular heuristic, the values of the variables are 
interpolated between two solutions, so are the profit values associated to these solutions. Therefore, if one solution is optimal 
but not the other, unless the weight of the optimal solution is 0 and the weight of the non-optimal solution is 1, then the new 
solution resulting from the combination of these solutions will not be optimal. 

This was not an issue with the original triangular method (previous section) where all solutions are optimal. However, if we 
include optimality tolerance, we combine non-optimal solutions. This result is that the system (1) returns a non-optimal solution 
as soon as a variable is modified towards an extreme value associated with a non-optimal solution even if the target value is 
within the optimal range for that variable and (2) once a non-optimal solution is reached, the system does not return an optimal 
solution unless a variable is set to an extreme value associated with an optimal solution. 

This behavior is explained in Figure 10. In this example, the dark grey area is the real optimal solution space. The light grey 
area shows how this space expands when we tolerate an optimality gap. In this example, we suppose the system first displays 
the solution for which y  is maximized and then the user asks to gradually decrease x . As soon as x  starts to decrease, the 



triangular heuristic gets a sub-optimal solution as it interpolates between y  and x . This is a pity as it is clear that for some 

values for x  we could still have an optimal (dark grey) solution. 

 
Figure 10. Behavior of original Triangular heuristic when provided with a solution space  

with optimality gap 

The situation is even worse for the following reason. Suppose we use a solver (e.g. the simplex method) to find a solution 
minimizing/maximizing a given variable, with the constraint that the profit of the network should be at least 95% of the profit 
of the original optimal solution. The simplex could return a solution minimizing/maximizing the variable that has a profit of 
95% even if there exists another solution where the variable takes the exact same value while showing a profit of 100%. 

To palliate this situation, we introduce a multi-stage approach in the next subsection. 

4.1. A multi-stage approach 

We want the system to return an optimal solution whenever possible. To achieve this, we need two pairs of solutions for 

each variable ix  the user is interested to modify. As in original method, one pair of solutions { },i ix x minimizing/maximizing 

the variable value while preserving optimality and another pair { },i ix x  minimizing/maximizing the variable value obtained 

when the optimality constraint is relaxed (according to some gap specified by the user). We also modified the triangular 

heuristic to interpolate using tolerated extreme points ix  and ix  only when necessary. 

This behavior is illustrated in Figure 11. In this example, we suppose the system first displays the solution for which y  is 

maximized. Then the user asks to gradually decrease x . As long as x  is greater than the value it has in solution x , we 

interpolate between the solutions y  and x  and the solution is still optimal. Past that point, we interpolate between the 

solutions x  and x . 

 
Figure 11. Behavior of the multi-stage approach 



4.2. Experiments 

We compared the proposed multi-stage approach with the original triangular method and to the triangular method with 
tolerance.We consider another supply chain optimization problem (wood flow supply chain). This problem is graphically 
represented in Figure 12. Logs are harvested from a forest and can either be transformed into paper or pellets. Both products 
cost the same to produce and generate the same income per log. Paper demand is below production capacity, implying that a 
minimal amount of pellets must be produced to maximize the profit. We suppose a planning horizon of 3 periods and we have a 
total of 37 variables. One variable is the objective-function “profit” variable (1 variable). Then we have flow variables (3 
periods and total) from forest to each of the mills and from each of the mills to their market (16 variables). There is the volume 
sold (3 periods and total) to each market (8 variables). Finally, we have forest harvesting and production at each of the mills (3 
periods and total), which account for 12 variables. In this small case, all of the decision variables (except the one representing 
the objective function value) are allowed to be changed by the user, but in a supply chain context, the user will typically want to 
change aggregated flow volume between units in the network and facility utilization. 

Using the original triangular original approach, the range of optimality of the variables is rather small. The decision maker 
now wants to interactively explore/discover near optimal solutions (max gap. 5 %) that best meet his preferences. Introducing 
tolerance should allow decreasing pellet production, and/or reduce forest harvesting volumes. 

  
Figure 12. Small wood supply chain 

Using the triangular with gap tolerance approach, variables should provide a wider range of optimality (within the allowed 
5 % gap) but most manipulation of a variable by the user should lead to non-optimal solutions (even though variables are 
manipulated within their range of optimality). 

With the multi-stage approach, we should have the same range of optimality for the variables, but a small modification to 
these variables should lead to optimal solutions. In the following experiment, we formally compare the approaches according to 
these criteria: (1) range of optimality of the variables, and (2) the optimality of the solutions that are computed after a 
modification to a variable. 

For each method, we computed the range of optimality of each variable. Then, for each variable, we 
incremented/decremented the variable value and measured the gap between the new solution and the original one. Figure 13 
shows how the range of optimality of individual variables are extended (in comparison to the original triangular method) when 
we allow a 5 % gap.  For 16 variables, we see no increase in the range of optimality when using our new approach instead of 
the original triangular approach. These are mainly the variables linked to the paper portion of the supply chain: product flow 
from forest to papermill, papermill production, product flow from papermill to paper market, volume of paper sold. We see a 
5% increase in the range of optimality for 6 other variables (total of volumes transported in the energy portion of the supply 
chain; total forest harvested and total profit) and a 15% increase for 15 other variables (single period value of the variables 
linked to the energy portion of the supply chain and forest harvesting). 

 
Figure 13. Increase of the range of optimality of the individual variables when provided with a 5% gap on the solution objective function 
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The ill effects of the triangular with gap tolerance approach appeared as expected. Out of the 72 “extreme” solutions, ( 𝑥 

and 𝑥 minimizing/maximizing the 36 manipulable variables), 52 were non-optimal. 

Except for the pellet production and the forest harvesting variables, even small modification to a variable leads to a sub-
optimal solution (in which pellet production and forest harvesting decrease). Consequently, the system gives the users the false 
impression they cannot modify these variables without altering optimality. 

Using the multi-stage approach, out of the 144 solutions corrresponding to 𝑥, 𝑥, 𝑥, 𝑥, only 20 were sub-optimal (they 

correspond to the situations where 𝑥 < 𝑥 or 𝑥 > 𝑥 ). All other manipulations of a variable in the range between x  and 𝑥 lead to 
optimal solution. This can be verified for any variable but we report results for one specific variable in Figure 14. For the 
purpose of our demonstration, we selected a variable that has some range of optimality even when the optimality gap is zero. 

The blue curve shows that using the original triangular method, we can modify the variable from 𝑥 to 𝑥 and from 𝑥 to 𝑥 and 
the new computed solution is always optimal. 

Using the triangular method with gap tolerance (in red) we leave the optimality region as soon as we move from 𝑥 toward 𝑥. 

With the multi-stage approach (in green), the solution is optimal between 𝑥 and 𝑥. We leave optimality only if we go below 
𝑥 toward 𝑥, which is the expected behavior. A similar behavior is shown when we move back to 𝑥. 

 
Figure 14. Comparison of optimality of returned solutions during interaction. For this variable, 

the solutions for 𝑥 and 𝑥 were identical, this is why 𝑥 does not appear in the chart. 

5. Exploiting the Framework Within Interactive Decision Support Softwares 

5.1. Interactive Supply Chain Tactical Optimization in LogiLab 

The FORAC Research Consortium previously developed a software called LogiLab to design, analyse and plan of forest-
products supply chains. The mathematical optimization model used by LogiLab is described by Jerbi et al. [23]. Since 
LogiLab’s data presentation is strongly evocative and natural for planners, it makes a natural basis for the integration of our 
interactive system.  



 
Figure 15. LogiLab graphical user interface 

In the original LogiLab, the products flows from one business unit to another are presented by arcs connecting the 
corresponding nodes. The thickness of each arc is proportional to the volume of products that flows from its origin to its 
destination (see Figure 15). As we now want to display the “range of optimality” of each individual variable, we proposed 
replacing each arc by a “pipe”. According to this metaphor, the diameter of the pipe represents the maximum value the flow 
variable can take. The colored part of the pipe represents the current level of goods that flows through the pipe (i.e. value of the 
variable in the current optimal solution). To represent the minimal value that allows for the solution to be optimal, the bottom 
part of the flow in the pipe is displayed with a darker color (see Figure 17). 

The simplest and most intuitive way to allow the user to interact with the flows (in order for him to adjust the value of a 
variable) is simply to allow him to click on the pipe and then drag the mouse within the range of optimality. However, most 
flows tend to be too small to enable proper manipulation. Therefore, when the user rolls the cursor over a flow, an enlarged 
cross-section appears and allows easier manipulations (see Figure 16). The interaction scenario is as follow: (1) The user rolls 
over a flow; the zoom bubble (that resembles the cross-section of a pipe) appears and the user is allowed (2) to set a new value 
for this flow variable. Finally (3), the system updates in real time the value of the other variables, thus computing a feasible 
solution that is still optimal. 

1.	approcher	le	curseur 2.	cliquer	dur	la	ligne	noire 3.Glisser	à	la	valeur	désirée
 

Figure 16. Interaction with flows within the proposed system 

In the original LogiLab, the percentage of the total capacity of a business unit used is displayed using a rectangle similar to 
a progression bar. We added visualization of the range of optimality data for these variables using a color code similar to what 
we proposed for the flow variables. Figure 17 presents the graphical user interface integrating those concepts. 



 
Figure 17. Proposed graphical user interface for interactive supply chain tactical optimization 

This real-time interaction with a supply chain solution was shown to our industrial partners who were quite impressed by 
the possibilities given by such a tool. They no longer have to change data input or add new constraints and re-optimize if they 
feel a variable does not meet their value preference. They can just click and drag a flow / percent utilization variable and 
instantly see the changes to other variable values in real time as they drag. It allows them to explore much more rapidly the 
solutions space to find the one that best suit their preferences. 

5.2. Customizable Generic Dashboard for Interactive Optimization 

Arabi et al. [27] presents a supply chain tactical planning problem of the forest products industry which has the form of 
what we showed in the previous section. For that problem, optimization was giving great results in comparison to the manual 
planning done by the company. Their managers were happy with the modeling of their supply chain but wanted the ability to 
personalize the solutions returned by the optimization software. Moreover, they required the ability to compare different 
solutions according to indicators specific to the company. 

From there, we decided to explore an approach where any decision maker making use of a mathematical model could 
themselves build custom dashboards allowing for the evaluation and modification of solutions. We thus developed a generic 
Microsoft Excel plugin allowing for such a task. The plugin is encapsulating the multi-stage triangular approach and makes use 
of a standardize data format for the input part containing the results of the 2n required optimization (as explained in Section 
3.1). Figure 18 shows the relationship between the components of that system. The current implementation allows optimization 
with either CPLEX or GLPK linear programming solver. The system is generic to any linear programming model, hence it 
takes as input either a model file (.mod) or the linear programming file in the standard LP format of CPLEX. The other input 
file is a text file for expressing the set of decision variables of interest for which we want to be able to change the solution value 
in real time. Preprocessing is done using these two files and the proper LP solver in order to generate the original solutions that 
are to be used later by the triangular method (box “Automatic solution adjustment” in Figure 18). These solutions are stored 
within a hidden tab in Excel. Another tab (the “Data” tab) shows, for each of the defined “variables of interest”, their current 
value (from the first optimization setting the objective value), and their minimal and maximal possible value for the solution to 
stay in the optimality solutions space. When optimality tolerance are set, minimum and maximum values within these 
tolerances (ex: 95%; 90%; 85%) are also displayed.  

From these data, the user can build charts and tables using standard Excel functionalities, linking to original cells from the 
“Data” tab. Then, when the decision maker is changing the value of a variable of interest in a cell linked to the original data, an 
automatic script ensures the value is still within the optimality tolerance. Then, an automatic solution adjustment is done by the 
plugin (using the triangular method with multi-stage approach) and all other variables of interest are updated in the “Data” tab, 
and therefore, so are the custom tables and charts linked to them. 



  
Figure 18. System for customizable interactive dashboard and decision support system. 

 

5.3. Applications 

We have used this technology in a many tactical planning projects where linear programming was involved to find optimal 
solutions.  

It was first applied to the case described in Section 3.3.1. Figure 19 shows one of the sheet within the dashboard developed. 
It depicts the volume of lumber that should be moved between their mills and the volume that is to be sent to market from each 
location, per period. Numbers on the arcs are decision variables that could be changed manually by the decision maker if he 
decides to have more lumber coming from a mill instead of another one. Such a change triggers an immediate change in all of 
the other numbers. Traditionally, the decision maker would have to run the optimization again (which takes about 15 minutes in 
this particular case). With our Excel plugin, the change takes a fraction of a second to compute again a solution that is within 
optimality range and minimize the change of other variables. 

 
Figure 19. Dashboard of a lumber supply chain showing volume of lumber to be moved per period. 

For the sawmill of another company, a key question was the proportion of spruce vs fur species to use to supply the mill. 
Spruce takes less time to dry and thus, its transformation to dry lumber is cheaper. On the other hand, it is more expansive to 
buy logs of spruce and it is not available in large quantity. Because of that, changing the spruce / fur ratio may change the 
solution (kiln dryer utilization, volume sold dry versus green, etc.) Allowing the decision makers to manually change the ratio 
and see the effect on the solution help them make a decision on how to supply the mill. Figure 20 shows the dashboard we 



made for the company. With the Excel plugin, they can change spruce / fur ratio and immediately see the impact on all other 
indicators. 

 
Figure 20. Dashboard of a lumber supply chain showing proportion of spruce / fur to replenish (bottom right pie chart), along with other indicators. 

For the same mill, Figure 21 presents how log sourcing should be made according to one optimal solution. The table on the 
left shows the volume to supply from each site, along with minimum and maximum volume for the solution to stay within 90% 
of optimality. Current values are also displayed as a bar chart, on the right. 

 
Figure 21. Dashboard to analyze change in sully sources. 

More recently, we integrated the technology to an existing Excel spreadsheet used by a company to optimize harvesting 
plan and wood allocations to five of their mills (Figure 22). Each sector has to be harvested using one of the three possible 
harvesting modes (short stem, long stem, mixed). Two transport modes are possible. On the sheet showed in Figure 22, they 
can see in real time the impact of a manual change on the optimality of the solution.  



 
Figure 22. Dashboard to analyze cost and revenues of a solution. 

We also applied this technology for a hardwood flooring production process described in Wery et al. [28]. The plant 
manager has to determine how much to supply from the different suppliers (given past production results using material from 
these suppliers), which recipe to run on the shop floor (using specific bundles from the suppliers) and how much of each 
product to produce. The objective is to maximize production value at minimum cost while satisfying constraints on products 
proportion to be able to satisfy customer demand with product variety in each box. This last planning problem is bidirectional 
as the decision maker may interactively change the volume supplied from the suppliers to see the impact on recipes to use and 
the different products made, or he can change the volume produced for different products and see the impact on the supply and 
recipe to run. 

 
Figure 23. Decision variables for the optimization problem of a flooring factory. 

6. Conclusion 
Supply chain optimization leads to large problems with hundreds of thousands variables. They however can be solved in 

reasonable time (less than an hour) as they often show a linear structure. However, this computation time is unacceptable for 
iterative and interactive decision-making contexts where decision-makers need to provide their input.  

We proposed a system that provides the decision-makers with a representation of an optimal solution space directly on the 
charts they are used to work with. This space is modeled as a convex hull of optimal solutions minimizing/maximizing the 
variables of interest. Users can interactively modify the value of a variable and the system is able to recompute a new optimal 
solution in less than a second (instead of optimizing the original problem, which is very long). 

We developed four approaches for this real-time re-optimization (one exact approaches and three heuristics), among which 
the triangular heuristic performed very well, showing near-optimal performance. As many managers and decision makers are 
willing to sacrifice some percentage of optimality to increase the flexibility of a solution, we have introduced optimality 
tolerance and explored how it could be integrated into the triangular heuristic. 



We proposed an interactive supply chain optimization interface upgrading LogiLab, a software developed for supply chain 
optimization in the forest-products industry. We also developed a customizable and generic dashboard system for interactive 
optimization and we presented the architecture for such systems. Through the diversity of the cases we made using these 
dashboards for interactive optimization, we were able to show that we can overcome the limitation of the single solution 
problem arising when using linear programming optimization. The plugin being compatible with Excel (which allows the 
decision makers to build its own dashboards), we believe it could be of a great benefit for the so many companies and 
consultants using linear optimization and Excel as a decision support tools. 

As mentioned, the method used here only applies to linear problems. But many of the problems we face in the world do not 
follow that linearity. We are working at expanding the framework presented in this paper such as to treat mixed integer 
problems where the decision maker would change an integer decision variable. 
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