Linear-Time Filtering Algorithms for the
Disjunctive Constraint

Hamed Fahimi
Claude-Guy Quimper
Université Laval

Claude-Guy.Quimper@ift.ulaval.ca

hamed.fahimi.l @ulaval.ca

July 2014

1

Disjunctive Constraint

Consider a set of n tasks, with known parameters:
The release time (l”i); The deadline (dl) ; The processing time (pi);
and the unknown starting times [s,,...,s].

Disjunctive Constraint

Consider a set of n tasks, with known parameters:

The release time (7;); The deadline (di); The processing time (pi);

and the unknown starting times [s,,...,s].

A,
A,
Aj

&=

1¥

18

20

Disjunctive Constraint

Consider a set of 7 tasks, with known parameters:
The release time (7;); The deadline (di); The processing time (pi);
and the unknown starting times [s,,...,s].

T
A2 — <«

Al HEEEEEEN -
I 5 7 18 20

Constraint:
DISJUNCTIVE([s;,....s,]) <> s, +p; <s; or s;+ p;=s,

Disjunctive Constraint

Consider a set of n tasks, with known parameters:
The release time (l”i); The deadline (d,) ; The processing time (pi);
and the unknown starting times [s,,...,s].

T -

A2 — <«

A = HEEREREN -
) 5 7 18 20

Constraint:
DISJUNCTIVE([s;,....s,]) <> s;+p; <s; or 5;+ p;=s,

1 3 6 10 [19
* A feasible schedule!

Disjunctive Constraint

* It 1s NP-Complete to determine whether there exists a solution to the
Disjunctive constraint.

® [t 1s NP-Hard to filter out all values that do not lead to a solution.

® Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks.

® Our goal is to improve some of these existing filtering algorithms for
this constraint.

Preliminary

* We aim at designing algorithms with linear complexity.

* To achieve this goal, we assume that sorting can be done with a linear
time algorithm, say radix sort.

Time-Tabling

* If Ist, < ect, for a task, then the interval [Ist,ect,) 1s called the
compulsory part of i.

Time-Tabling
* If Ist, < ect, for a task, then the interval [Ist,ect,) 1s called the
compulsory part of i.

* The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

Time-Tabling

* If Ist, < ect, for a task, then the interval [Ist,ect,) 1s called the
compulsory part of i.

* The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

ﬁ» = P Compulsory part

0O 1 2 3 4

Time-Tabling

* If Ist, < ect, for a task, then the interval [Ist,ect,) 1s called the
compulsory part of i.

* The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

s~ T

Compulsory part

< First filtering

Time-Tabling

* If Ist, < ect, for a task, then the interval [Ist,ect,) 1s called the
compulsory part of i.

* The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

s~ T

Compulsory part

< First filtering

< Second filtering

Time-Tabling

® Ouellet & Quimper presented an algorithm for Time-Tabling on a
generalized case in O(nlog(n)).

®* We took advantage of Union-Find to achieve an algorithm that
admits a linear time implementation for the Disjunctive case.

13

The strategy of our algorithm

The strategy of our algorithm

P
01 2 6 15 T 22
J 4 {0 I

|
Compulsory(A,) Compulsory(A,)

The strategy of our algorithm

-
o) 6 1S 22
. y el
Compulsory(A,) Compulsory(A,)

\1 14}

Merged(CompulsorygAl) , Compulsory(A,))

The strategy of our algorithm

P
o) 6 15 19 22
. y el
Compulsory(A,) Compulsory(A,)

\1 14}

Merged(CompulsorygAl) , Compulsory(A,))

* The domain of A, after filtering.

Time line

® This is a data structure that keeps track of when the resource is executing
a task.

® It is initialized with an empty set of tasks ® = .

® It 1s possible to add a task to ® in constant time. The task will be
scheduled at the earliest time as possible with preemption.

® It is possible to compute the earliest completion time of ® in constant
time at any time!

18

©-Tree and Time line comparison

Operation O-Tree (Vilim) Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task
from the schedule

O(log(n)) steps

Not supported !

19

Time line example

- <«
1 4 5 8 10 15
* Between each two consecutive time points, est. | lIct, | p;
there 1s a capacity that denotes the amount of 5 3 0
time that the resource is available through. The
5 . : 1 10 6
capacities are initially equal to the difference
between the consecutive time points. 4 15 6
1 4 5 28

{1} 3 {41 5 {5} {28)

Time line example

- <«

1 4 5 8 10 15

* We schedule the tasks, one by one. After est. | lIct, | p;
scheduling, the free times will reduce. 5] 0
1 10 6
— 15 6

1 4 5 28

{1} 3 {41 5 {5} {28)

Time line example

- <«

1 4 5 8 10 15

* We schedule the tasks, one by one. After est. | lIct, | p;
scheduling, the free times will reduce. 5] 0
1 10 6
— 15 6

1 4 5 28

{1} 2 {4} 5 {5} > {28}

Time line example

- <«

1 4 5 8 10 115

* Once a capacity equals null, the corresponding est; | Ict, | p;
time points are merged by Union-Find. 5] 0
1 10 6
4 15 6

1 45 28

{1} 2 {4} 5 {5} > {28}

Time line example

- <«

1 4 5 8 10 115

* Once a capacity equals null, the corresponding est; | Ict, | p;
time points are merged by Union-Find. 5] 0
1 10 6
4 15 6

1 45 28

(145} {28)

Time line example

- -

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 6

1 4 5 28

(145} {28)

Time line example

- «

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 6

1 4 5 15 28

(145} {28)

Time line example

_) «

1 4 5 8 e 15
* That allows to run a linear search over the time est. | lIct, | p;
line for periods that have free time. This search 5] 9)
will jump over the occupied regions in constant) 10 6

time.

4 15 6

1 4 5 15 28

(145} {28)

* The earliest completion time is computed in constant time by

28-13 = 15.

Overload Checking

.
- -—
4 8 10

28

Overload Checking

CRIr m -
A, = || | | | * |

L 4 8 10

* Using the idea of a ©-Tree, Vilim presented the following algorithm
for the overload check.
1 © := 0;
2 for je T innon-decreasing order of Ict; do begin
3 ® := OU{j};
+ if ectg >Ict; then
5
6

fail; {No solution exists}
end;

29

Overload Checking

a3 S m -
A, .~ | | | | * |

L 4 8 10

* Using the idea of a ©-Tree, Vilim presented the following algorithm
for the overload check.
1 © := 0;
2 for je T innon-decreasing order of Ict; do begin
3 ® := OU{j};
+ if ectg >Ict; then
5
6

fail; {No solution exists}
end;

* We keep the same algorithm and only replace the ®@-Tree with time

line to achieve a linear time algorithm.
30

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

Detectable Precedences

*Let A; and A, be two tasks. It ect; > Ist;, the precedence A; << A; 18
called detectable.

lstj

\
1»\

ect.

Example

A -

\0 25

!
pa= 11

B = e

0 1 25 27

pg=10

C - .

0 1 14 21 258E=N0f] S

Example

- A<<C, B<<C.

A -

\ 0 25

|
pr=11

B — <

0 1 25 27

pg=10

C 4

0 1 14 21 25" 35

Example

>
'
1r

\0 } 25

pa=11
B - :
0 1 25 27
pg=10
C 4
0 1 14 21 S 4] 35
- A<<C, B<<C. Pc=

* Since {A , B } << C, the domain of C will be filtered to
est- = est, + p, +pg=21.

Example

A -
\ 0 } 25
!
pa=11
B >
0 1 25 27
pg=10
C 4
e " 21 P 35
- A<<C, B<<C.

* Since {A , B } << C, the domain of C will be filtered to

est- = est, + p, +pg=21.
* The domain of C after filtering.

Detectable Precedences

® Vilim introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).

Detectable Precedences

® Vilim introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).

® This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.

Detectable Precedences

® Vilim introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).

® This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.

®* The time line does not allow the removal of a task.

Detectable Precedences

® Vilim introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).

® This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.

®* The time line does not allow the removal of a task.

®* We modified the algorithm so that no removal of a task 1s required.

Experiments

® In order to show the advantage of the state of the art algorithms, we ran
the experiments on job-shop and open-shop scheduling problems.

® After 10 minutes of computations, the program halts
® The problems are not solved to optimality.
® The number of backtracks that occur will be counted.

®* We compare two algorithms which explore the same tree in the same
order.

® A larger portion of the search tree will be traversed within 10 minutes
with the faster algorithm.

Tables of results

nXxXm OC | DP TT

4 x 4 0.96 | 1.00 1.00
S Lkl 1.75

e 7 L8240 e 2.09

10 x 10 | 1.06 | 1.33 2.14

15 x 15 | 1.03 | 1.39 2.15

20 x 20 | 1.06 | 1.56 2.17
p-value | 0.25 | 8.28E-14 | 5.95E-14

nxXm OC | DP TT
10 X 5 1.07 | 1.27 29150
15 x5 1.02 | 1.35 2.2%
20 X 5 1.00 | 1.55 2.12
10 x 10 | 1.01 | 1.25 2.18
15x10 | 1.26 | 1.42 1.97
20 x 10 | 1.00 | 1.47 2.14
30 x 10 | 1.08 | 1.56 2.36
50 x 10 | 1.05 | 1.48 3.18
15x15 | 095 | 1.48 2.16
20 x 15 | 1.04 | 1.61 2255
20 x 20 | 1.09 | 1.46 1.71
p-value | 0.17 | 1.41E-12 | 3.38E-20

* The results of three methods on open-shop and job-shop
benchmark problems with n jobs and m tasks per job. The numbers
indicate the ratio of the cumulative number of backtracks between
all instances of size nm after 10 minutes of computations.

Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.

®* We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm Previous Now
complexity complexity
Time-Tabling | O(nlog(n)) O(n)
(Ouellet & (Fahimi &
Quimper) Quimper)
Overload check | O(nlog(n)) O(n)
Vilim (Fahimi &
Quimper)
Detectable O(nlog(n)) O(n)
precedences Vilim (Fahimi &
Quimper)

