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The release time ( l”i); The deadline (dl) ; The processing time ( pi);
and the unknown starting times [s,,...,s].
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Disjunctive Constraint

* It 1s NP-Complete to determine whether there exists a solution to the
Disjunctive constraint.

® [t 1s NP-Hard to filter out all values that do not lead to a solution.

® Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks.

® Our goal is to improve some of these existing filtering algorithms for
this constraint.



Preliminary

* We aim at designing algorithms with linear complexity.

* To achieve this goal, we assume that sorting can be done with a linear
time algorithm, say radix sort.
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Time-Tabling

® Ouellet & Quimper presented an algorithm for Time-Tabling on a
generalized case in O(nlog(n)).

®* We took advantage of Union-Find to achieve an algorithm that
admits a linear time implementation for the Disjunctive case.

13



The strategy of our algorithm




The strategy of our algorithm

P
01 2 6 15 T 22
J 4 {0 I

|
Compulsory(A,) Compulsory(A,)



The strategy of our algorithm

-
o) 6 1S 22
. y el
Compulsory(A,) Compulsory(A,)

\1 14}

Merged(CompulsorygAl) , Compulsory(A,))




The strategy of our algorithm

P
o) 6 15 19 22
. y el
Compulsory(A,) Compulsory(A,)

\1 14}

Merged(CompulsorygAl) , Compulsory(A,))

* The domain of A, after filtering.



Time line

® This is a data structure that keeps track of when the resource is executing
a task.

® It is initialized with an empty set of tasks ® = .

® It 1s possible to add a task to ® in constant time. The task will be
scheduled at the earliest time as possible with preemption.

® It is possible to compute the earliest completion time of ® in constant
time at any time!
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©-Tree and Time line comparison

Operation O-Tree (Vilim ) Time line
Adding a task to O(log(n)) O(1)
the schedule
Computing the O(1) O(1)
earliest

completion time

Removing a task
from the schedule

O(log(n)) steps

Not supported !
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Time line example
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* Between each two consecutive time points, est. | lIct, | p;
there 1s a capacity that denotes the amount of 5 3 0
time that the resource is available through. The
5 . : 1 10 6
capacities are initially equal to the difference
between the consecutive time points. 4 15 6
1 4 5 28
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* The earliest completion time is computed in constant time by

28-13 = 15.




Overload Checking
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Overload Checking
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* Using the idea of a ©-Tree, Vilim presented the following algorithm
for the overload check.
1 © := 0;
2 for je T innon-decreasing order of Ict; do begin
3 ® := OU{j};
+ if ectg >Ict; then
5
6

fail; {No solution exists}
end;
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Overload Checking
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* Using the idea of a ©-Tree, Vilim presented the following algorithm
for the overload check.
1 © := 0;
2 for je T innon-decreasing order of Ict; do begin
3 ® := OU{j};
+ if ectg >Ict; then
5
6

fail; {No solution exists}
end;

* We keep the same algorithm and only replace the ®@-Tree with time

line to achieve a linear time algorithm.
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- A<<C, B<<C.

* Since {A , B } << C, the domain of C will be filtered to

est- = est, + p, +pg=21.
* The domain of C after filtering.
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Detectable Precedences

® Vilim introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).

® This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.

®* The time line does not allow the removal of a task.

®* We modified the algorithm so that no removal of a task 1s required.



Experiments

® In order to show the advantage of the state of the art algorithms, we ran
the experiments on job-shop and open-shop scheduling problems.

® After 10 minutes of computations, the program halts
® The problems are not solved to optimality.
® The number of backtracks that occur will be counted.

®* We compare two algorithms which explore the same tree in the same
order.

® A larger portion of the search tree will be traversed within 10 minutes
with the faster algorithm.



Tables of results

nXxXm OC | DP TT

4 x 4 0.96 | 1.00 1.00
S Lkl 1.75

e 7 L8240 e 2.09

10 x 10 | 1.06 | 1.33 2.14

15 x 15 | 1.03 | 1.39 2.15

20 x 20 | 1.06 | 1.56 2.17
p-value | 0.25 | 8.28E-14 | 5.95E-14

nxXm OC | DP TT
10 X 5 1.07 | 1.27 29150
15 x5 1.02 | 1.35 2.2%
20 X 5 1.00 | 1.55 2.12
10 x 10 | 1.01 | 1.25 2.18
15x10 | 1.26 | 1.42 1.97
20 x 10 | 1.00 | 1.47 2.14
30 x 10 | 1.08 | 1.56 2.36
50 x 10 | 1.05 | 1.48 3.18
15x15 | 095 | 1.48 2.16
20 x 15 | 1.04 | 1.61 2255
20 x 20 | 1.09 | 1.46 1.71
p-value | 0.17 | 1.41E-12 | 3.38E-20

* The results of three methods on open-shop and job-shop
benchmark problems with n jobs and m tasks per job. The numbers
indicate the ratio of the cumulative number of backtracks between
all instances of size nm after 10 minutes of computations.




Conclusion

® Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.

®* We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm Previous Now
complexity complexity
Time-Tabling | O(nlog(n)) O(n)
(Ouellet & (Fahimi &
Quimper) Quimper )
Overload check | O(nlog(n)) O(n)
Vilim (Fahimi &
Quimper)
Detectable O(nlog(n)) O(n)
precedences Vilim (Fahimi &
Quimper)







