
Horizontally Elastic Not-First/Not-Last
Filtering Algorithm For Cumulative Resource

Constraint ?

Roger Kameugne1,2, Sévérine Betmbe Fetgo3, Vincent Gingras4,
Yanick Ouellet4, and Claude-Guy Quimper4

1 University of Maroua-Cameroon
2 University of Bamenda - Cameroon
3 University of Dschang-Cameroon

4 Université Laval, Québec, QC, Canada

rkameugne@gmail.com, betmbe200@yahoo.fr, vincent.gingras.5@ulaval.ca,

yanick.ouellet.2@ulaval.ca, Claude-Guy.Quimper@ift.ulaval.ca

Abstract. Fast and powerful propagators are the main key to the suc-
cess of constraint programming on scheduling problems. It is, for exam-
ple, the case with the cumulative constraint, which is used to model
tasks sharing a resource of discrete capacity. In this paper, we propose
a new not-first/not-last rule, which we call the horizontally elastic not-
first/not-last, based on strong relaxation of the earliest completion time
of a set of tasks. This computation is obtained when scheduling the
tasks in a horizontally elastic way. We prove that the new rule is sound
and is able to perform additional adjustments missed by the classic not-
first/not-last rule. We use the new data structure called Profile to pro-
pose a O(n3) filtering algorithm for a relaxed variant of the new rule
where n is the number of tasks sharing the resource. We prove that
the proposed algorithm still dominates the classic not-first/not-last al-
gorithm. Experimental results on highly cumulative instances of resource
constrained project scheduling problems (RCPSP) show that using this
new algorithm can substantially improve the solving process of instances
with an occasional and marginal increase of running time.

1 Introduction

Cumulative scheduling is the allocation of a scarce resource to tasks over time. It
appears in many real-world problems such as university timetable, ship loading,
employee scheduling, bridge or building constructions. The challenging part of
this problem comes from the resource constraint. To solve it efficiently with a
constraint programming solver, it is important to have fast and efficient propa-
gators for the cumulative [1] constraint. The cumulative constraint models
the problem where a limited number of tasks can be executed simultaneously.

? This work was partially supported by a grant from the Niels Henrik Abel board and
the University Laval.

In a cumulative scheduling problem (CuSP), a set of tasks T has to be executed
on a resource of capacity C. Each task i ∈ T is executed without interruption
during pi time units and uses ci ≤ C units of resource. For a task i ∈ T , the ear-
liest start time esti and the latest completion time lcti are specified. A solution
to a CuSP instance is an assignment of valid start time si to each task i ∈ T
such that the resource constraint is satisfied, i.e.,

∀i ∈ T, esti ≤ si ≤ si + pi ≤ lcti (1)

∀τ,
∑

i∈T, si≤τ<si+pi

ci ≤ C (2)

The inequalities in (1) ensure that each task is assigned a feasible start and end
time, while (2) enforces the resource constraint. Each task i ∈ T has an energy
ei = ci · pi, an earliest completion time ecti = esti + pi and a latest start time
lsti = lcti − pi. These notations can be extended to non-empty sets of tasks as
follows:

eΩ =
∑
j∈Ω

ej , estΩ = min
j∈Ω

estj , lctΩ = max
j∈Ω

lctj , ECTΩ = min
j∈Ω

ectj . (3)

By convention, for empty sets we have: e∅ = 0, est∅ = +∞, lct∅ = −∞ and
ECT∅ = +∞. Throughout the paper, we assume that for any task i ∈ T , ecti ≤
lcti and ci ≤ C, otherwise the problem has no solution. We let n = |T | denotes
the number of tasks, k = |{ci, i ∈ T}| denotes the number of distinct capacity
requirements of tasks. H = {ecti, i ∈ T} denotes the set of distinct earliest com-
pletion times of tasks with |H| = h. The global constraint cumulative removes
inconsistent values from the domain of starting time variable si ∈ [esti, lsti].
Since the CuSP is a NP-Hard problem [2], it is NP-Hard to remove all such
values. Polynomial time algorithms only exist for relaxations of the problem.

The global constraint cumulative integrates many filtering algorithms which
perform different pruning and are sometimes combined for more pruning (de-
pending on the characteristics of the instance) to reduce the search space and
thus the running time [3]. Each of these filtering algorithms can be called thou-
sands of times during the search. Therefore, it is important for them to be
fast, exact and efficient. Among these filtering algorithms, edge-finding [4,7] and
timetabling [5] are the most used, but there exists many other filtering algo-
rithms such as not-first/not-last [6,9,10], energetic reasoning [3,12], and more
recently, horizontally elastic edge-finder [8]. For the remainder of this paper we
focus solely on the algorithm for updating the earliest starting times, as the
latest completion time algorithm is both symmetric and easily derived.

In this paper, we propose a new formulation of the not-first/not-last rule
based on a strong relaxation of the earliest completion time of a set of tasks.
The novel formula, which we call horizontally elastic not-first/not-last sub-
sumes the classic not-first/not-last rule. With the data structure Profile from
[8], we propose a O(n3) relaxation of the new rule. Experimental results on
highly cumulative instances of resource constrained project scheduling problems

(RCPSP) from suites benchmarks of libraries BL [11], Pack [13] and KSD15 D
[14] highlight that using this new algorithm reduces the number of backtracks
for a large majority of instances with an occasional and marginal increase of the
running time.

The rest of the paper is organized as follows. Section 2 presents the classic
not-first rule for cumulative resource constraint and Section 3 defines the novel
function for computing the earliest completion time of a set of tasks with its
corresponding algorithm as it is formulated and presented in [8] . In section 4, we
propose a new formulation of the not-first rule based on the earliest completion
time of a set of tasks which subsumes the classic not-first/not-last rule. Section
5 focuses on the presentation of a O(n3) not-first algorithm for the horizontally
elastic not-first rule where n is the number of tasks being scheduled on the
resource, while Section 6 presents a relaxation of the above algorithm with the
same complexity. Section 7 shows that the relaxed horizontally elastic not-first
algorithm dominates the classic not-first algorithm. Finally, in Section 8, the
empirical evaluation of the new algorithm on highly cumulative instances of the
RCPSP is presented while Section 9 concludes the paper.

2 Classic not-first rule

The not-first/not-last rule detects tasks that cannot run first/last relatively to
a set of tasks and prunes their time bounds. If a task i cannot be the first
to be executed in Ω ∪ {i} then the earliest start time of task i is updated to
the minimum earliest completion time of the set. The not-first filtering rule is
formalized as follows:
∀Ω ⊂ T, ∀i ∈ T \Ω{

esti < ECTΩ
eΩ + ci(min(ecti, lctΩ)− estΩ) > C(lctΩ − estΩ)

⇒ esti ≥ ECTΩ . (NF)

Recently, in [9] the authors proposed a quadratic not-first algorithm using the
Timeline data structure. Some O(n2 log n) algorithms proposed for this rule can
be found in [6,10].

3 Function of the Earliest Completion Time

We present a function to compute the earliest completion time of a set of tasks
as in [8]. We use the notation ectFΩ to denote the fully-elastic earliest completion
time of a set of tasks Ω and it is computed by spending a maximum amount of
energy as early as possible without any regards to the resource required of the
tasks using the following formula [7].

ectFΩ =

⌈
max{CestΩ′ + eΩ′ |Ω′ ⊆ Ω}

C

⌉
. (4)

This value is a relaxation of the real earliest completion time ectΩ of the set
Ω. Note that ectΩ is NP-hard to compute [2]. A stronger relaxation for the
function ectΩ called horizontally elastic earliest completion time and noted ectHΩ
is introduced in [8].

During the computation of this value, any task i consumes ei units of re-
source within the interval [esti, lcti) and is allowed to consume at any time
t ∈ [esti, lcti), between 0 and ci units of resource. Given a set of tasks Ω, ectHΩ
is computed using the following functions.

– cmax(t) the amount of resource that can be allocated to the tasks in Ω at
time t, i.e.,

cmax(t) = min

 ∑
i∈Ω|esti≤t<lcti

ci, C

 (5)

– creq(t) the amount of resource required at time t by the tasks in Ω if they
were all starting at their earliest starting times, i.e.,

creq(t) =
∑

i∈Ω|esti≤t<ecti

ci (6)

– ov(t) called overflow is the energy from creq(t) that cannot be executed at
time t due to the limited capacity cmax(t).

– ccons(t) the amount of resource that is actually consumed at time t, i.e.,

ccons(t) = min(creq(t) + ov(t− 1), cmax(t)) (7)

ov(t) = ov(t− 1) + creq(t)− ccons(t) (8)

ov(estΩ) = 0 (9)

The horizontally elastic earliest completion time occurs when all tasks are com-
pleted, i.e.,

ectHΩ = max{t|ccons(t) > 0}+ 1. (10)

For a set of tasks, it is proven in [8] that the horizontally elastic earliest com-
pletion time is a relaxation of the earliest completion time and is stronger than
the fully-elastic one.

Theorem 1. [8] For all Ω ⊆ T, ectFΩ ≤ ectHΩ ≤ ectΩ .

The computation of ectH is done with the Profile data structure [8] that stores
the resource utilization over time. The tuples 〈time, cap, δmax, δreq〉 (where time
is the start time, cap is the remaining capacity of the resource at the start time,
δmax and δreq are two quantities initialized to zero) are stored in a sorted linked
list whose nodes are called time points. The Profile is initialized with a time point
of capacity C for every distinct value of est, ect, and lct. A sufficiently large time
point is added to act as a sentinel. While initializing the data structure, pointers

are kept so that testi , tecti and tlcti return the time point associated to esti, ecti,
and lcti. The algorithm ScheduleTasks computes the functions creq(t), cmax(t),
ccons(t) and ov(t) to schedule a set of tasks Θ on the profile P.

Algorithm 1: ScheduleTasks(Θ,C) [8]

Input: Θ a set of tasks and C the capacity of the resource
Output: A lower bound ectHΘ of the set Θ

1 for all time point t do
2 t.δmax ← 0 and t.δreq ← 0

3 for i ∈ Θ do
4 Increment testi .δmax and testi .δreq by ci
5 Decrement tlcti .δmax and tecti .δreq by ci

6 t← P.first, ov ← 0, ect← −∞, S ← 0, creq ← 0
7 while t.time 6= lctΘ do
8 t.ov ← ov, l← t.next.time− t.time, S ← S + t.δmax

9 cmax ← max(S,C)
10 creq ← creq + t.δreq
11 ccons ← min(creq + ov, cmax)
12 if 0 < ov < (ccons − creq) · l then
13 l← max

(
1,
⌊

ov
ccons−creq

⌋)
14 t.insertAfter(t.time+ l, t.cap, 0, 0)

15 ov ← ov + (creq − ccons) · l
16 t.cap← C − ccons
17 if t.cap < C then ect← t.next.time
18 t← t.next

19 return ect

The interesting properties of this data structure come from the number of
time points and the linear-time algorithm ScheduleTasks.

Proposition 1 ([8]). The Profile contains at most 4n+ 1 time points and the
algorithm ScheduleTasks runs in O(n) time where n is the number of tasks.

4 New formulation of the not-first rule

Before generalizing the not-first rule, let us state the classic not-first using the
earliest completion time of a set of tasks. Let Ω ⊂ T be a set of tasks and
i ∈ T \ Ω be a task. From task i and set of tasks Ω, a new task i′ can be
derived with the following attributes: esti′ = estΩ , lcti′ = min(ecti, lctΩ), pi′ =
min(ecti, lctΩ)− estΩ and ci′ = ci. Substituting this into rule (NF) leads to:{

esti < ECTΩ
eΩ + ei′ > C(lctΩ − estΩ∪{i′})

⇒ esti ≥ ECTΩ (11)

The rule (11) is equivalent to{
esti < ECTΩ
ectFΩ∪{i′} > lctΩ

⇒ esti ≥ ECTΩ (12)

0 2 4 6

x

y

z

esty,z=0

estx=1

lcty,z=6

lctx=3

Fig. 1. (a) A CuSP problem of 3 tasks
sharing a resource of capacity C = 3.

0 1 2 3 4 5 6 7
0

1

2

3

4

C = 3
0 0 1 1 1 1 1 0

Fig. 2. (b) The resource utilization profile
of tasks {x, y, z′} where z′ is derived from
z and Ω = {x, y} and whose parameters
〈estz′ , lctz′ , pz′ , cz′〉 are 〈0, 3, 3, 1〉.

The horizontally elastic not-first rule is obtained from (12) by replacing ectFΩ∪{i′}
by ectHΩ∪{i′} and is given by the formula:

∀Ω ⊂ T, ∀i ∈ T \Ω, {
esti < ECTΩ
ectHΩ∪{i′} > lctΩ

⇒ esti ≥ ECTΩ (HNF)

where i′ is a task derived from task i whose parameters 〈esti′ , lcti′ , pi′ , ci′〉 are
〈estΩ ,min(ecti, lctΩ),min(ecti, lctΩ)− estΩ , ci〉.
Theorem 2. The not-first rule (NF) is subsumed by the horizontally elastic
not-first rule (HNF).

Proof. Since ectFΩ ≤ ectHΩ for all Ω (Theorem 1) and from the equivalence of rules
(NF) and (12), it follows that condition eΩ+ci(min(ecti, lctΩ)−estΩ) > C(lctΩ−
estΩ) implies the condition ectHΩ∪{i′} > lctΩ . Therefore, all the adjustments

performed by rule (NF) are also done by rule (HNF).
Consider the CuSP instance of Figure 1 where three tasks share a resource

of capacity C = 3. The resource utilization profile of tasks {x, y, z′} is given
in Figure 2 where z′ is derived from z and Ω = {x, y} whose parameters
〈estz′ , lctz′ , pz′ , cz′〉 are 〈0, 3, 3, 1〉. The numbers above the bold line of capacity
limit are overflow units of energy remaining at each time point i.e., ov(0) = 0,
ov(1) = 0, ov(2) = 1 , and so forth. The horizontally elastic earliest completion
time of the tasks set {x, y, z′} is 7 which is greater than lct{x,y,z′} = 6. When
we apply the not-first rule (NF) with Ω = {x, y} and i = z, it appears that
0 = estz < 2 = ECTΩ but ectFΩ∪{z′} = 3 ≤ lctΩ . Therefore, no detection is
found and consequently no adjustment follows. But the horizontally elastic not-
first rule (HNF) applied to the same instance gives ectHΩ∪{z′} = 7 > lctΩ and
the earliest start time of task z is updated to 2.ut

5 Horizontally Elastic Not-First Algorithm

We present a O(n3) cumulative horizontally elastic not-first algorithm where n
is the number of tasks sharing the resource. The new algorithm is sound as in

[6,10] i.e., the algorithm may take additional iterations to perform maximum
adjustments and uses the concept of the left cut of the set of tasks T by a
task j as in [6]. We describe how the left cut can be used to check the not-first
conditions. We present some strategies to reduce the practical complexity of the
algorithm and to fully utilize the power of the the Profile data structure.

Definition 1. [6] Let i and j be two different tasks. The left cut of T by task j
relatively to task i is the set of tasks LCut(T, j, i) defined as follows:

LCut(T, j, i) = {k | k ∈ T ∧ k 6= i ∧ esti < ectk ∧ lctk ≤ lctj}. (13)

Using this set, we have the following new rule:
For all i, j ∈ T with i 6= j,

ectHLCut(T,j,i)∪{i′} > lctj ⇒ esti ≥ ECTLCut(T,j,i) (HNF’)

where i′ is a task derived from task i whose parameters 〈esti′ , lcti′ , pi′ , ci′〉 are
〈estLCut(T,j,i),min(ecti, lctj),min(ecti, lctj)− estLCut(T,j,i), ci〉.

Theorem 3. For a task i, at most h−1 iterative applications of the rule (HNF’)
achieve the same filtering as one application of the rule (HNF) where h is the
number of different earliest completion time of tasks.

Proof. Let Ω be the set which induces the maximum change of the value esti by
the rule (HNF). Let j ∈ Ω be a task with lctj = lctΩ . Until the same value of
esti is reached, in each iteration of the rule (HNF’) holds that Ω ⊆ LCut(T, j, i).
Indeed, because esti < ECTΩ and i /∈ Ω, it follows that for all k ∈ Ω, k 6= i,
esti < ectk and lctk ≤ lctj . From the inclusion Ω ⊆ LCut(T, j, i), it follows that
ectHLCut(T,j,i)∪{i′} ≥ ectHΩ∪{i′} > lctj and the rule (HNF’) holds and propagates.

After each successful application of the rule (HNF’), the value esti is in-
creased. This removes all the tasks from the set LCut(T, j, i) having the earliest
completion time ECTLCut(T,j,i). Therefore the final value of esti must be reached
after at most h− 1 iterations and it is the same as for the rule (HNF).ut

Example 1 ([6]). Consider the CuSP instance of Figure 3 where four tasks share

0 3 6 9 12

abc

d

estd=1

estb,c=2

esta=4

lctb,c=4

lcta=5 lctd=9

Fig. 3. A scheduling problem of 4 tasks sharing a resource of capacity C = 3.

a resource of capacity C = 3. The not-first rule (HNF’) holds for task d and the
set LCut(T, a, d) = {a, b, c}. Indeed, estd < ECT{a,b,c} and ectHLCut(T,a,d)∪{d′} =

6 > lcta. Hence, estd = 3. After this adjustment, we have LCut(T, a, d) = {a},
estd < ECT{a}, and ectHLCut(T,a,d)∪{d′} = 6 > lcta which leads to estd = 5. The
maximum adjustment holds.

To reduce the practical computational complexity of the algorithm, we de-
duce from the properties of LCut(T, j, i) and the rigidity of task i′ some strategies
to learn from failures and successes and anticipate the detection of future tasks.

5.1 Reducing the number of sets Θ = LCut(T, j, i) to consider

To speed-up the algorithm without reducing its filtering power, we can know
whether or not the set of tasks Θ = LCut(T, j, i) is in conflict with the task i.
The detection of the not-first rule of task i with the set of tasks Θ is only possible
when Θ is conflicting with i. This happens when

∑
k∈Θ ck > C − ci since when

the sum of the capacity requirements of the tasks in Θ is less than C − ci, then
the set Θ is not conflicting with task i.

5.2 Deduction From Detection Failure of Tasks

Let i be a task such that the not-first detection rule (HNF’) fails for all set
of tasks LCut(T, j, i). Then for any other task u such that u 6= i, lctu ≤ lcti,
estu = esti, cu ≤ ci and ectu ≤ ecti, we can deduce that, for all sets of tasks
LCut(T, j, i) the rule (HNF’) will also fail with task u. This assertion is formally
proven in the following proposition.

Proposition 2. Let i ∈ T be a task such that the not-first rule (HNF’) fails
for all sets of tasks LCut(T, j, i). Then for any task u ∈ T such that u 6= i ,
lctu ≤ lcti, estu = esti, cu ≤ ci and ectu ≤ ecti, the not-first rule (HNF’) also
fails with task u for all sets of tasks LCut(T, j, u).

Proof. By contradiction, let u ∈ T be a task with u 6= i, lctu ≤ lcti, estu = esti,
cu ≤ ci and ectu ≤ ecti such that the not-first rule (HNF’) detects and ad-
justs the earliest start time of task u, i.e., there exists a task j ∈ T such
that ectHLCut(T,j,u)∪{u′} > lctj and the task u is updated such that estu ≥
ECTLCut(T,j,u). We distinguish two cases : lctj < lcti and lcti ≤ lctj .

1. If lctj < lcti, then LCut(T, j, u) ⊆ LCut(T, j, i) and from the fact that i′ is
more constrained than u′ it follows that ectHLCut(T,j,i)∪{i′} ≥ ectHLCut(T,j,i)∪{u′} ≥
ectHLCut(T,j,u)∪{u′} > lctj , which contradicts the non-detection of the not-first

rule (HNF’) with task i.
2. If lcti ≤ lctj , then LCut(T, j, u) ⊆ LCut(T, j, i) ∪ {i}. Since the set of tasks

LCut(T, j, i) ∪ {i′} is more constrained than LCut(T, j, u) ∪ {u′} it follows
that ectHLCut(T,j,i)∪{i′} ≥ ectHLCut(T,j,u)∪{u′} > lctj , which contradicts the

non-detection of the rule (HNF’) with task i. ut

5.3 Deduction From Success Detection of Tasks

Let i and j be two tasks such that i 6= j, esti < ectj and the not-first rule
(HNF’) holds for i and LCut(T, j, i). Then for any other task u such that u 6= i,
lctu ≤ lcti, estu ≤ esti, cu ≥ ci and ectu ≥ ecti, the tasks set LCut(T, j, u)
successfully detected the not-first rule (HNF’) with task u, u /∈ LCut(T, j, i).
This assertion is formally proven in the following proposition.

Proposition 3. Let i and j be two tasks such that i 6= j, esti < ectj and the
not-first rule (HNF’) holds for i and LCut(T, j, i). Then for any other task u such
that u 6= i, lctu ≤ lcti, estu ≤ esti, cu ≥ ci and ectu ≥ ecti, if u /∈ LCut(T, j, i)
then the not-first rule (HNF’) holds with u and LCut(T, j, u).

Proof. Let i and j be two tasks such that i 6= j, esti < ectj and the rule (HNF’)
holds for i and LCut(T, j, i) . Let u be a task such that u 6= i, lctu ≤ lcti,
estu ≤ esti, cu ≥ ci, ectu ≥ ecti and u /∈ LCut(T, j, i). From estu ≤ esti and
u /∈ LCut(T, j, i), it is obvious that LCut(T, j, i) ⊆ LCut(T, j, u). Since the set of
tasks LCut(T, j, u)∪ {u′} is more constrained than LCut(T, j, i)∪ {i′} it follows
that ectHLCut(T,j,u)∪{u′} ≥ ectHLCut(T,j,i)∪{i′} > lctj . ut

To apply these reductions, we start with a set Λ = T of tasks sorted by non-
decreasing order of lctj , by non-increasing order of estj , by non-decreasing order
of cj and by non-decreasing order of ectj to break ties. If a task i ∈ Λ fails
for detection of the rule (HNF’), then we are sure that the detection will fail
with all tasks u ∈ Λ such that u 6= i, lctu ≤ lcti, estu = esti, cu ≤ ci and
ectu ≤ ecti. On the other hand, when the rule (HNF’) holds with a task i
and the set LCut(T, j, i), if the detection of the rule (HNF’) fails with the set
LCut(T, j, u) and the task u ∈ Λ such that u 6= i, lctu ≤ lcti, estu ≤ esti, cu ≥ ci
and ectu ≥ ecti, then the task is postponed to the next iteration.

5.4 Horizontally elastic Not-First Algorithm

In Algorithm 2, we iterate through the set of tasks sorted by non-decreasing
order of lct, by non-increasing order of est, by non-decreasing order of cj and
by non-decreasing order of ectj to break ties (line 5) and for each unscheduled
task (line 3), we iterate over the different set Θ = LCut(T, j, i) (line 7). For each
set Θ satisfying the reduction of section 5.1, the minimum earliest completion
time is computed (line 9) during the initialization of the increment values of the
function ScheduleTasks. The horizontally-elastic earliest completion time of the
set of tasks Θ ∪ {i′} is computed at line 10 by the function ScheduleTasks and
if this value is greater than lctj (line 11), then the adjustment of esti occurs
(line 12). The boolean “detect” of line 4 allows breaking for the while loop of
line 5 when a detection is found. The loop of line 15 is used to avoid similar
set Θ = LCut(T, j, i) since LCut(T, j, i) = LCut(T, j′, i) if lctj = lctj′ . The
complexity of Algorithm 2 is given in the following theorem.

Algorithm 2: Horizontally elastic Not-First Algorithm in O(n3) time.

Input: Λ tasks sorted by non-decreasing lctj , by non-increasing estj , by
non-decreasing cj and by non-decreasing ectj to break ties.

Output: A lower bound est′i for each task i
1 for i ∈ T do est′i ← esti
2 for i = n to 1 do
3 if ecti < lcti then
4 detect← false, j ← 1, t← −1
5 while j ≤ n ∧ detect = false do
6 if j 6= i ∧ esti < ectj then
7 Θ ← LCut(T, j, i)
8 if

∑
k∈Θ

ck > C − ci then

9 ECT← ECTLCut(T,j,i)

10 ectH ← ScheduleTasks(Θ ∪ {i′}, C)

11 if ectH > lctj then
12 est′i ← max(est′i,ECT)
13 detect← true
14 t← j

15 while j + 1 ≤ n ∧ lctj = lctj+1 ∧ detect = false do
16 j ← j + 1

17 j ← j + 1

18 if detect = true then
19 for u = i− 1 to 1 do
20 if estu ≤ esti ∧ cu ≥ ci ∧ ectu ≥ ecti then
21 Θ ← LCut(T, t, u)
22 ECT← ECTLCut(T,t,u)

23 ectH ← ScheduleTasks(Θ ∪ {u′}, C)

24 if ectH > lctj then
25 est′u ← max(est′u,ECT)

26 Λ← Λ \ {u}

27 if detect = false then
28 for u = i− 1 to 1 do
29 if estu = esti ∧ cu ≤ ci ∧ ectu ≤ ecti then
30 Λ← Λ \ {u}

31 for i ∈ T do esti ← est′i

Theorem 4. Algorithm 2 runs in O(n3) time.

Proof. The linear time algorithm ScheduleTasks is called O(n2) time for total
complexity of O(n3).ut

We perform a preliminary comparison of this algorithm with the state of the
art algorithms on the resource constrained project scheduling problems (RCPSP)

instances of the BL set [3]. It appears that on many instances, when the proposed
algorithm is used, the solver spends 1.5 - 2 more time than with the others not-
first/not-last algorithms for a reduction of the number of backtracks of less than
40%. We observe that for a task i, many set Θ = LCut(T, j, i) used to check the
not-first conditions are fruitless and should be avoided.

6 Relaxation of the Horizontally Elastic Not-First
Algorithm

We propose a relaxation of the previous algorithm based on a new criterion used
to reduce the number of subsets LCut(T, j, i) to consider. Without changing the
computational complexity, the relaxed horizontally elastic not-first algorithm
still dominates the classic not-first algorithm with a good trade-off between the
filtering power and the running time. To do so, it is important to have a criteria
to select the task j for which the set Θ = LCut(T, j, i) has more potential to
detect at least the classic not-first conditions.

Definition 2. Let i ∈ T be a task. The not-first set of tasks with task i denoted
NFSet(T, i) is given by

NFSet(T, i) = {j, j ∈ T ∧ j 6= i ∧ esti < ectj}.

The set NFSet(T, i) is the set of tasks conflicting with task i. If a not-first con-
dition is detected with a set Ω i.e., ectΩ∪{i′} > lctΩ , then Ω ⊆ NFSet(T, i).
In this condition, the earliest start time of task i′ can be replaced by estmin =
min{estk, k ∈ T} since none of the tasks from NFSet(T, i) starts and ends before
esti. We schedule the tasks from NFSet(T, i) ∪ {i′} and compute the overflow
energy that cannot be executed at time t = tlctj for j ∈ NFSet(T, i). The algo-
rithm ScheduleNFConflictingTasks is a variant of the algorithm ScheduleTasks
which schedules the set NFSet(T, i) ∪ {i′} and returns the set ∆ of task j such
that the overflow energy at time point tlctj is greater than 0.

We use the condition tlctj .ov > 0 to reduce the number of sets LCut(T, j, i)
to be considered during the detection of the not-first conditions with task i. The
above improvements are incorporated in Algorithm 3. The complexity of the
resulting algorithm remains O(n3) but the condition tlctj .ov > 0 used to reduce
the number of sets LCut(T, j, i) during the detection considerably reduces the
running time, as shown from the experimental results section.

Example 2. Consider the CuSP instance of Figure 1 with an additional task t
where attributes 〈estt, lctt, pt, ct〉 are 〈3, 7, 1, 1〉. The function ScheduleNFCon-
flictingTasks return an empty set when the set NFSet(T, z) ∪ {z′} is scheduled
because the overflow energy will be consumed before the time point 6. Therefore,
the relaxed algorithm will miss the adjustment of estz to 2.

The filtering power of the algorithm is reduced. We prove later that the relaxed
horizontally elastic not-first algorithm subsumes the classic not-first algorithm.

Algorithm 3: Relaxation of the horizontally elastic Not-First in O(n3).

Input: Λ tasks sorted by non-decreasing lctj , by non-increasing estj , by
non-decreasing cj and by non-decreasing ectj to break ties.

Output: A lower bound est′i for each task i
1 for i ∈ T do est′i ← esti
2 for i = n to 1 do
3 if ecti < lcti ∧ i ∈ Λ then
4 detect← false, t← −1
5 if detect = false then
6 ∆← ScheduleNFConflictingTasks(i, C)
7 j ← |∆|
8 while j ≥ 1 ∧ detect = false do
9 Θ ← LCut(T, j, i)

10 ECT← ECTLCut(T,j,i)

11 ectH ← ScheduleTasks(Θ ∪ {i′}, C)

12 if ectH > lctj then
13 est′i ← max(est′i,ECT)
14 detect← true
15 t← j

16 j ← j − 1

17 if detect = true then
18 for u = i− 1 to 1 do
19 if estu ≤ esti ∧ cu ≥ ci ∧ ectu ≥ ecti then
20 Θ ← LCut(T, t, u)
21 ECT← ECTLCut(T,t,u)

22 ectH ← ScheduleTasks(Θ ∪ {u′}, C)

23 if ectH > lctt then
24 est′u ← max(est′u,ECT)

25 Λ← Λ \ {u}

26 if detect = false then
27 for u = i− 1 to 1 do
28 if estu = esti ∧ cu ≤ ci ∧ ectu ≤ ecti then
29 Λ← Λ \ {u}

30 for i ∈ T do esti ← est′i

7 Properties of the relaxation of the horizontally elastic
not-first algorithm

In this section, we prove that the relaxation of the horizontally elastic not-first
algorithm (Algorithm 3) subsumes the standard not-first algorithm.

Lemma 1. Let i ∈ T be a task. If the not-first condition (NF) is detected
with the set of tasks Ω, then after a horizontally elastic scheduling of tasks
NFSet(T, i) ∪ {i′}, it appears that tlctj .ov > 0 where lctj = lctΩ .

Proof. Let j ∈ T be a task such that lctj = lctΩ . If the not-first conditions (NF)
are detected with the set of tasks Ω, then ectFΩ∪{i′} > lctj and Ω ⊆ LCut(T, j, i).

Therefore, in the fully elastic schedule of tasks from Ω ∪ {i′}, the resource is
fully used at any time points from estΩ to lctΩ with a surplus of energy not
executed. Then from ectHLCut(T,j,i)∪{i′} ≥ ectFLCut(T,j,i)∪{i′} ≥ ectFΩ∪{i′} > lctj
and LCut(T, j, i) ⊆ NFSet(T, i) it follows that during the scheduling of tasks set
NFSet(T, i) ∪ {i′}, tlctj .ov > 0.ut

Theorem 5. The relaxation of the horizontally elastic not-first algorithm (Al-
gorithm 3) subsumes the classic not-first algorithm.

Proof. According to Lemma 1, any detection and adjustment performed by the
classic not-first algorithm are also detected and adjusted by the relaxed horizon-
tally elastic not-first algorithm. In the CuSP instance of Example 1, the classic
not-first algorithm fails to adjust estz while the relaxation of the horizontally
elastic not-first algorithm succeeds to update estz to 2.ut

We know from [3] that the classic not-first/not-last rule is not subsumed by
the energetic reasoning rule and vice-versa. According to Theorem 5, we can
deduce that the relaxation of the horizontally elastic not-first/not-last rule is
not subsumed by the energetic reasoning and vice-versa.

8 Experimental Results

We carry out experimentations on resource-constrained project scheduling prob-
lems (RCPSP) to compare the new algorithm of not-first/not-last with the state-
of-the art algorithms. A RCPSP consists of a set of resources of finite capacities,
a set of tasks of given processing times, an acyclic network of precedence con-
straints between tasks, and a horizon (a deadline for all tasks). Each task requires
a fixed amount of each resource over its execution time. The problem is to find
a starting time assignment for all tasks satisfying the precedence and resource
capacity constraints, with the least makespan (i.e., the time at which all tasks
are completed) at most equals to the horizon.

Tests were performed on benchmark suites of RCPSP known to be highly
cumulative [3]. On highly cumulative scheduling instances, many tasks can be
scheduled simultaneously as contrary to the highly disjunctive ones. We use the
libraries BL [11], Pack [13] and KSD15 D [14]. The data set BL consists of 40
instances of 20 and 25 tasks sharing three resources, Pack consists of 55 instances
of 15-33 tasks sharing a resource of capacity 2-5 while the set KSD15 D consists
of 480 instances of 15 tasks sharing a resource of capacity 4.

Starting with the provided horizon as an upper bound, we modeled each
problem as an instance of Constraint Satisfaction Problem (CSP); variables are
start times of tasks and they are constrained by the precedence graph (i.e., prece-
dence relations between pairs of tasks were enforced with linear constraints) and
resource limitations (i.e., each resource was modeled with a single cumulative
constraint [1]). We used a branch and bound search to minimize the makespan.

We implemented three different propagators of the global constraint cumulative
in Java using Choco solver 4.0.1 [17].

1. The first cumulative propagator noted “TT-NF” (for not-first withΘ -tree)
is a sequence of two filtering algorithms: the O(n2 log n) not-first algorithm
from [6] and timetabling algorithm from [15].

2. The second propagator noted “CHE-NF” (for not-first with complete hori-
zontally elastic) is obtained when replacing in the first propagator the not-
first algorithm with Timeline by the complete horizontally elastic not-first
algorithm presented in Algorithm 2.

3. The third propagator noted “RHE-NF” (for not-first with relaxed horizon-
tally elastic) is obtained when replacing in the first propagator the not-first
algorithm with Timeline by the relaxed horizontally elastic not-first algo-
rithm presented in Algorithm 3.

Branching scheme is another ingredient to accelerate the solving process. The
heuristics used to select tasks and values are directly linked to the type of
problems and the filtering algorithms considered in the solver. We combine the
conflict-ordering search heuristic [16] with the heuristicminDomLBSearch from
Choco. During the search, the solver records conflicting tasks and at the back-
track, the last one is selected in priority until they are all instantiated with-
out causing any failure. When no conflicting tasks is recorded, the heuristic
minDomLBSearch which consists of selecting the unscheduled tasks with the
smallest domain and assigning it to its lower bound is used. Tests were performed
on a data center equiped with Intel(R) Xeon X5560 Nehalem nodes, 2 CPUs per
node, 4 cores per CPU at 2.4 GHz, 24 GB of RAM per node. Any search taking
more than 10 minutes was counted as a failure.

In Table 1, the columns “solve” report the number of instances solved by each
propagator. Columns “time”, “backt”, and “speedup” denote the average CPU
time (in second) used to reach the optimal solution, the average number of back-
tracks, and the average speedup factor (TT-NF time over new algorithms time)
reported on instances solved by “TT-NF” vs. “CHE-NF” (sp1) and “TT-NF” vs.
“RHE-NF” (sp2) respectively. 527 instances were solved by the three propaga-
tors with one instance solved only by “CHE-NF” and “RHE-NF” (pack016) and
two instances solved only by “TT-NF” and “RHE-NF” (pack015 and j30 45 2).

TT-NF CHE-NF RHE-NF Speedup (%)

solve time backts solve time backts solve time backts sp1 sp2
BL 40 4.497 32789 40 6.952 23114 40 6.616 27193 64.7 68
Pack 19 30.524 161467 18 42.608 90663 18 24.543 66154 71.6 124.4
KSD15 D 471 0.766 2196 470 1.2 2008 471 0.743 2020 63.8 103.1

Table 1. We report the number of instances solved (solve), the average number of
backtracks (backts), the average time in second (time) and the average speedup fac-
tor (TT-NF time over new algorithms time) required to solve all instances that are
commonly solved by the three propagators on set BL, Pack and KSD15 D.

0 100 200 300
0

100

200

300

(a) New algorithm (sec)

TT vs. CHE

TT vs RHE

0 0.5 1

·106

0

0.5

1

·106

(b) New algorithm (backts)

TT vs. CHE

TT vs RHE

0 2 4

·105

0

2

4

·105

(c) TT & RHE (props)

CHE vs. TT

CHE vs RHE

Fig. 4. (a) Runtimes comparison of TT-NF vs. CHE-NF and TT-NF vs. RHE-NF, (b)
Comparison of the number of Backtracts TT-NF vs. CHE-NF and TT-NF vs. RHE-
NF, (c) Comparison of the number of adjustments (Propagations) CHE-NF vs. TT-NF
and CHE-NF vs. RHE-NF on instances of BL, Pack and KSD15 D where the three
propagators found the best solution.

The propagator “TT-NF” performs better in average on BL set while “RHE-
NF” is the best on Pack and KSD15 D with an average speedup factor of 124.4%
and 103.1% wrt. “TT-NF”. We observe a reduction of the average number of
backtracks from “RHE-NF” on Pack set while “CHE-NF” dominated on BL and
KSD15 D. Figure 4 compares the runtimes (a), the number of backtracks (b)
and the number of adjustments (propagations) (c) made at the fixed point of
the node of the search tree on the 527 instances solved by the three propagators.
It appears in (a) that the running time of “RHE-NF” is generally close to “TT-
NF” and sometimes less. In (b), the number of backtracks of “RHE-NF” is
always less than the number of backtracks of “TT-NF”. In (c), the average
number of propagations of “RHE-NF” are always less than the average number
of propagations of “CHE-NF” when on a few number of instances, the number of
propagations of “TT-NF” is less than the number of propagations of “CHE-NF”.

9 Conclusion

We proposed a generalization of the not-first/not-last rule for the cumulative
resource constraint based on a strong relaxation of the earliest completion time
of a set of tasks. A relaxation of the corresponding horizontally elastic not-
first/not-last algorithm running in O(n3) is also proposed, where n is the number
of tasks sharing the resource. The new algorithm is sound and can reach a better
fixed point than the state-of-the-art algorithms. The new algorithm is based on
the data structure Profile used to compute a strong lower bound on the earliest
completion time of a set of tasks. Experimental results demonstrate that the new
algorithm has more impact in terms of backtracks reduction and running time
on highly cumulative instances of RCPSPs. Future work will focus on finding
how to improve the complexity of this algorithm from O(n3) to O(n2 log n) and
to design a branching scheme more suitable for the new rule.

References

1. A. Aggoun, and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modeling, 17(7), 57–73,
(1993).

2. M. R. Garey and D. S. Johnson. Computers and Intractability. Volume 29, wh
freeman. (2002).

3. P. Baptiste, C. Le Pape, and W. Nuijten: Constraint-based scheduling: applying
constraint programming to scheduling problems. Kluwer, Boston (2001).

4. R. Kameugne, L. P. Fotso, J. Scott, Y. Ngo-Kateu: A Quadratic Edge-Finding
Filtering Algorithm for Cumulative Resource Constraints, Vol. 19. No. 3, pp 243-
269. Springer, (2014).

5. S. Gay, R. Hartert, and P. Schaus. Simple and Scalable Time-Table Filtering for
the Cumulative Constraint. In Proceedings of the 21st International Conference on
Principles and Practice of Constraint Programming (CP 2015), 149–157, 2015.

6. R. Kameugne, and L.P. Fotso. A Cumulative Not-First/Not-Last Filtering Algo-
rithm in O(n2 log(n)). Indian Journal of Pure Applied Mathematics. Vol. 44 No. 1,
95–115, 2013,

7. P. Vil̀ım. Edge Finding Filtering Algorithm for Discrete Cumulative Resources in
O(kn logn). In Proceedings of the 15th International Conference on Principles and
Practice of Constraint Programming (CP 2009). 802–816, 2009.

8. V. Gingras and C.-G. Quimper. Generalizing the Edge-Finder Rule for the
Cumulative Constraint. In Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2016), 3103–3109, 2016.

9. H. Fahimi, Y. Ouellet, and C.-G. Quimper. Faster algorithms for the constraints
Disjunctive and Cumulative using the time line data structure. (under review) 2017.

10. A. Schutt and A. Wolf: A New O(n2 logn) Not-First/Not-Last Pruning Algorithm
for Cumulative Resource Constraints. In Proceedings of the 16th International Con-
ference on Principles and Practice of Constraint Programming (CP 2010). 445–459,
2010.

11. P. Baptiste and C. Le Pape. Constraint propagation and decomposition tech-
niques for highly disjunctive and highly cumulative project scheduling problems.
Constraints Vol 5, No 1-2, 119-139, 2000.

12. A. Derrien and T. Petit. A new characterization of relevant intervals for energetic
reasoning. Principles and Practice of Constraint Programming (CP 2014), Lecture
Notes in Computer Science, 8656, pp. 289297, 2014.

13. J. Carlier and E. Néron. On linear lower bounds for the resource constrained project
scheduling problem. European Journal of Operational Research, 149(2):314-324,
2003.

14. O. Koné, C. Artigues, P. Lopez, and M. Mongeau.: Event-based milp models for
resource-constrained project scheduling problems. Computers & Operations Re-
search, 38(1):3-13, 2011.

15. A. Letort, N. Beldiceanu, and M. Carlsson. A scalable sweep algorithm for
cumulative constraint. In Proceedings of the 18th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2012), 439-454, 2012.

16. Steven Gay, Renaud Hartert, Christophe Lecoutre and Pierre Schaus. Conflict
Ordering Search for Scheduling Problems. n Proceedings of the 21st International
Conference on Principles and Practice of Constraint Programming (CP 2015), 140-
148, Cork, Ireland, 2015.

17. C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Solver Documentation, TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016, http://www.

choco-solver.org

